Chapter 2: Alternating Minimization

Ernest K. Ryu

MATH 164: Optimization University of California, Los Angeles Department of Mathematics

Last edited: February 10, 2025

Minimize one block at a time

Simple algorithm: Minimize each block one at a time.

Commonly used when block updates have closed-form formulae.

Convergence can be shown under appropriate assumptions. Convergence rates are not particularly impressive.

Problem setup

Consider
$$\begin{array}{l} \underset{x \in \mathbb{R}^{n_1+n_2+\cdots+n_p}}{\text{minimize}} \quad f(x_{(1)}, x_{(2)}, \ldots, x_{(p)}),\\ \text{where } x = (x_{(1)}, x_{(2)}, \ldots, x_{(p)}) \text{ and}\\ \\ x_{(i)} = \begin{bmatrix} x_{(i),1} \\ x_{(i),2} \\ \vdots \\ x_{(i),n_i} \end{bmatrix} \in \mathbb{R}^{n_i}, \quad \text{ for } i = 1, \ldots, p. \end{array}$$

This is an unconstrained optimization problem with the $x\mbox{-variable}$ partitioned into p blocks.

Alternating minimization method

Use the notation

$$x^k = \left(x_{(1)}^k, \dots, x_{(p)}^k\right).$$

Alternating minimization (AM) method updates $x^k \mapsto x^{k+1}$ via

$$x_{(i)}^{k+1} \in \operatorname*{argmin}_{z \in \mathbb{R}^{n_i}} f(x_{(1)}^{k+1}, \dots, x_{(i-1)}^{k+1}, z, x_{(i+1)}^k, \dots, x_{(p)}^k)$$

for i = 1, ..., p. Stars from initialization $x^0 = (x^0_{(1)}, ..., x^0_{(p)})$. (Actually, no need to initialize $x^0_{(1)}$.)

There are no stepsizes!

Other names of AM

Coordinate minimization: When all of the blocks have size 1, i.e., if $n_1 = n_2 = \cdots = n_p = 1$.

Gauss-Seidel: When there are 2 blocks, i.e., if p = 2.

Block coordinate descent: A variant of AM where instead of finding the coordinate-wise minimizer at each step, one performs a coordinate-wise gradient update.

Minimizer vs. coordinate-wise minimizer

We say
$$x = (x_{(1)}, \ldots, x_{(p)})$$
 is a *minimizer* of f if

 $f(x_{(1)},\ldots,x_{(p)}) \le f(z_{(1)},\ldots,z_{(p)}) \qquad \forall (z_{(1)},\ldots,z_{(p)}) \in \mathbb{R}^{n_1+\cdots+n_p}.$

I.e., deviating from x in any way cannot reduce f.

We say
$$x = (x_{(1)}, \dots, x_{(p)})$$
 is a *coordinate-wise* minimizer of f if

$$\begin{aligned} f(x_{(1)}, \dots, x_{(i-1)}, x_{(i)}, x_{(i+1)}, \dots, x_{(p)}) \\ &\leq f(x_{(1)}, \dots, x_{(i-1)}, z, x_{(i+1)}, \dots, x_{(p)}), \end{aligned} \quad \forall z \in \mathbb{R}^{n_i}$$

for all i = 1, ..., p. I.e., unilaterally changing any individual block of x cannot reduce f.

Theorem.

Let $f: \mathbb{R}^{n_1+\dots+n_p} \to \mathbb{R}$ is continuous. Consider alternating minimization, and assume the iterates $\{x^k\}_k$ are well-defined. If $x^k \to \bar{x}$, then \bar{x} is a coordinate-wise minimizer of f.

Alternating minimization is often used for problems non-differentiable optimization problems. Therefore, it is useful to analyze its convergence properties and its failure modes in the absence of differentiability.

Convergence of AM without differentiability

Theorem.

Let $f: \mathbb{R}^{n_1+\dots+n_p} \to \mathbb{R}$ is continuous. Consider alternating minimization, and assume the iterates $\{x^k\}_k$ are well-defined. If $x^k \to \bar{x}$, then \bar{x} is a coordinate-wise minimizer of f.

We clarify a few points about what the theorem is not claiming.

Without further assumptions, we do not know if

$$x_{(i)}^{k+1} \in \operatorname*{argmin}_{z \in \mathbb{R}^{n_i}} f\left(x_{(1)}^{k+1}, \dots, x_{(i-1)}^{k+1}, z, x_{(i+1)}^k, \dots, x_{(p)}^k\right)$$

is well-defined, i.e., a minimizer may not exist. (In practice, however, this is often not a problem.)

- ► The {x^k}_k may or may not converge. (In practice, however, this is often not a problem.)
- ▶ The coordinate-wise minimum may not be a minimum.

Convergence of AM without differentiability

Theorem.

Let $f: \mathbb{R}^{n_1+\dots+n_p} \to \mathbb{R}$ is continuous. Consider alternating minimization, and assume the iterates $\{x^k\}_k$ are well-defined. If $x^k \to \bar{x}$, then \bar{x} is a coordinate-wise minimizer of f.

Proof. Since $x_{(1)}^{k+1}$ is defined as a coordinate-wise minimizer,

$$f(x_{(1)}^{k+1}, x_{(2)}^k, \dots, x_{(p)}^k) \le f(z, x_{(2)}^k, \dots, x_{(p)}^k), \quad \forall z \in \mathbb{R}^{n_1}.$$

Taking the limit $k \to \infty$ on both sides,

$$f\left(\bar{x}_{(1)}, \bar{x}_{(2)}, \dots, \bar{x}_{(p)}\right) \le f\left(\boldsymbol{z}, \bar{x}_{(2)}, \dots, \bar{x}_{(p)}\right), \qquad \forall \boldsymbol{z} \in \mathbb{R}^{n_1}.$$

This shows that \bar{x} is a coordinate-wise minimizer with respect to the first block. Repeating the argument for blocks $i = 2, \ldots, p$, we conclude the statement.

Coordinate-wise minimizer is not a minimizer Let $f: \mathbb{R}^2 \to \mathbb{R}$ be

$$f(x,y) = |3x + 4y| + |x - 2y|.$$

The global minimizer is (0,0), but $(-4\alpha,3\alpha)$ for any $\alpha \in \mathbb{R}$ is a coordinate-wise minimizer. (Note that f is convex, so non-convexity is not the cause of any trouble.)

For most starting points, AM will get stuck at $(-4\alpha, 3\alpha)$ with some α

This is a mode of failure of AM. When AM converges the limit may not be a global or local minimum.

Coordinate-wise minimizer is a stationary point under differentiability

Under differentiability, a coordinate-wise minimizer is a stationary point.

Lemma.

If $f: \mathbb{R}^{n_1+\dots+n_p} \to \mathbb{R}$ is differentiable, then a coordinate-wise minimizer is a stationary point (i.e., $\nabla f(w) = 0$.) **Proof.** Let x be a coordinate-wise minimizer. Then, (0)

$$\begin{aligned} f(x + \varepsilon d) &= f(x) + \varepsilon \langle \nabla f(x), d \rangle + o(\varepsilon) \\ &= f(x) + \varepsilon \| \nabla_{x_i} f(x) \|^2 + o(\varepsilon) \end{aligned} \qquad d = \begin{vmatrix} 0 \\ \nabla_{x_i} f(x) \\ 0 \end{vmatrix}$$

for any $i = 1, \dots, p$. Since x is a coordinate-wise minimizer, $f(x+\varepsilon d)\geq f(x)$ for any $\varepsilon\text{, so}$ $\|\nabla_{x_i} f(x)\|^2 = 0$ for any $i = 1, \dots, p$, and we conclude $\nabla f(x) = 0$.

Convergence of AM with differentiability

Theorem.

Let $f: \mathbb{R}^{n_1+\dots+n_p} \to \mathbb{R}$ be differentiable. Consider alternating minimization, and assume the iterates $\{x^k\}_k$ are well-defined. If $x^k \to \bar{x}$, then \bar{x} is a coordinate-wise minimizer and a stationary point of f.

In practice, a point that is [a coordinate-wise minimizer and a stationary point] is often a local minimizer. So we can understand this result as essentially a guarantee to converge to a local minimum.

However, although AM finds the coordinate-wise global minimizer at each update, the limit \bar{x} is often *not* a global minimum.

Theorem.

Let $f: \mathbb{R}^{n_1 + \dots + n_p} \to \mathbb{R}$ be convex and differentiable. Consider alternating minimization, and assume the iterates $\{x^k\}_k$ are well-defined. If $x^k \to \bar{x}$, then \bar{x} is a (global) minimizer of f.

Recall, the counterexample showed that with a convex but non-differentiable f, AM may get stuck at a point that is not a minimizer.

Given a matrix $M,\, {\rm if}$ we observe some of the entries, can we reconstruct the entrie matrix?

$$\begin{pmatrix}
1 & ? & ? & 4 & ? \\
? & 2 & 5 & ? & ? \\
? & ? & 4 & 5 & ? \\
5 & ? & ? & ? & 4
\end{pmatrix}$$

In the Netflix Competition (Netflix Prize) of 2006–2009, the goal is to recommend movies well to the users.

Specifically, there are m users and n movies. Each user has watched some movies and have provided ratings. Let

 $\Omega = \{(i, j) \mid \text{user } i \text{ has rated movie } j\} \subseteq \{1, \dots, m\} \times \{1, \dots, n\}.$

Let M_{ij} for $(i, j) \in \Omega$ be the score given by user *i* to movie *j*.

Can we predict all of $M \in \mathbb{R}^{m \times n}$? Then, if M_{ij} is big for some $(i, j) \notin \Omega$, Netflix can recommend movie j to user i.

Of course, M is not a completely unstructured collection of numbers, and any solution *must* utilize some structure of M. It turns out that assuming M has **low rank** leads to good results.

Assume a matrix $M\in\mathbb{R}^{m\times n}$ has rank r. This implies that M can be written as a low-rank product of the form

 ${\cal M}$ has entries ${\cal M}_{ij},$ and there are mn such entries. Assume we observe a subset of the entries. Let

 $\Omega = \{(i, j) | \text{ we know the the value of } M_{ij}\} \subseteq \{1, \dots, m\} \times \{1, \dots, n\}.$ be the set of observation indices.

Goal: Reconstruct all of $M \in \mathbb{R}^{m \times n}$.

We form an explicit factorization M = LR and fit L and R on the observed entries.

$$\underset{L \in \mathbb{R}^{m \times r}, R \in \mathbb{R}^{r \times n}}{\text{minimize}} \quad \sum_{(i,j) \in \Omega} \frac{1}{2} (M - LR)_{ij}^2 = \sum_{(i,j) \in \Omega} \frac{1}{2} (M_{ij} - L_i R_j)^2,$$

where

$$L = \begin{bmatrix} -L_1 \\ -L_2 \\ -L_2 \\ \vdots \\ -L_m \end{bmatrix}, \qquad R = \begin{bmatrix} | & | & | \\ R_1 & R_2 & \cdots & R_n \\ | & | & | \end{bmatrix}.$$

To clarify, $L_i R_j$ is an inner product between the row vector $L_i \in \mathbb{R}^{1 \times r}$ and the column vector $R_j \in \mathbb{R}^{r \times 1}$.

Let us use alternating minimization, minimizing with respect to L and then R, to solve this problem.

Let

 $\Omega^I_i=\{j\,|\,(i,j)\in\Omega\}=(\text{list of movies }j\text{ that user }i\text{ rated})$ for $i=1,\ldots,m.$ Then, we can write

Likewise, let

 $\Omega_{i}^{J} = \{i \mid (i, j) \in \Omega\} = (\text{list users } i \text{ who have rated movie } j)$

for $j = 1, \ldots, n$. Then, we can write

$$\sum_{(i,j)\in\Omega} \square = \sum_{j=1}^n \sum_{i\in\Omega_j^J} \square$$

Next, compute the alternating updates in closed forms. Let

$$\mathcal{J} = \sum_{(i,j)\in\Omega} \frac{1}{2} (M_{ij} - L_i R_j)^2 = \sum_{i=1}^m \sum_{j\in\Omega_i^I} \frac{1}{2} (M_{ij} - L_i R_j)^2.$$

Then

$$\frac{\partial \mathcal{J}}{\partial (L_i)_k} = \sum_{j \in \Omega_i^I} \left(M_{ij} - L_i R_j \right) (R_j)_k$$

and vectorizing this, we get

$$\nabla_{L_i} \mathcal{J} = \begin{bmatrix} \frac{\partial \mathcal{J}}{\partial (L_i)_1} & \cdots & \frac{\partial \mathcal{J}}{\partial (L_i)_r} \end{bmatrix}$$
$$= \sum_{j \in \Omega_i^I} \left(M_{ij} - L_i R_j \right) \begin{bmatrix} (R_j)_1 & \cdots & (R_j)_r \end{bmatrix}$$
$$= \sum_{j \in \Omega_i^I} \left(M_{ij} - L_i R_j \right) R_j^{\mathsf{T}}$$
$$= \sum_{j \in \Omega_i^I} M_{ij} R_j^{\mathsf{T}} - L_i \sum_{j \in \Omega_i^I} R_j R_j^{\mathsf{T}} = 0.$$

Right-multiply $(\sum R_j R_j^{\mathsf{T}})^{-1}$ on both sides of

$$\sum_{j \in \Omega_i^I} M_{ij} R_j^{\mathsf{T}} = L_i \sum_{j \in \Omega_i^I} R_j R_j^{\mathsf{T}}$$

to get

$$L_i = \left(\sum_{j \in \Omega_i^I} M_{ij} R_j^{\mathsf{T}}\right) \left(\sum_{j \in \Omega_i^I} R_j R_j^{\mathsf{T}}\right)^{-1} \in \mathbb{R}^{1 \times r}.$$

To get column vectors, we transpose both sides to get

$$L_i^{\mathsf{T}} = \Big(\sum_{j \in \Omega_i^I} R_j R_j^{\mathsf{T}}\Big)^{-1} \Big(\sum_{j \in \Omega_i^I} R_j M_{ij}\Big) \in \mathbb{R}^{r \times 1}$$

We vectorize

$$L_{i}^{\mathsf{T}} = \Big(\sum_{j \in \Omega_{i}^{I}} \underbrace{R_{j}R_{j}^{\mathsf{T}}}_{(r \times 1) \text{ by }(1 \times r)}\Big)^{-1} \Big(\sum_{j \in \Omega_{i}^{I}} \underbrace{R_{j}M_{ij}}_{(r \times 1) \text{ by }(1 \times 1)}\Big)$$

a bit further to get

$$L_i^{\mathsf{T}} = \Big(\underbrace{R_{\Omega_i^I}R_{\Omega_i^I}^{\mathsf{T}}}_{(r \times |\Omega_i^I|) \text{ by } (|\Omega_i^I| \times r)} \Big)^{-1} \Big(\underbrace{R_{\Omega_i^I}M_{i,\Omega_i^I}^{\mathsf{T}}}_{(r \times |\Omega_i^I|) \text{ by } (|\Omega_i^I| \times 1)} \Big),$$

where

$$\Omega_i^I = \{j_1, j_2, \dots, j_{|\Omega_i^I|}\},$$

$$R_{\Omega_i^I} = \begin{bmatrix} R_{j_1} & R_{j_2} & \cdots & R_{j_{|\Omega_i^I|}} \end{bmatrix} \in \mathbb{R}^{r \times |\Omega_i^I|},$$

$$M_{i,\Omega_i^I} = \begin{bmatrix} M_{i,j_1} & M_{i,j_2} & \cdots & M_{i,j_{|\Omega_i^I|}} \end{bmatrix} \in \mathbb{R}^{1 \times |\Omega_i^I|}.$$

Sub-indexing arrays is well-supported in Python.

We have arrived at the update

$$L_i^{\mathsf{T}} = \left(R_{\Omega_i^I} R_{\Omega_i^I}^{\mathsf{T}} \right)^{-1} \left(R_{\Omega_i^I} M_{i,\Omega_i^I}^{\mathsf{T}} \right),$$

With an analogous argument, we have

$$R_j = \left(L_{\Omega_j^J}^{\mathsf{T}} L_{\Omega_j^J} \right)^{-1} \left(L_{\Omega_j^J}^{\mathsf{T}} M_{\Omega_j^J, j} \right),$$

We have now derived an alternating minimization algorithm

$$\begin{split} L_i^{k+1,\mathsf{T}} &= \left(R_{\Omega_i^I}^k R_{\Omega_i^I}^{k,\mathsf{T}} \right)^{-1} \left(R_{\Omega_i^I}^k M_{i,\Omega_i^I}^\mathsf{T} \right), \qquad \qquad \text{for } i = 1, \dots, m \\ R_j^{k+1} &= \left(L_{\Omega_j^J}^{k+1,\mathsf{T}} L_{\Omega_j^J}^{k+1} \right)^{-1} \left(L_{\Omega_j^J}^{k+1,\mathsf{T}} M_{\Omega_j^J,j} \right), \qquad \qquad \text{for } i = 1, \dots, n \end{split}$$

for k = 0, 1, ...