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Minimize one block at a time

Simple algorithm: Minimize each block one at a time.

Commonly used when block updates have closed-form formulae.

Convergence can be shown under appropriate assumptions. Convergence
rates are not particularly impressive.

2



Problem setup

Consider
minimize

x∈Rn1+n2+···+np
f(x(1), x(2), . . . , x(p)),

where x = (x(1), x(2), . . . , x(p)) and

x(i) =


x(i),1

x(i),2
...

x(i),ni

 ∈ Rni , for i = 1, . . . , p.

This is an unconstrained optimization problem with the x-variable
partitioned into p blocks.

3



Alternating minimization method

Use the notation
xk =

(
xk
(1), . . . , x

k
(p)

)
.

Alternating minimization (AM) method updates xk 7→ xk+1 via

xk+1
(i) ∈ argmin

z∈Rni

f
(
xk+1
(1) , . . . , xk+1

(i−1), z, x
k
(i+1), . . . , , x

k
(p)

)
for i = 1, . . . , p. Stars from initialization x0 =

(
x0
(1), . . . , x

0
(p)

)
.

(Actually, no need to initialize x0
(1).)

There are no stepsizes!
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Other names of AM

Coordinate minimization: When all of the blocks have size 1, i.e., if
n1 = n2 = · · · = np = 1.

Gauss–Seidel: When there are 2 blocks, i.e., if p = 2.

Block coordinate descent: A variant of AM where instead of finding the
coordinate-wise minimizer at each step, one performs a coordinate-wise
gradient update.
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Minimizer vs. coordinate-wise minimizer

We say x = (x(1), . . . , x(p)) is a minimizer of f if

f(x(1), . . . , x(p)) ≤ f(z(1), . . . , z(p)) ∀ (z(1), . . . , z(p)) ∈ Rn1+···+np .

I.e., deviating from x in any way cannot reduce f .

We say x = (x(1), . . . , x(p)) is a coordinate-wise minimizer of f if

f(x(1), . . . , x(i−1), x(i), x(i+1), . . . , x(p))

≤ f(x(1), . . . , x(i−1), z, x(i+1), . . . , x(p)),
∀ z ∈ Rni

for all i = 1, . . . , p. I.e., unilaterally changing any individual block of x
cannot reduce f .
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Convergence of AM without differentiability

Theorem.
Let f : Rn1+···+np → R is continuous. Consider alternating minimization,
and assume the iterates {xk}k are well-defined. If xk → x̄, then x̄ is a
coordinate-wise minimizer of f .

Alternating minimization is often used for problems non-differentiable
optimization problems. Therefore, it is useful to analyze its convergence
properties and its failure modes in the absence of differentiability.
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Convergence of AM without differentiability

Theorem.
Let f : Rn1+···+np → R is continuous. Consider alternating minimization,
and assume the iterates {xk}k are well-defined. If xk → x̄, then x̄ is a
coordinate-wise minimizer of f .

We clarify a few points about what the theorem is not claiming.

▶ Without further assumptions, we do not know if

xk+1
(i) ∈ argmin

z∈Rni

f
(
xk+1
(1) , . . . , xk+1

(i−1), z, x
k
(i+1), . . . , , x

k
(p)

)
is well-defined, i.e., a minimizer may not exist. (In practice, however,
this is often not a problem.)

▶ The {xk}k may or may not converge. (In practice, however, this is
often not a problem.)

▶ The coordinate-wise minimum may not be a minimum.
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Convergence of AM without differentiability

Theorem.
Let f : Rn1+···+np → R is continuous. Consider alternating minimization,
and assume the iterates {xk}k are well-defined. If xk → x̄, then x̄ is a
coordinate-wise minimizer of f .

Proof. Since xk+1
(1) is defined as a coordinate-wise minimizer,

f
(
xk+1
(1) , xk

(2), . . . , x
k
(p)

)
≤ f

(
z, xk

(2), . . . , x
k
(p)

)
, ∀ z ∈ Rn1 .

Taking the limit k → ∞ on both sides,

f
(
x̄(1), x̄(2), . . . , x̄(p)

)
≤ f

(
z, x̄(2), . . . , x̄(p)

)
, ∀ z ∈ Rn1 .

This shows that x̄ is a coordinate-wise minimizer with respect to the first
block. Repeating the argument for blocks i = 2, . . . , p, we conclude the
statement.
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Coordinate-wise minimizer is not a minimizer

Let f : R2 → R be

f(x, y) = |3x+ 4y|+ |x− 2y|.
The global minimizer is (0, 0), but (−4α, 3α) for any α ∈ R is a
coordinate-wise minimizer. (Note that f is convex, so non-convexity is
not the cause of any trouble.)

For most starting points, AM will get stuck at (−4α, 3α) with some α

This is a mode of failure of AM. When AM converges the limit may not
be a global or local minimum.
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Coordinate-wise minimizer is a stationary point

under differentiability

Under differentiability, a coordinate-wise minimizer is a stationary point.

Lemma.
If f : Rn1+···+np → R is differentiable, then a coordinate-wise minimizer
is a stationary point (i.e., ∇f(x) = 0.)

Proof. Let x be a coordinate-wise minimizer. Then,

f(x+ εd) = f(x) + ε⟨∇f(x), d⟩+ o(ε)

= f(x) + ε∥∇xi
f(x)∥2 + o(ε)

d =



0
...
0

∇xif(x)
0
...
0


for any i = 1, . . . , p. Since x is a coordinate-wise
minimizer, f(x+ εd) ≥ f(x) for any ε, so
∥∇xi

f(x)∥2 = 0 for any i = 1, . . . , p, and we conclude ∇f(x) = 0.
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Convergence of AM with differentiability

Theorem.
Let f : Rn1+···+np → R be differentiable. Consider alternating
minimization, and assume the iterates {xk}k are well-defined. If xk → x̄,
then x̄ is a coordinate-wise minimizer and a stationary point of f .

In practice, a point that is [a coordinate-wise minimizer and a stationary
point] is often a local minimizer. So we can understand this result as
essentially a guarantee to converge to a local minimum.

However, although AM finds the coordinate-wise global minimizer at
each update, the limit x̄ is often not a global minimum.
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Convergence of AM with differentiability and convexity

Theorem.
Let f : Rn1+···+np → R be convex and differentiable. Consider
alternating minimization, and assume the iterates {xk}k are well-defined.
If xk → x̄, then x̄ is a (global) minimizer of f .

Recall, the counterexample showed that with a convex but
non-differentiable f , AM may get stuck at a point that is not a minimizer.
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Example: Low-rank matrix completion

Given a matrix M , if we observe some of the entries, can we reconstruct
the entire matrix?
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Example: Low-rank matrix completion

In the Netflix Competition (Netflix Prize) of 2006–2009, the goal is to
recommend movies well to the users.

Specifically, there are m users and n movies. Each user has watched
some movies and have provided ratings. Let

Ω = {(i, j) | user i has rated movie j} ⊆ {1, . . . ,m} × {1, . . . , n}.

Let Mij for (i, j) ∈ Ω be the score given by user i to movie j.

Can we predict all of M ∈ Rm×n? Then, if Mij is big for some
(i, j) /∈ Ω, Netflix can recommend movie j to user i.

Of course, M is not a completely unstructured collection of numbers,
and any solution must utilize some structure of M . It turns out that
assuming M has low rank leads to good results.
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Example: Low-rank matrix completion

Assume a matrix M ∈ Rm×n has rank r. This implies that M can be
written as a low-rank product of the form

M =

[ ]
︸ ︷︷ ︸

m×r




︸ ︷︷ ︸

r×n

∈ Rm×n

M has entries Mij , and there are mn such entries. Assume we observe a
subset of the entries. Let

Ω = {(i, j) |we know the the value of Mij} ⊆ {1, . . . ,m} × {1, . . . , n}.

be the set of observation indices.

Goal: Reconstruct all of M ∈ Rm×n.
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Example: Low-rank matrix completion

We form an explicit factorization M = LR and fit L and R on the
observed entries.

minimize
L∈Rm×r, R∈Rr×n

∑
(i,j)∈Ω

1

2

(
M − LR

)2
ij
=

∑
(i,j)∈Ω

1

2

(
Mij − LiRj

)2
,

where

L =


—L1 —
—L2 —

...
—Lm —

 , R =

 | | |
R1 R2 · · · Rn

| | |

 .

To clarify, LiRj is an inner product between the row vector Li ∈ R1×r

and the column vector Rj ∈ Rr×1.

Let us use alternating minimization, minimizing with respect to L and
then R, to solve this problem.
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Example: Low-rank matrix completion

Let

ΩI
i = {j | (i, j) ∈ Ω} = (list of movies j that user i rated)

for i = 1, . . . ,m. Then, we can write∑
(i,j)∈Ω

=

m∑
i=1

∑
j∈ΩI

i

Likewise, let

ΩJ
j = {i | (i, j) ∈ Ω} = (list users i who have rated movie j)

for j = 1, . . . , n. Then, we can write∑
(i,j)∈Ω

=

n∑
j=1

∑
i∈ΩJ

j

18



Example: Low-rank matrix completion

Next, compute the alternating updates in closed forms. Let

J =
∑

(i,j)∈Ω

1

2

(
Mij − LiRj

)2
=

m∑
i=1

∑
j∈ΩI

i

1

2

(
Mij − LiRj

)2
.

Then
∂J

∂(Li)k
=

∑
j∈ΩI

i

(
Mij − LiRj

)
(Rj)k

and vectorizing this, we get

∇Li
J =

[
∂J

∂(Li)1
· · · ∂J

∂(Li)r

]
=

∑
j∈ΩI

i

(
Mij − LiRj

) [
(Rj)1 · · · (Rj)r

]
=

∑
j∈ΩI

i

(
Mij − LiRj

)
R⊺

j

=
∑
j∈ΩI

i

MijR
⊺
j − Li

∑
j∈ΩI

i

RjR
⊺
j = 0.
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Example: Low-rank matrix completion

Right-multiply (
∑

RjR
⊺
j )

−1 on both sides of∑
j∈ΩI

i

MijR
⊺
j = Li

∑
j∈ΩI

i

RjR
⊺
j

to get

Li =
( ∑

j∈ΩI
i

MijR
⊺
j

)( ∑
j∈ΩI

i

RjR
⊺
j

)−1

∈ R1×r.

To get column vectors, we transpose both sides to get

L⊺
i =

( ∑
j∈ΩI

i

RjR
⊺
j

)−1( ∑
j∈ΩI

i

RjMij

)
∈ Rr×1.
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Example: Low-rank matrix completion

We vectorize

L⊺
i =

( ∑
j∈ΩI

i

RjR
⊺
j︸ ︷︷ ︸

(r×1) by (1×r)

)−1( ∑
j∈ΩI

i

RjMij︸ ︷︷ ︸
(r×1) by (1×1)

)

a bit further to get

L⊺
i =

(
RΩI

i
R⊺

ΩI
i︸ ︷︷ ︸

(r×|ΩI
i |) by (|ΩI

i |×r)

)−1(
RΩI

i
M⊺

i,ΩI
i︸ ︷︷ ︸

(r×|ΩI
i |) by (|ΩI

i |×1)

)
,

where
ΩI

i = {j1, j2, . . . , j|ΩI
i |},

RΩI
i
=

[
Rj1 Rj2 · · · Rj|ΩI

i
|

]
∈ Rr×|ΩI

i |,

Mi,ΩI
i
=

[
Mi,j1 Mi,j2 · · · Mi,j|ΩI

i
|

]
∈ R1×|ΩI

i |.

Sub-indexing arrays is well-supported in Python.
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Example: Low-rank matrix completion

We have arrived at the update

L⊺
i =

(
RΩI

i
R⊺

ΩI
i

)−1(
RΩI

i
M⊺

i,ΩI
i

)
,

With an analogous argument, we have

Rj =
(
L⊺
ΩJ

j

LΩJ
j

)−1(
L⊺
ΩJ

j

MΩJ
j ,j

)
,

We have now derived an alternating minimization algorithm

Lk+1,⊺
i =

(
Rk

ΩI
i
Rk,⊺

ΩI
i

)−1(
Rk

ΩI
i
M⊺

i,ΩI
i

)
, for i = 1, . . . ,m

Rk+1
j =

(
Lk+1,⊺
ΩJ

j

Lk+1
ΩJ

j

)−1(
Lk+1,⊺
ΩJ

j

MΩJ
j ,j

)
, for i = 1, . . . , n

for k = 0, 1, . . . .
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