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Minimize one block at a time

Simple algorithm: Minimize each block one at a time.
Commonly used when block updates have closed-form formulae.

Convergence can be shown under appropriate assumptions. Convergence
rates are not particularly impressive.



Problem setup

Consider L
cpminimize - f(2@): 2@ 2m),
where x = (z(1), 7(2), ..., Z(p)) and
L(i),1
T(),2 ) .
zo=| . | €RM,  fori=1,...,p.
x(l)vnl

This is an unconstrained optimization problem with the z-variable
partitioned into p blocks.



Alternating minimization method

Use the notation
k k k
r = (1;(1)7"'71‘(])))'

k+1

Alternating minimization (AM) method updates z* + z**1 via
" k k k k
(Z-;-l c argﬂrglinf( Sl, ,.,x(it11)7z,x(i+1), e T(y)
. . .. . . O _ O O
fori=1,...,p. Stars from initialization z" = (33(1), e ,m(p)).

(Actually, no need to initialize 2{,,.)

There are no stepsizes!



Other names of AM

Coordinate minimization: When all of the blocks have size 1, i.e., if
ny=mng=--=mn,=1

Gauss—Seidel: When there are 2 blocks, i.e., if p = 2.
Block coordinate descent: A variant of AM where instead of finding the

coordinate-wise minimizer at each step, one performs a coordinate-wise
gradient update.



Minimizer vs. coordinate-wise minimizer

We say & = (z(1),...,Z(p)) is a minimizer of f if

f(z(l), A ,I(p)) < f(Z(l), ey Z(p)) A (Z(l), ey Z(p)) S Rn1+---+np.

l.e., deviating from x in any way cannot reduce f.

We say & = (2(1),...,Z(p)) is a coordinate-wise minimizer of f if

F(Tays o T—1), Ty Tt 1) - - T(p))

VzeR™
< f(l'(l)a sy L(4=1)s By T(41)y - - - 7x(p)),

foralli=1,...,p. lLe., unilaterally changing any individual block of x
cannot reduce f.



Convergence of AM without differentiability

Theorem.

Let f: Rmt 7 s R js continuous. Consider alternating minimization,
and assume the iterates {x*}; are well-defined. If x* — Z, then T is a
coordinate-wise minimizer of f.

Alternating minimization is often used for problems non-differentiable
optimization problems. Therefore, it is useful to analyze its convergence
properties and its failure modes in the absence of differentiability.



Convergence of AM without differentiability

Theorem.

Let f: R+ +" s R js continuous. Consider alternating minimization,
and assume the iterates {x*}. are well-defined. If x* — Z, then T is a
coordinate-wise minimizer of f.

We clarify a few points about what the theorem is not claiming.

» Without further assumptions, we do not know if

gL k+1 ok k
() Eafgﬂr;imf( s Gy 2 (i+1)7...,,x(p))

is well-defined, i.e., a minimizer may not exist. (In practice, however,
this is often not a problem.)

» The {z*}; may or may not converge. (In practice, however, this is
often not a problem.)

» The coordinate-wise minimum may not be a minimum.



Convergence of AM without differentiability

Theorem.

Let f: Rmt -+ s R js continuous. Consider alternating minimization,
and assume the iterates {x*}; are well-defined. If x* — Z, then T is a
coordinate-wise minimizer of f.

Proof. Since xffgl is defined as a coordinate-wise minimizer,

f(x?l‘gl,x’é),...,xfb)) < f(z,x’&),...,xlg’p)), VzeR"™.

Taking the limit £ — oo on both sides,
f(.i‘(l),f(g), e ,i'(p)) < f(z7:i(2)7 e ,i‘(p)), VzeR™.

This shows that Z is a coordinate-wise minimizer with respect to the first
block. Repeating the argument for blocks ¢ = 2,...,p, we conclude the
statement. O



Coordinate-wise minimizer is not a minimizer
Let f: R2 — R be
fz,y) = 3z + 4y| + [z — 2y|.

The global minimizer is (0,0), but (—4a, 3«) for any « € R is a
coordinate-wise minimizer. (Note that f is convex, so non-convexity is
not the cause of any trouble.)

For most starting points, AM will get stuck at (—4«, 3a) with some «

This is a mode of failure of AM. When AM converges the limit may not
be a global or local minimum.
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Coordinate-wise minimizer is a stationary point

under differentiability
Under differentiability, a coordinate-wise minimizer is a stationary point.
Lemma.

If f: R+ — R js differentiable, then a coordinate-wise minimizer
is a stationary point (i.e., Vf(x) =0.)

0
Proof. Let z be a coordinate-wise minimizer. Then, :
flw+ed) = f(@) +(Vf(2),d) +olc) o (}( )
X T
= f(@) +¢l|Va, f(@)]* + o(e) 0
foranyi=1,...,p. Since x is a coordinate-wise O

minimizer, f(z +ed) > f(z) for any €, so
|V, f(x)||> =0 forany i = 1,...,p, and we conclude Vf(z) =0. [
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Convergence of AM with differentiability

Theorem.

Let f: Rt -+ s R pe differentiable. Consider alternating
minimization, and assume the iterates {x*}; are well-defined. If x* — Z,
then T is a coordinate-wise minimizer and a stationary point of f.

In practice, a point that is [a coordinate-wise minimizer and a stationary
point] is often a local minimizer. So we can understand this result as
essentially a guarantee to converge to a local minimum.

However, although AM finds the coordinate-wise global minimizer at
each update, the limit Z is often not a global minimum.
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Convergence of AM with differentiability and convexity

Theorem.

Let f: Rt s R be convex and differentiable. Consider
alternating minimization, and assume the iterates {x"*}, are well-defined.
If 2* — %, then Z is a (global) minimizer of f.

Recall, the counterexample showed that with a convex but
non-differentiable f, AM may get stuck at a point that is not a minimizer.
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Example: Low-rank matrix completion

Given a matrix M, if we observe some of the entries, can we reconstruct
the entire matrix?

(O IR SR R Y
DY N Y
-~ b 1 v
S I B
N VIV

14



Example: Low-rank matrix completion

In the Netflix Competition (Netflix Prize) of 2006-2009, the goal is to
recommend movies well to the users.

Specifically, there are m users and n movies. Each user has watched
some movies and have provided ratings. Let

Q = {(4,7) | user i has rated movie 7} C {1,...,m} x {1,...,n}.

Let M;; for (i,7) € Q be the score given by user i to movie j.

Can we predict all of M € R™*"? Then, if M;; is big for some
(i,75) ¢ €, Netflix can recommend movie j to user i.

Of course, M is not a completely unstructured collection of numbers,
and any solution must utilize some structure of M. It turns out that
assuming M has low rank leads to good results.
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Example: Low-rank matrix completion

Assume a matrix M € R™*™ has rank . This implies that M can be
written as a low-rank product of the form

M = e R™*"

mxr

—_———

rXn

M has entries M;;, and there are mn such entries. Assume we observe a
subset of the entries. Let

Q= {(¢,7) | we know the the value of M;;} C {1,...,m} x {1,...,n}.

be the set of observation indices.

Goal: Reconstruct all of M € R™*™,
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Example: Low-rank matrix completion

We form an explicit factorization M = LR and fit L and R on the
observed entries.

S 1 2 1 2
(M —LR)? = ~(M;; — LiR;)*,
Lepminimize > S(M-LR);= > o R))
(i,5)€EQ (4,5)€EQ
where
_Ll_
— Lo — | | |
L= . , R=|R, Ry --- R,
: | |
_Lm_

To clarify, L; R; is an inner product between the row vector L; € RIxr
and the column vector R; € R™*1.

Let us use alternating minimization, minimizing with respect to L and
then R, to solve this problem.
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Example: Low-rank matrix completion

Let
Qf = {j|(i,5) € Q} = (list of movies j that user i rated)
fori=1,...,m. Then, we can write
(4,5)€Q i=1jeql
Likewise, let
J (e s T . .
Q5 = {i|(i,5) € Q} = (list users i who have rated movie j)
for j=1,...,n. Then, we can write
(1,5)€EQ j=lieq]
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Example: Low-rank matrix completion

Next, compute the alternating updates in closed forms. Let

1 = 1
J= 5 (My; = LiR)* =3 5 (My; = LiR;)”.

(i,5)€Q =1 jeq]
Then 07
L)k = Z (Mij _LiRj)(Rj)k
! jeo!
and vectorizing this, we get
— |87 ... T
Vi, J = [m E)(Li)r}
=Y (My = LiRy) [(Rj)1 -+ (R;),]
jeql
=Y (Mi; - LiR;)R]
jeql
=Y MjRT—L; Y R;R]=0.
jeq! jeq!
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Example: Low-rank matrix completion

Right-multiply (3° R;R])™" on both sides of
> MyRT=1L; Y R;R!
jeq! jeal

to get

L= ( 3 Min]T)( 3 RjRjTy1 e R%".

jeat jea!

To get column vectors, we transpose both sides to get
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Example: Low-rank matrix completion

We vectorize
-1
n=(X mE ) (X RMy )
; —— ;
TER (1) by (1x7) TEL (rx1) by (1x1)
a bit further to get
-1
1= ( Borl ) ( FarMly ).
—_——— ——t)

(rx]9{]) by (12 1xr) (rx|Q]]) by (12]|x1)

where o .
Qf = {j1,j2, - - et
I
RQ{ — |:Rj1 Rj2 . ij{‘:| c RTX\Qi |’
M;qr = [Mm‘l M, - Mi,jmzl} € RIXI%,

Sub-indexing arrays is well-supported in Python.
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Example: Low-rank matrix completion

We have arrived at the update

L] = (RQ{Rstg)_1<RQ§ Mg ).

With an analogous argument, we have

—1
Ry = (LhsLoy) (ZhsMoss)

We have now derived an alternating minimization algorithm

-1
LT = (RERET) (R M, ), fori=1,...
-1
k41 7kl rk+1 k41,7 .
R = (Lt TLlst) (L Mgy ). fori=1,..
fork=0,1,....
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