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Gradient descent

Consider the optimization problem

minimize
x∈Rn

f(x),

where f : Rn → R is differentiable.1

Gradient descent (GD) has the form

xk+1 = xk − αk∇f(xk)

for k = 0, 1, . . . , where x0 ∈ Rn is a suitably chosen starting point and
α0, α1, . . . ∈ R is a positive step size sequence.

Under suitable conditions, we hope xk
?→ x⋆ for some solution x⋆.

1If f is not differentiable, then gradient descent is not well defined, right?



Local vs. global minima

x⋆ is a local minimum if f(x) ≥ f(x⋆) within a small neighborhood.2

x⋆ is a global minimum if f(x) ≥ f(x⋆) for all x ∈ Rn

In the worst case, finding the global minimum of an optimization problem
is difficult. (The class of non-convex optimization problems is NP-hard.)

f(x)

local min global min

2if ∃ r > 0 s.t. ∀x s.t. ∥x− x⋆∥ ≤ r ⇒ f(x) ≥ f(x⋆)
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What can we prove?

Without further assumptions, there is no hope of showing that GD finds
the global minimum since GD can never “know” if it is stuck in a local
minimum.

We cannot prove the function value converges to the global optimum.
We instead prove ∇f(xk)→ 0. Roughly speaking, this is similar but
weaker than proving that xk converges to a local minimum.3

3Without further assumptions, we cannot show that xk converges to a limit, and
even xk does converge to a limit, we cannot guarantee that that limit is not a saddle
point or even a local maximum. Nevertheless, people commonly use the argument
that xk “usually” converges and that it is “unlikely” that the limit is a local maximum
or a saddle point. More on this later.
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−∇f is steepest descent direction

From vector calculus, we know that ∇f is the steepest ascent direction,
so −∇f is the steepest descent direction. In other words,

xk+1 = xk − αk∇f(xk)

is moving in the steepest descent direction, which is −∇f(xk) at the
current position xk, scaled by αk > 0.

Taylor expansion of f about xk

f(x) = f(xk) + ⟨∇f(xk), x− xk⟩+O
(
∥x− xk∥2

)
.

Plugging in xk+1

f(xk+1) = f(xk)− αk∥∇f(xk)∥2 +O(α2
k).

For small (cautious) αk, GD step reduces function value.
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Is GD a “descent method”?

xk+1 = xk − αk∇f(xk)

Without further assumptions, −∇f(xk)
only provides directional information. How
far should you go? How large should αk be?

A step of GD need not result in descent,
i.e., f(xk+1) > f(xk) is possible.

Calculus only guarantees the accuracy of
the Taylor expansion in an infinitesimal
neighborhood.

f(x)

xk

f(xk) + f ′(xk)(x− xk)
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Step size selection for GD

How do we choose the step size αk and ensure convergence?

We consider 3 solutions:

▶ Make an assumption allowing us to choose αk and ensures f(xk)
will descend.

– Estimate the L needed to choose αk.

▶ Do a line search to ensure that f(xk) will descend.

▶ Drop the insistence that f(xk) must consistently go down.
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GD for smooth non-convex functions

Consider the optimization problem

minimize
x∈Rn

f(x),

where f : Rn → R is “L-smooth” (but not necessarily convex).

We consider GD with constant step size:

xk+1 = xk − α∇f(xk).

(So α = α0 = α1 = · · · .)

We will show the following.

Theorem.
Assume f : Rn → R is L-smooth and inf f > −∞. Let α ∈ (0, 2/L).
Then, the GD iterates satisfy ∇f(xk)→ 0.
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L-smoothness

For L > 0, we say f : Rn → R is L-smooth if f is differentiable and

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥, ∀x, y ∈ Rn.

I.e., ∇f : Rn → Rn is L-Lipschitz continuous. We say f is smooth if it is
L-smooth for some L > 0.

Interpretation 1: ∇f does not change too rapidly. This makes the
first-order Taylor expansion reliable beyond an infinitesimal neighborhood.
(Further quantified on next slide.)

If f twice-continuously differentiable, then L-smoothness is equivalent to

−L ≤ λmin(∇2f(x)) ≤ λmax(∇2f(x)) ≤ L, ∀x ∈ Rn.

Interpretation 2: The curvature f , quantified by ∇2f , has lower and
upper bounds ±L.

The name “smoothness”, as used in optimization, is somewhat confusing because
in other areas of mathematics, “smoothness” often refers to infinite differentiability.



Smoothness ⇒ first-order Taylor has small remainder

For GD to work with a fixed non-adaptive step size, we need assurance
that the first-order Taylor expansion is a good approximation within a
sufficiently large neighborhood. L-smoothness provides this assurance.

Lemma.
Let f : Rn → R be L-smooth. Then∣∣f(x+ δ)−

(
f(x) + ⟨∇f(x), δ⟩

)∣∣ ≤ L

2
∥δ∥2, ∀x, δ ∈ Rn.

Note
R1(δ;x) = f(x+ δ)−

(
f(x) + ⟨∇f(x), δ⟩

)
is the remainder between f and its first-order Taylor expansion about x.
This lemma provides a quantitative bound |R1(δ;x)| ≤ O(∥δ∥2).
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L-smoothness lower and upper bounds

The claimed inequality∣∣f(x+ δ)−
(
f(x) + ⟨∇f(x), δ⟩

)∣∣ ≤ L

2
∥δ∥2

is equivalent to

f(x) + ⟨∇f(x), δ⟩ − L

2
∥δ∥2

(∗)
≤ f(x+ δ)

(#)

≤ f(x) + ⟨∇f(x), δ⟩+ L

2
∥δ∥2.

We will only prove the upper bound inequality
(#)

≤ . The lower bound

inequality
(∗)
≤ follows from the same reasoning with some sign changes.

(Also, we only use
(#)

≤ .)
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Proof of the upper bound
(#)

≤ . Define g : R→ R by

g(t) = f(x+ t δ).

Then g is differentiable, and its derivative is

g′(t) = ⟨∇f(x+ t δ), δ⟩.

Next, observe that g′ is (L∥δ∥2)-Lipschitz continuous. Indeed,

|g′(t1)− g′(t0)| =
∣∣⟨∇f(x+ t1 δ)−∇f(x+ t0 δ), δ⟩

∣∣
≤

∥∥∇f(x+ t1 δ)−∇f(x+ t0 δ)
∥∥∥δ∥ ≤ L∥δ∥2|t1 − t0|.

Finally, we conclude that

f(x+ δ) = g(1) = g(0) +

∫ 1

0

g′(t) dt

≤ f(x) +

∫ 1

0

(
g′(0) + L∥δ∥2t

)
dt

= f(x) + ⟨∇f(x), δ⟩+ L

2
∥δ∥2.
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Summability lemma

Lemma.
Let V0, V1, . . . ∈ R and S0, S1, . . . ∈ R be nonnegative sequences
satisfying

Vk+1 ≤ Vk − Sk

for k = 0, 1, . . . . Then Sk → 0.

Key idea. Sk measures progress (decrease) made in iteration k. Since
Vk ≥ 0, Vk cannot decrease forever, so the progress (magnitude of Sk)
must diminish to 0.

Proof. Sum the inequality from i = 0 to k

Vk+1 +

k∑
i=0

Si ≤ V0.

Let k →∞ ∞∑
i=0

Si ≤ V0 − lim
k→∞

Vk ≤ V0

Since
∑∞

i=0 Si <∞, we conclude Si → 0.



Convergence proof for smooth non-convex functions

Theorem.
Assume f : Rn → R is L-smooth and inf f > −∞. Let α ∈ (0, 2/L).
Then, the GD iterates satisfy ∇f(xk)→ 0.

Proof. Use the Lipschitz gradient lemma with x = xk and
δ = −α∇f(xk) to obtain

f(xk+1) ≤ f(xk)− α
(
1− αL

2

)
∥∇f(xk)∥2,

and

def
= Vk+1︷ ︸︸ ︷(

f(xk+1)− inf
x

f(x)
)
≤

def
= Vk︷ ︸︸ ︷(

f(xk) − inf
x

f(x)
)
−

def
= Sk︷ ︸︸ ︷

α
(
1− αL

2

)︸ ︷︷ ︸
>0

for α∈(0,2/L)

∥∇f(xk)∥2 .

By the summability lemma, we have ∥∇f(xk)∥2 → 0 and thus
∇f(xk)→ 0.
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GD experiments and curvature
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GD with line search
Consider

minimize
x∈Rn

f(x),

where f : Rn → R is differentiable but not necessarily smooth.

GD with exact line search

gk = ∇f(xk)

αk ∈ argmin
α∈R

f(xk − αgk)

xk+1 = xk − αk∇f(xk)

performs a one-dimensional search in the direction of the gradient.

Theorem.
Let f : Rn → R be differentiable. Then GD with exact line search satisfies

f(xk)↘ f∞ ∈ [−∞,∞).

Proof. By construction, we have f(xk+1) ≤ f(xk). A non-increasing
sequence of real numbers converges to a value in [−∞,∞).



GD with inexact line search

Computing the exact line search is often expensive and unnecessary.
GD with inexact line search

gk = ∇f(xk)

αk = InexLineSearch(f, xk, gk)

xk+1 = xk − αk∇f(xk)

InexLineSearch(f, x, g) :

α← β // some initial constant > 0

if g == 0 : return α

while f(x− αg) ≥ f(x)

α← α/2

return α

This inexact line search is also called a backtracking line search.

Theorem.
If f is differentiable, the line search terminates in finite steps.

Proof. Since f is differentiable,

f(x− αg) = f(x)− α∥g∥2 + o(α)

and there is a threshold A > 0 such that f(x− αg) < f(x) for
α ∈ (0, A). The halving process of α eventually results in
f(x− αg) < f(x) (by coincidence) or enters the interval α ∈ (0, A).



GD with inexact line search

The starting step size β > 0 is a parameter to be tuned.

With large β, we have to perform the backtracking loop many times, but
we have the opportunity to take a long step.

With small β, the backtracking loop may terminate more quickly, but we
won’t take steps larger than β.

One can modify the algorithm to adaptively decrease or increase β based
on the history of backtracking.
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How to choose the starting point x0

Most (if not all) optimization algorithms require a starting point x0. It is
optimal to choose x0 to be close (or equal to) x⋆, but, of course, we
don’t know where x⋆ is.

If one has an estimate of x⋆ based on problem structure, should utilize it.

In convex optimization problems, we often have convergence to the
global minimum regardless of x0, so it is okay to choose x0 = 0.

For non-convex optimization problems, the general prescription is to start
with x0 = random noise.

In some non-convex optimization problems (such as training deep neural
networks), one must not use x0 = 0, and a well-tuned random
initialization is crucial.
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Convex optimization

The problem
minimize

x∈Rn
f(x),

is a convex optimization problem if f : Rn → R is convex, i.e., if

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y), ∀x, y ∈ Rn, θ ∈ [0, 1].

Finding the global minimum of a convex problem is tractable.

“In fact, the great watershed in optimization isn’t between lin-
earity and nonlinearity, but convexity and nonconvexity.”
— R. Tyrrell Rockafellar, in SIAM Review, 1993

(In other areas of mathematics, linear things tend to be easier, while
nonlinear things tend to be significantly harder, but not in optimization.)
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