Chapter 1: Gradient Descent

Ernest K. Ryu

MATH 164: Optimization University of California, Los Angeles Department of Mathematics

Last edited: January 17, 2025

Gradient descent

Consider the optimization problem

minimize $f(x)$,

where $f\colon \mathbb{R}^n \to \mathbb{R}$ is differentiable. 1

Gradient descent (GD) has the form

$$
x_{k+1} = x_k - \alpha_k \nabla f(x_k)
$$

for $k = 0, 1, \ldots$, where $x_0 \in \mathbb{R}^n$ is a suitably chosen starting point and $\alpha_0, \alpha_1, \ldots \in \mathbb{R}$ is a positive step size sequence.

Under suitable conditions, we hope $x_k\stackrel{?}{\rightarrow}x_\star$ for some solution $x_\star.$

¹If f is not differentiable, then gradient descent is not well defined, right?

Local vs. global minima

 x_{\star} is a *local minimum* if $f(x) \ge f(x_{\star})$ within a small neighborhood.²

 x_{\star} is a global minimum if $f(x) \ge f(x_{\star})$ for all $x \in \mathbb{R}^n$

In the worst case, finding the global minimum of an optimization problem is difficult. (The class of non-convex optimization problems is NP-hard.)

²if ∃ $r > 0$ s.t. ∀ x s.t. $||x - x_\star|| \leq r \Rightarrow f(x) \geq f(x_\star)$

What can we prove?

Without further assumptions, there is no hope of showing that GD finds the global minimum since GD can never "know" if it is stuck in a local minimum.

We cannot prove the function value converges to the global optimum. We instead prove $\nabla f(x_k) \to 0$. Roughly speaking, this is similar but weaker than proving that x_k converges to a local minimum.³

³Without further assumptions, we cannot show that x_k converges to a limit, and even x_k does converge to a limit, we cannot guarantee that that limit is not a saddle point or even a local maximum. Nevertheless, people commonly use the argument that x_k "usually" converges and that it is "unlikely" that the limit is a local maximum or a saddle point. More on this later.

$-\nabla f$ is steepest descent direction

From vector calculus, we know that ∇f is the steepest ascent direction, so $-\nabla f$ is the steepest descent direction. In other words,

$$
x_{k+1} = x_k - \alpha_k \nabla f(x_k)
$$

is moving in the steepest descent direction, which is $-\nabla f(x_k)$ at the current position x_k , scaled by $\alpha_k > 0$.

Taylor expansion of f about x_k

$$
f(x) = f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \mathcal{O}(|x - x_k|^2).
$$

Plugging in x_{k+1}

$$
f(x_{k+1}) = f(x_k) - \alpha_k \|\nabla f(x_k)\|^2 + \mathcal{O}(\alpha_k^2).
$$

For small (cautious) α_k , GD step reduces function value.

Is GD a "descent method"?

$$
x_{k+1} = x_k - \alpha_k \nabla f(x_k)
$$

Without further assumptions, $-\nabla f(x_k)$ only provides directional information. How far should you go? How large should α_k be?

A step of GD need not result in descent, i.e., $f(x_{k+1}) > f(x_k)$ is possible.

Calculus only guarantees the accuracy of the Taylor expansion in an infinitesimal neighborhood.

Step size selection for GD

How do we choose the step size α_k and ensure convergence?

We consider 3 solutions:

- \blacktriangleright Make an assumption allowing us to choose α_k and ensures $f(x_k)$ will descend.
	- Estimate the L needed to choose α_k .
- ▶ Do a line search to ensure that $f(x_k)$ will descend.
- ▶ Drop the insistence that $f(x_k)$ must consistently go down.

Outline

[Smooth non-convex GD](#page-7-0)

[Smooth convex GD](#page-20-0)

GD for smooth non-convex functions

Consider the optimization problem

minimize $f(x)$,

where $f \colon \mathbb{R}^n \to \mathbb{R}$ is "L-smooth" (but not necessarily convex). We consider GD with constant step size:

$$
x_{k+1} = x_k - \alpha \nabla f(x_k).
$$

(So $\alpha = \alpha_0 = \alpha_1 = \cdots$.)

We will show the following.

Theorem.

Assume $f: \mathbb{R}^n \to \mathbb{R}$ is L-smooth and $\inf f > -\infty$. Let $\alpha \in (0, 2/L)$. Then, the GD iterates satisfy $\nabla f(x_k) \to 0$.

L-smoothness

For $L > 0$, we say $f: \mathbb{R}^n \to \mathbb{R}$ is L -smooth if f is differentiable and

 $\|\nabla f(x) - \nabla f(y)\| \le L \|x - y\|, \quad \forall x, y \in \mathbb{R}^n.$

I.e., $\nabla f \colon \mathbb{R}^n \to \mathbb{R}^n$ is L-Lipschitz continuous. We say f is smooth if it is L-smooth for some $L > 0$.

Interpretation 1: ∇f does not change too rapidly. This makes the first-order Taylor expansion reliable beyond an infinitesimal neighborhood. (Further quantified on next slide.)

If f twice-continuously differentiable, then L -smoothness is equivalent to

$$
-L \leq \lambda_{\min}(\nabla^2 f(x)) \leq \lambda_{\max}(\nabla^2 f(x)) \leq L, \qquad \forall x \in \mathbb{R}^n.
$$

Interpretation 2: The curvature f, quantified by $\nabla^2 f$, has lower and upper bounds $\pm L$.

The name "smoothness", as used in optimization, is somewhat confusing because in other areas of mathematics, "smoothness" often refers to infinite differentiability.

Smoothness \Rightarrow first-order Taylor has small remainder

For GD to work with a fixed non-adaptive step size, we need assurance that the first-order Taylor expansion is a good approximation within a sufficiently large neighborhood. L -smoothness provides this assurance.

Lemma.

Let $f: \mathbb{R}^n \to \mathbb{R}$ be L-smooth. Then

$$
\left|f(x+\delta) - \left(f(x) + \langle \nabla f(x), \delta \rangle\right)\right| \le \frac{L}{2} \|\delta\|^2, \qquad \forall x, \delta \in \mathbb{R}^n.
$$

Note

$$
R_1(\delta; x) = f(x + \delta) - (f(x) + \langle \nabla f(x), \delta \rangle)
$$

is the remainder between f and its first-order Taylor expansion about x . This lemma provides a quantitative bound $|R_1(\delta;x)| \leq \mathcal{O}(\|\delta\|^2).$

L-smoothness lower and upper bounds

The claimed inequality

$$
\left| f(x+\delta) - \left(f(x) + \langle \nabla f(x), \delta \rangle \right) \right| \le \frac{L}{2} \|\delta\|^2
$$

is equivalent to

$$
f(x) + \langle \nabla f(x), \delta \rangle - \frac{L}{2} \|\delta\|^2 \stackrel{(*)}{\leq} f(x+\delta) \stackrel{(\#)}{\leq} f(x) + \langle \nabla f(x), \delta \rangle + \frac{L}{2} \|\delta\|^2.
$$

We will only prove the upper bound inequality $\stackrel{(\#)}{\le}$. The lower bound $\stackrel{(\ast)}{\leq}$ follows from the same reasoning with some sign changes. (Also, we only use $\stackrel{(\#)}{\le}$.)

Proof of the upper bound $\stackrel{(\#)}{\le}$. Define $g:\mathbb{R}\to\mathbb{R}$ by

$$
g(t) = f(x + t\,\delta).
$$

Then q is differentiable, and its derivative is

$$
g'(t) = \langle \nabla f(x + t\,\delta), \delta \rangle.
$$

Next, observe that g' is $(L\|\delta\|^2)$ -Lipschitz continuous. Indeed,

$$
|g'(t_1) - g'(t_0)| = |\langle \nabla f(x + t_1 \delta) - \nabla f(x + t_0 \delta), \delta \rangle|
$$

\$\leq \|\nabla f(x + t_1 \delta) - \nabla f(x + t_0 \delta)\| \|\delta\| \leq L \|\delta\|^2 |t_1 - t_0|.

Finally, we conclude that

$$
f(x + \delta) = g(1) = g(0) + \int_0^1 g'(t) dt
$$

\n
$$
\leq f(x) + \int_0^1 (g'(0) + L||\delta||^2 t) dt
$$

\n
$$
= f(x) + \langle \nabla f(x), \delta \rangle + \frac{L}{2} ||\delta||^2.
$$

Summability lemma

Lemma.

Let $V_0, V_1, \ldots \in \mathbb{R}$ and $S_0, S_1, \ldots \in \mathbb{R}$ be nonnegative sequences satisfying

$$
V_{k+1} \leq V_k - S_k
$$

for $k = 0, 1, \ldots$. Then $S_k \to 0$.

Key idea. S_k measures progress (decrease) made in iteration k. Since $V_k \geq 0$, V_k cannot decrease forever, so the progress (magnitude of S_k) must diminish to 0.

Proof. Sum the inequality from $i = 0$ to k

$$
V_{k+1} + \sum_{i=0}^{k} S_i \le V_0.
$$

Let $k \to \infty$ $\sum_{k=0}^{\infty} S_k \leq V_0 - \lim_{k \to \infty} V_k \leq V_0$ $i=0$

Since $\sum_{i=0}^{\infty} S_i < \infty$, we conclude $S_i \to 0$.

Convergence proof for smooth non-convex functions

Theorem.

Assume $f: \mathbb{R}^n \to \mathbb{R}$ is L-smooth and $\inf f > -\infty$. Let $\alpha \in (0, 2/L)$. Then, the GD iterates satisfy $\nabla f(x_k) \to 0$.

Proof. Use the Lipschitz gradient lemma with $x = x_k$ and $\delta = -\alpha \nabla f(x_k)$ to obtain

$$
f(x_{k+1}) \le f(x_k) - \alpha \left(1 - \frac{\alpha L}{2}\right) \|\nabla f(x_k)\|^2,
$$

and

$$
\overbrace{\left(f(x_{k+1})-\inf_x f(x)\right)}^{\stackrel{\text{def}}{=} V_{k+1}} \leq \overbrace{\left(f(x_k)~-~\inf_x f(x)\right)}^{\stackrel{\text{def}}{=} V_k} - \overbrace{\underbrace{\alpha \left(1-\frac{\alpha L}{2}\right)}^{\stackrel{\text{def}}{=} S_k}_{\stackrel{\text{for}}{=} \alpha \in (0,2/L)}}^{\stackrel{\text{def}}{=} V_k} \overbrace{\left\| \nabla f(x_k) \right\|^2}^{\stackrel{\text{def}}{=} S_k}.
$$

By the summability lemma, we have $\|\nabla f(x_k)\|^2\to 0$ and thus $\nabla f(x_k) \rightarrow 0.$ [Smooth non-convex GD](#page-7-0) 15

GD experiments and curvature

GD with line search

Consider

minimize $f(x)$,
 $x \in \mathbb{R}^n$

where $f \colon \mathbb{R}^n \to \mathbb{R}$ is differentiable but not necessarily smooth.

GD with exact line search

$$
g_k = \nabla f(x_k)
$$

\n
$$
\alpha_k \in \operatorname*{argmin}_{\alpha \in \mathbb{R}} f(x_k - \alpha g_k)
$$

\n
$$
x_{k+1} = x_k - \alpha_k \nabla f(x_k)
$$

performs a one-dimensional search in the direction of the gradient.

Theorem.

Let $f\colon\mathbb{R}^n\to\mathbb{R}$ be differentiable. Then GD with exact line search satisfies

$$
f(x_k) \searrow f_{\infty} \in [-\infty, \infty).
$$

Proof. By construction, we have $f(x_{k+1}) \leq f(x_k)$. A non-increasing sequence of real numbers converges to a value in $[-\infty, \infty)$.

l 1

GD with inexact line search

Computing the exact line search is often expensive and unnecessary. GD with inexact line search

$$
g_k = \nabla f(x_k)
$$

\n
$$
\alpha_k = \text{InexLineSearch}(f, x_k, g_k)
$$

\n
$$
x_{k+1} = x_k - \alpha_k \nabla f(x_k)
$$

 ${\sf InexLineSearch}(f, x, g):$ $\alpha \leftarrow \beta \quad //$ some initial constant > 0 if $q == 0$: return α while $f(x - \alpha q) \geq f(x)$ $\alpha \leftarrow \alpha/2$ return α

This inexact line search is also called a *backtracking line search*.

Theorem.

If f is differentiable, the line search terminates in finite steps. **Proof.** Since f is differentiable,

$$
f(x - \alpha g) = f(x) - \alpha ||g||^2 + o(\alpha)
$$

and there is a threshold $A > 0$ such that $f(x - \alpha g) < f(x)$ for $\alpha \in (0, A)$. The halving process of α eventually results in $f(x - \alpha g) < f(x)$ (by coincidence) or enters the interval $\alpha \in (0, A)$.

GD with inexact line search

The starting step size $\beta > 0$ is a parameter to be tuned.

With large β , we have to perform the backtracking loop many times, but we have the opportunity to take a long step.

With small β , the backtracking loop may terminate more quickly, but we won't take steps larger than β .

One can modify the algorithm to adaptively decrease or increase β based on the history of backtracking.

How to choose the starting point x_0

Most (if not all) optimization algorithms require a starting point x_0 . It is optimal to choose x_0 to be close (or equal to) x_{\star} , but, of course, we don't know where $x₊$ is.

If one has an estimate of x_{\star} based on problem structure, should utilize it.

In convex optimization problems, we often have convergence to the global minimum regardless of x_0 , so it is okay to choose $x_0 = 0$.

For non-convex optimization problems, the general prescription is to start with x_0 = random noise.

In some non-convex optimization problems (such as training deep neural networks), one must not use $x_0 = 0$, and a well-tuned random initialization is crucial.

Outline

[Smooth non-convex GD](#page-7-0)

[Smooth convex GD](#page-20-0)

Convex optimization

The problem

minimize $f(x)$,

is a *convex optimization* problem if $f \colon \mathbb{R}^n \to \mathbb{R}$ is convex, i.e., if

 $f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y), \quad \forall x, y \in \mathbb{R}^n, \theta \in [0, 1].$

Finding the global minimum of a convex problem is tractable.

"In fact, the great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity." — R. Tyrrell Rockafellar, in SIAM Review, 1993

(In other areas of mathematics, linear things tend to be easier, while nonlinear things tend to be significantly harder, but not in optimization.)

[Smooth convex GD](#page-20-0) 22