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Linear programming

A linear program (LP) is an optimization problem in which the objective
function, equality constraints, and inequality constraints are all affine.

We can solve LPs (to globally optimality) efficiently.

▶ In complexity theory language, LPs are solvable in (weakly)
polynomial time.

▶ LPs are convex optimization problems, i.e., (LP) ⊂ (Cvx. Opt.).

Commonly used algorithms include interior point methods, first-order
splitting methods, and the simplex method.

In this class, we will learn the simplex method.

(One should not conflate the problem with the algorithm used to solve it.
LP is the mathematical problem, and the simplex algorithm is one of the
several solution methods.)
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Example: Advertising budget optimization

You have a budget of 10,000 dollars for advertising, and you want to split
this amount among four channels. Assume you know the ROIs, the ratio
of output (revenue gained) to input (ad spending) for each channel.

1 Search engine ads (e.g., Google). ROI: 25
2 Website/app displays (banner ads). ROI: 16
3 Online video ads (e.g., YouTube). ROI: 8
4 Pushed text ads (text messages). ROI: 6

Because different channels reach different audiences, your marketing
guidelines for long-term growth require:

A 2 and 3 combined must be at least 50% of the total budget,
B 3 alone cannot exceed 30% of the total budget,
C Minimum spending on 1 is 3,000, and
D Minimum spending on 4 is 2,000.

We want to maximize total ROI.

Also, all ad buys cannot be negative.
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Example: Advertising budget optimization

We can model this problem as a linear program

maximize
x1,x2,x3,x4∈R

25x1 + 16x2 + 8x3 + 6x4

subject to x1 + x2 + x3 + x4 ≤ 10000
5000 ≤ x2 + x3

x1 ≥ 3000, x2 ≥ 0, 0 ≤ x3 ≤ 3000, x4 ≥ 2000,

where the decision variables x1, x2, x3, x4 represent the amounts spent
on 1 search engines, 2 displays, 3 online videos, and 4 pushed text ads.

Of course, this is equivalent to the minimization problem

minimize
x1,x2,x3,x4∈R

−25x1 − 16x2 − 8x3 − 6x4

subject to x1 + x2 + x3 + x4 ≤ 10000
5000 ≤ x2 + x3

3000 ≤ x1, 0 ≤ x2, 0 ≤ x3 ≤ 3000, 2000 ≤ x4.

(When we talk about LP duality, we will see that it is convenient to adopt
minimization, rather than maximization, as the standard convention.)
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Example: Advertising budget optimization

maximize
x1,x2,x3,x4∈R

25x1 + 16x2 + 8x3 + 6x4

subject to x1 + x2 + x3 + x4 ≤ 10000
5000 ≤ x2 + x3

3000 ≤ x1, 0 ≤ x2, 0 ≤ x3 ≤ 3000, 2000 ≤ x4.

Modern LP solvers, both commercial and open-source, are readily
available, efficient, and robust. Using a solver, we obtain the solution

x⋆ = (3000, 5000, 0, 2000).
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Aside: Programming is planning

The term “programming” in linear programming doesn’t refer to writing
computer code. Instead, it comes from an older usage of the word
meaning “to plan” or “to schedule.”

(At a classical music concert, a “program” and is a booklet containing
the plan for the concert.)

During World War II, linear programming was used to devise optimal
plans for resource allocation, production schedules, or military logistics. It
was about formulating a “program” (or plan) that would achieve the best
possible outcome given a set of constraints.

(A computer “program” is a set of instructions (plans) for human
computers or electronic computers to execute.)

Similarly, mathematical programming means (mathematical) optimization.
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Example: Chebyshev approximation problem, or

minimax approximation problem

Consider
minimize

x∈Rn
∥Ax− b∥∞,

where A ∈ Rm×n and b ∈ Rm. Assume m > n. In this case, we do not
expect Ax = b to be attainable. Goal is to minimize maximum deviation
from Ax = b.

The original problem, as stated, is not an LP. But it can be transformed
into (it is equivalent to) the following LP:

minimize
x∈Rn, t∈R

t

subject to −t1 ≤ Ax− b ≤ t1,

where 1 ∈ Rm is the vector of all 1’s and ≤ to denote element-wise
inequality.

We say two optimization problems are equivalent if we can easily obtain
the solution from one problem with the solution from the other problem.
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Example: Chebyshev approximation problem, or

minimax approximation problem

Let’s do the transformation step by step.

First, we show that
minimize

x∈Rn
∥Ax− b∥∞ (P1)

is equivalent to
minimize
x∈Rn, t∈R

t

subject to ∥Ax− b∥∞ ≤ t.
(P2)

Let p
(P1)
⋆ and p

(P2)
⋆ be the optimal values for (P1) and (P2).

For any x ∈ Rn, x is feasible for (P1) and (x, t) with t = ∥Ax− b∥∞ is
feasible for (P2). The two feasible points attain the same objective value.
So any objective value (P1) can attain, (P2) can also attain it, and we

conclude p
(P2)
⋆ ≤ p

(P1)
⋆ .
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Example: Chebyshev approximation problem, or

minimax approximation problem

We continue to show that

minimize
x∈Rn

∥Ax− b∥∞ (P1)

is equivalent to
minimize
x∈Rn, t∈R

t

subject to ∥Ax− b∥∞ ≤ t.
(P2)

On the other hand, if (x, t) is feasible and attains objective value t for
(P2), then x attains the objective value ∥Ax− b∥∞ ≤ t for (P1). So any
objective value (P2) can attain, (P1) can attain the same or better

objective value, and we conclude p
(P1)
⋆ ≤ p

(P2)
⋆ .

So the two problems attain the same objective value p⋆ = p
(P1)
⋆ = p

(P2)
⋆ .
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Example: Chebyshev approximation problem, or

minimax approximation problem

We continue to show that

minimize
x∈Rn

∥Ax− b∥∞ (P1)

is equivalent to
minimize
x∈Rn, t∈R

t

subject to ∥Ax− b∥∞ ≤ t.
(P2)

If x⋆ is optimal (P1), then (x⋆, t⋆) with t⋆ = ∥Ax⋆ − b∥∞ attains the
objective value p⋆ = ∥Ax⋆ − b∥∞ and is therefore optimal for (P2).

If (x⋆, t⋆) is optimal for (P2), then p⋆ = t⋆ = ∥Ax⋆ − b∥∞ (it cannot be
that t⋆ > ∥Ax⋆ − b∥∞), since otherwise we can improve the objective
value. So, x⋆ attains objective value p⋆ = ∥Ax⋆ − b∥∞ for (P1) is
therefore optimal for (P1).
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Example: Chebyshev approximation problem, or

minimax approximation problem

In conclusion, if you solve

minimize
x∈Rn

∥Ax− b∥∞ (P1)

and get a solution x⋆, then you can immediately compute
t⋆ = ∥Ax⋆ − b∥∞, and return (x⋆, t⋆) as the solution to (P2).

Conversely, if you solve

minimize
x∈Rn, t∈R

t

subject to ∥Ax− b∥∞ ≤ t
(P2)

and get a solution (x⋆, t⋆), then we can return x⋆ (discarding t⋆) as the
solution to (P1).

(Often, the equivalence of optimization problems is argued informally
because a formal/rigorous argument can become quite tedious, as is the
case here. However, presenting a formal proof along with an explicit
algorithm that transforms a solution of one problem into a solution helps
to ensure correctness.)



Example: Chebyshev approximation problem, or

minimax approximation problem

Finally, we argue that

minimize
x∈Rn, t∈R

t

subject to ∥Ax− b∥∞ ≤ t
(P2)

is equivalent to

minimize
x∈Rn, t∈R

t

subject to −t1 ≤ Ax− b ≤ t1.
(P3)

This is because the constraint sets are, by definition, equal sets:

{x ∈ Rn, t ∈ R : ∥Ax−b∥∞ ≤ t} = {x ∈ Rn, t ∈ R : −t1 ≤ Ax−b ≤ t1}.
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Standard form

The standard form of an LP has the form

minimize
x∈Rn

c⊺x

subject to Ax = b
x ≥ 0,

where x ∈ Rn is the optimization variable and A ∈ Rm×n, b ∈ Rm, and
c ∈ Rn are problem data.

We use ≥ and ≤ to denote element-wise inequality of vectors, i.e. x ≥ 0
means xi ≥ 0 for all i = 1, . . . , n. (Just as = between two vectors is
interpreted element-wise.)

Many standard references on LPs and the simplex method use the
standard form for simplicity. Indeed, all LPs can be converted to the
standard form.

However, many practical problems are more convenient and natural to
express in non-standard LP form. Also, it may be algorithmically
inefficient to convert a given LP into the standard form.
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Extended form

The extended form of an LP has the form:

minimize
x∈Rn

c⊺x

subject to Ax = b
Cx ≤ d
ℓ ≤ x.

where A ∈ Rm×n, C ∈ Rp×n, b ∈ Rm, d ∈ Rp, and ℓ ∈ Rn.
The extended form also allows one to specify linear inequality constraints
Cx ≤ d and more flexible lower bounds ℓ ≤ x.

The flexibility of the extended form makes it more convenient.
Mathematically speaking, however, the extended form is not more general
since an LP in extended form can be converted into standard form.
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Transformation into standard form

We shall convert the extended form LP

minimize
x∈Rn

c⊺x

subject to Ax = b
Cx ≤ d
ℓ ≤ x

into standard form. First, perform the change of variables y = x− ℓ:

minimize
y∈Rn

c⊺y + c⊺ℓ

subject to Ay = b̃

Cy ≤ d̃
y ≥ 0

where b̃ = b−Aℓ and d̃ = d− Cℓ. Note that c⊺ℓ is a constant.
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Transformation into standard form

Next, we argue that

minimize
y∈Rn

c⊺y + c⊺ℓ

subject to Ay = b̃

Cy − d̃ ≤ 0
y ≥ 0.

is equivalent to
minimize
y∈Rn, s∈Rp

c⊺y + c⊺ℓ

subject to Ax = b̃

Cy − d̃ = −s
s ≥ 0, y ≥ 0.

The trick is referred to as introducing a slack variable s.

A downside of introducing a slack variable is that the problem dimension
increases, and this can make the algorithm less efficient.
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Transformation into standard form

Finally
minimize
y∈Rn, s∈Rp

c⊺y + c⊺ℓ

subject to Ax = b̃

Cy − d̃ = −s
s ≥ 0, y ≥ 0

is equivalent to

minimize
(y,s)∈Rn+p

[
c⊺

0p

]⊺ [
y
s

]
subject to

[
A 0
C Ip×p

] [
y
s

]
=

[
b̃

d̃

]
[
y
s

]
≥ 0,

where 0p ∈ Rp is the vector of all 0’s and Ip×p ∈ Rp×p is the p× p
identity matrix and we removed the constant from the objective function
since it does not affect the solution (but it does affect the optimal value
by that constant amount). We are now in standard form.
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General form

The general form offers further flexibility in specifying lower and upper
limits on both Ax and x itself:

minimize
x∈Rn

c⊺x

subject to L ≤ Ax ≤ U
ℓ ≤ x ≤ u,

where A ∈ Rm×n and b ∈ Rm.

We let L and U be length m “vectors” satisfying L ≤ U , but we allow
Li = −∞ or Ui = +∞ for any i = 1, . . . ,m to indicate no constraint in
that direction. So −∞ ≤ a⊺i x ≤ Ui means a⊺i x ≤ Ui, and Li ≤ a⊺i x ≤ ∞
means Li ≤ a⊺i x. Likewise, we let ℓ and u be length n “vectors”
satisfying ℓ ≤ u that can take −∞ and +∞ values. (To clarify, no bound
in the standard and extended forms is allowed to take ±∞ values.)

Equality constraints are encoded by setting −∞ < Li = Ui <∞ or
−∞ < ℓi = ui <∞.
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Transformation into extended form: Case 1

As before, we can transform a general form LP into the extended form,
and this can, in turn, be transformed into the standard form.

For the sake of simplicity, assume −∞ < L < U <∞ and
−∞ < ℓ < u <∞. Then,

minimize
x∈Rn

c⊺x

subject to L ≤ Ax ≤ U
ℓ ≤ x ≤ u

is equivalent to
minimize
x,x′∈Rn

c⊺x

subject to x+ x′ = 0[
A
−A

]
x ≤

[
U
−L

]
[
ℓ
−u

]
≤
[
x
x′

]
.
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Transformation into extended form: Case 1

Further,
minimize
x,x′∈Rn

c⊺x

subject to x+ x′ = 0[
A
−A

]
x ≤

[
U
−L

]
[
ℓ
−u

]
≤
[
x
x′

]
is equivalent to

minimize
x,x′∈Rn

[
c
0

]⊺ [
x
x′

]
subject to

[
I I

] [x
x′

]
= 0[

A 0
−A 0

] [
x
x′

]
≤
[
U
−L

]
[
ℓ
−u

]
≤
[
x
x′

]
.

We are now in extended form.
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Transformation into extended form: Case 2

Consider another case where −∞ < L < U <∞, ℓi = −∞ for
i = 1, . . . , n, and ui = +∞ for i = 1, . . . , n. Then,

minimize
x∈Rn

c⊺x

subject to L ≤ Ax ≤ U
ℓ ≤ x ≤ u

is equivalent to
minimize

x∈Rn
c⊺x

subject to L ≤ Ax ≤ U.
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Transformation into extended form: Case 2

Note that x has no direct upper or lower bounds. We deal with this by
splitting x into the positive and negative parts, i.e., x = x+ − x−.

Specifically,
minimize

x∈Rn
c⊺x

subject to L ≤ Ax ≤ U.

is equivalent to

minimize
x+,x−∈Rn

c⊺(x+ − x−)

subject to L ≤ Ax+ −Ax− ≤ U
0 ≤ x+, 0 ≤ x−.
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Transformation into extended form: Case 2

Further,
minimize
x+,x−∈Rn

c⊺(x+ − x−)

subject to L ≤ Ax+ −Ax− ≤ U
0 ≤ x+, 0 ≤ x−

is equivalent to

minimize
x+,x−∈Rn

[
c
−c

]⊺ [
x+

x−

]
subject to

[
A −A
−A A

] [
x+

x−

]
≤
[
U
−L

]
0 ≤

[
x+

x−

]
.

We are now in extended form.

The transformation of a general general form LP into extended form can
be done by combining the techniques of the demonstrated Cases 1 and 2.
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Convexity

LPs have the following convexity properties.

▶ The objective function c⊺x is convex.

▶ The feasible set is convex, i.e., if x1 and x2 are feasible, then
θx1 + (1− θ)x2 is feasible for θ ∈ [0, 1].

▶ The optimal solution set is convex, i.e., if x1 and x2 are optimal,
then θx1 + (1− θ)x2 is optimal for θ ∈ [0, 1].

We leave the proof as an exercise.
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Infeasible problems

We say an LP is infeasible if it has no feasible point. For example, the
standard form LP

minimize
(x,y)∈R2

· · ·

subject to
[
1 1

] [x
y

]
= −1

x ≥ 0, y ≥ 0.

is infeasible.

If the problem is infeasible, we write p⋆ =∞ for the optimal value.

People specify incompatible constraints all the time, so we shall consider
infeasible instances as a legitimate possibility within the LP framework.
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Unbounded problems

Consider
minimize

x∈Rn
c⊺x

subject to Ax = b
x ≥ 0,

and assume the problem is feasible with feasible point x0. (So, p⋆ <∞.)

Further assume there is a direction v ∈ Rn such that Av = 0, v ≥ 0, and
c⊺v < 0. Then, x0 + αv for α > 0 is feasible and has objective value

c⊺x0 + αc⊺v → −∞ as α→∞.

So, p⋆ = −∞, and we say the problem is unbounded. Such a v ∈ Rn is
called a direction of unboundedness.

(Using duality, we will see that the converse is true: if p⋆ = −∞, then
the LP is feasible and there is a direction of unboundedness.)
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Unbounded problems

As an aside, because LPs have linear objectives, the optimization problem
is meaningful only with constraints.

Consider an unconstrained LP,

minimize
x∈Rn

c⊺x.

If c ̸= 0, then v = c would be a direction of unboundedness and
p⋆ = −∞. If c = 0, then the problem is even less interesting.

LP theory 29
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Dual LP

Consider the standard form LP

minimize
x∈Rn

c⊺x

subject to Ax = b
x ≥ 0,

(P)

where x ∈ Rn is the optimization variable and A ∈ Rm×n, b ∈ Rm, and
c ∈ Rn are problem data. We shall call this the primal problem and write
the optimal value as p⋆ ∈ [−∞,∞].

Consider
maximize

y∈Rm
b⊺y

subject to A⊺y ≤ c.
(D)

We shall call this the dual problem, and write the optimal value as
d⋆ ∈ [−∞,∞]
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Weak duality for standard form

minimize
x∈Rn

c⊺x

subject to Ax = b
x ≥ 0

dual←→
maximize

y∈Rm
b⊺y

subject to A⊺y ≤ c

Theorem (Weak duality).
The optimal values of the primal and dual problems satisfy

d⋆ ≤ p⋆.

Proof. If d⋆ = −∞ or p⋆ =∞, there is nothing to show. So assume
−∞ < d⋆ and p⋆ <∞, i.e., the dual and primal problems are feasible.
Let x and y be primal and dual feasible points. Then,

(y⊺A− c⊺)x = (−)(+) ≤ 0

where (−) and (+) means the vectors are element-wise non-positive and
non-negative. Finally, we conclude

b⊺y = y⊺Ax ≤ c⊺x.
Weak duality 32



Consequences of weak duality

Corollary.
Consider the primal-dual correspondence

minimize
x∈Rn

c⊺x

subject to Ax = b
x ≥ 0

dual←→
maximize

y∈Rm
b⊺y

subject to A⊺y ≤ c

1 If the primal problem is feasible but unbounded p⋆ = −∞, then the
dual problem is infeasible.

2 If the dual problem is feasible but unbounded d⋆ = +∞, then the
primal problem is infeasible.

3 If (x, y) are feasible and b⊺y = c⊺x, then both are optimal and
d⋆ = b⊺y = c⊺x = p⋆.
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Certificate of optimality

minimize
x∈Rn

c⊺x

subject to Ax = b
x ≥ 0

dual←→
maximize

y∈Rm
b⊺y

subject to A⊺y ≤ c

3 If (x, y) are feasible and b⊺y = c⊺x, then both are optimal and
d⋆ = b⊺y = c⊺x = p⋆.

Point #3 is very useful because it provides a certificate of optimality.
Otherwise, if I assert that an x is optimal, how would you trust me?

In unconstrained differentiable convex minimization, if I say x⋆ minimizes
f , you can check it by seeing that ∇f(x⋆) = 0.

But, is this ever going to happen? We’ve shown d⋆ ≤ p⋆, but perhaps
d⋆ < p⋆ is the norm? (Spoiler, d⋆ = p⋆ usually holds for LPs.)
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Weak duality for extended form

Similar primal-dual correspondence for the extended form:

minimize
x∈Rn

c⊺x

subject to Ax = b
Cx ≤ d
ℓ ≤ x

dual←→
maximize

yb∈Rm, yd∈Rp, yℓ∈Rx
b⊺yb + d⊺yd + ℓ⊺yℓ

subject to A⊺yb + C⊺yd + yℓ = c
yd ≤ 0, yℓ ≥ 0,

where A ∈ Rm×n, C ∈ Rp×n, b ∈ Rm, d ∈ Rp, and ℓ ∈ Rn.

Theorem (Weak duality).
The optimal values of the primal and dual problems satisfy

d⋆ ≤ p⋆.
Proof. Exercise.
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Weak duality for general form

Similar primal-dual correspondence for the extended form:

minimize
x∈Rn

c⊺x

subject to L ≤ Ax ≤ U
ℓ ≤ x ≤ u

(P)

and
maximize
yL,yU∈Rm

yℓ,yu∈Rn

L⊺yL − U⊺yU + ℓ⊺yℓ − u⊺yu

subject to A⊺yL −A⊺yU + yℓ − y − u = c
yL, yU , yℓ, yu ≥ 0,

(D)

where A ∈ Rm×n and b ∈ Rm.

For the dual problem, use the convention 0 · (−∞) = 0 · ∞ = 0,
α · ±∞ = ±∞ for α ̸= 0, where the ± signs follow the obvious
convension. This implies that the y-value must be 0 for all infinite L, U ,
ℓ, u values, since otherwise the objective function would be −∞, the
most undesirable value.



Weak duality for general form

minimize
x∈Rn

c⊺x

subject to L ≤ Ax ≤ U
ℓ ≤ x ≤ u

(P)

maximize
yL,yU∈Rm

yℓ,yu∈Rn

L⊺yL − U⊺yU + ℓ⊺yℓ − u⊺yu

subject to A⊺yL −A⊺yU + yℓ − y − u = c
yL, yU , yℓ, yu ≥ 0,

(D)

Theorem (Weak duality).
The optimal values of the primal and dual problems satisfy

d⋆ ≤ p⋆.
Proof. Exercise.
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Maximin-minimax derivation of dual

We introduced dual LPs corresponding to the primal LPs out of nowhere.

Once the primal and dual problems are stated, it is not too difficult to
show weak duality. But, where does the dual problem come from?

Answer) We can derive the dual using the maximin-minimax inequality
and a well-chosen Lagrangian.
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Maximin-minimax inequality

Lemma (Maximin-minimax inequality).
Let L : X × Y → R be an arbitrary function. Then,

sup
y∈Y

inf
x∈X

L(x, y) ≤ inf
x∈X

sup
y∈Y

L(x, y).

Proof. This follows from

L(x, y) ≤ sup
y∈Y

L(x, y), ∀x ∈ X, y ∈ Y

inf
x∈X

L(x, y) ≤ inf
x∈X

sup
y∈Y

L(x, y), ∀y ∈ Y

sup
y∈Y

inf
x∈X

L(x, y) ≤ inf
x∈X

sup
y∈Y

L(x, y).
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General weak duality

Let L : X × Y → R be an arbitrary function. Define f : X → R ∪ {∞}
and g : Y → R ∪ {−∞} as

f(x) = sup
y∈Y

L(x, y) g(y) = inf
x∈X

L(x, y)

We call
minimize

x∈X
f(x) (P)

the primal problem with optimal value p⋆ ∈ [−∞,∞]

maximize
y∈Y

g(y) (D)

the dual problem with optimal value d⋆ ∈ [−∞,∞].

Theorem (General weak duality).
For the primal and dual optimization problems defined above, we have

d⋆ = sup
y∈Y

g(y) ≤ inf
x∈X

f(x) = p⋆.

Proof. Immediate consequence of the maximin-minimax inequality.
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Primal-dual pair via Lagrangian L

f(x) = sup
y∈Y

L(x, y)

minimize
x∈X

f(x)

dual←→
g(y) = inf

x∈X
L(x, y)

maximize
y∈Y

g(y)

We call L a Lagrangian. (Terminology comes from method of Lagrange
multipliers.)

Pick any L, and we get a primal-dual pair of problems.

If we pick L such that the primal problem becomes our problem of
interest, then we have a useful corresponding dual problem.
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Maximizing linear functions over Rn

We quickly establish two simple lemmas.

Lemma.
Let v ∈ Rn. Then,

inf
x∈Rn

v⊺x =

{
0 if v = 0
−∞ otherwise.

Proof. If v = 0, then v⊺x = 0 and the supremum is 0. If v ̸= 0, then
with x = −αv, we have v⊺x = −α∥v∥2 → −∞ as α→∞.
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Maximizing linear functions over Rn
+

Let
Rn

+ = {x ∈ Rn |x ≥ 0}

be the n-dimensional nonnegative orthant.

Lemma.
Let v ∈ Rn. Then,

inf
x∈Rn

+

v⊺x =

{
0 if v ∈ Rn

+

−∞ otherwise.

Proof. Note that we are minimizing over x ≥ 0. If v ≥ 0, then v⊺x ≥ 0,
so the infimum of 0 is attained at x = 0. If v ̸≥ 0, then there is an index
i such that vi < 0. Setting x = αei, where ei is the i-th unit vector (all
0’s except a 1 at the i-th coordinate), we have v⊺x = αvi → −∞ as
α→∞.
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Deriving dual LP from Lagrangian

minimize
x∈Rn

c⊺x

subject to Ax = b
x ≥ 0

dual←→
maximize

y∈Rm
b⊺y

subject to A⊺y ≤ c

Let

L(x, y, s) = c⊺x+ y⊺(Ax− b)− s⊺x

= (c−A⊺y − s)⊺x+ b⊺y,

where x is the primal variable and (y, s) are the dual variables. Then,

f(x) = sup
y∈Rm, s∈Rn

+

L(x, y, s) =

{
c⊺x if Ax = b, x ≥ 0
+∞ otherwise

and

g(y, s) = inf
x∈Rn

L(x, y, s) =

{
b⊺y if c−A⊺y − s = 0
−∞ otherwise.
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Deriving dual LP from Lagrangian

f(x) = sup
y∈Rm, s∈Rn

+

L(x, y, s) =

{
c⊺x if Ax = b, x ≥ 0
+∞ otherwise.

We see that infx∈Rn f(x) is equivalent to the primal problem

minimize
x∈Rn

c⊺x

subject to Ax = b
x ≥ 0.

Our choice of L is useful in this context because
f(x) = supy∈Rm, s∈Rn

+
L(x, y, s) recovers the primal LP.
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Deriving dual LP from Lagrangian

g(y, s) = inf
x∈Rn

L(x, y, s) =

{
b⊺y if c−A⊺y − s = 0
−∞ otherwise.

We see that supy∈Rm, s∈Rn
+
g(y, s) is equivalent to

maximize
y∈Rm, s∈Rn

b⊺y

subject to c−A⊺y = s, s ≥ 0,

which is equivalent to the dual problem

maximize
y∈Rm

b⊺y

subject to A⊺y ≤ c

upon eliminating s. (So, this is a derivation of the dual LP.)

Finally, we conclude d⋆ ≤ p⋆.
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Strong duality

Previously, we stated weak duality: d⋆ ≤ p⋆. In most cases, however, the
inequality holds with equality.

Theorem (Informal).
Usually,

d⋆ = p⋆

holds between the primal and dual LPs.

This is a very powerful result of linear programming and more broadly for
(constrained) convex optimization.
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Separating hyperplane theorem

Theorem (Separating hyperplane theorem).
Let C ⊂ Rn be a nonempty closed convex set, and let z ∈ Rn. If z /∈ C,
then there is a (y, β) ∈ Rn × R such that

y⊺x ≤ β, ∀x ∈ C

y⊺z > β.

Visual illustration:
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Separating hyperplane theorem

Theorem (Separating hyperplane theorem).
Let C ⊂ Rn be a nonempty closed convex set, and let z ∈ Rn. If z /∈ C,
then there is a (y, β) ∈ Rn × R such that

y⊺x ≤ β, ∀x ∈ C

y⊺z > β.

Proof. Let Π(z) be the projection of z onto C, and let y = z −Π(z).
Note, y ̸= 0, since z /∈ C. By the projection theorem,

⟨x−Π(z), y⟩ ≤ 0, ∀x ∈ C.

If we let β = ⟨Π(z), y⟩, then
y⊺x ≤ β, ∀x ∈ C,

and

y⊺z = ⟨z −Π(z), z⟩ = ⟨z −Π(z), z −Π(z)⟩︸ ︷︷ ︸
=∥y∥2>0

+ ⟨z −Π(z),Π(z)⟩︸ ︷︷ ︸
=β

> β.
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Separating hyperplane theorem

There are many variants of the separating hyperplane theorem.

Theorem (Separating hyperplane theorem).
Let C ⊂ Rn be a nonempty closed convex set, and let z ∈ Rn. If z /∈ C,
then there is a (y, β) ∈ Rn × R such that

y⊺x < y⊺z, ∀x ∈ C.

Visual illustration:

Proof. Similar to the other version.
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Separating hyperplane theorem

There are many variants of the separating hyperplane theorem.

Theorem (Separating hyperplane theorem).
Let C ⊂ Rn be a nonempty closed convex set, and let z ∈ Rn. If z /∈ C,
then there is a (y, β) ∈ Rn × R such that

y⊺x < β, ∀x ∈ C

y⊺z > β.

Visual illustration:

Proof. Similar to the other version.
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Farkas’ lemma

Farkas’ lemma is fundamental to establishing strong duality between LPs.

Lemma (Farkas’ lemma).
Given A ∈ Rm×n and b ∈ Rm, exactly one of the following holds:

▶ There exists x ∈ Rn such that Ax = b and x ≥ 0,

▶ There exists y ∈ Rm such that A⊺y ≤ 0 and b⊺y > 0.

(If one statement is false, the other must be true.)

Such a result is referred to as a theorem of alternatives, meaning it is a
theorem stating that exactly one of two statements hold true.
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Farkas’ lemma

In computer programming and Boolean logic, the exclusive or operator
written as XOR has the truth table

A B A (XOR) B
0 0 0
0 1 1
1 0 1
1 1 0

Farkas’ lemma is often expressed with the XOR operator as follows,

Lemma (Farkas’ lemma).
Let A ∈ Rm×n and b ∈ Rm. Then,

▶ there exists x ∈ Rn such that Ax = b and x ≥ 0

XOR

▶ there exists y ∈ Rm such that A⊺y ≤ 0 and b⊺y > 0.
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Alternatives as a certificate of infeasibility

Lemma (Farkas’ lemma).
Let A ∈ Rm×n and b ∈ Rm. Then,

▶ there exists x ∈ Rn such that Ax = b and x ≥ 0

XOR

▶ there exists y ∈ Rm such that A⊺y ≤ 0 and b⊺y > 0.

If [Ax = b and x ≥ 0] is infeasible, the y satisfying [A⊺y ≤ 0 and
b⊺y > 0] provides a certificate (proof) of infeasibility.
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Proof of Farkas

Lemma (Farkas’ lemma).
Let A ∈ Rm×n and b ∈ Rm. Then,

▶ there exists x ∈ Rn such that Ax = b and x ≥ 0

XOR

▶ there exists y ∈ Rm such that A⊺y ≤ 0 and b⊺y > 0.

Proof. There are 4 cases.
∃x ∃ y

Case 1 ✗ ✗
Case 2 ✓ ✗
Case 3 ✗ ✓
Case 4 ✓ ✓

In Case 4, there is a y satisfying [A⊺y ≤ 0 and b⊺y > 0] and an x such
that Ax = b and x ≥ 0. Then, 0 < b⊺y = x⊺︸︷︷︸

≥0

A⊺y︸︷︷︸
≤0

≤ 0 and we have a

contradiction. So Case 4 cannot happen.

In Cases 2 and 3, we are happy.

It remains to show that Case 1 cannot happen.



Proof of Farkas

Assume there is no x ∈ Rn such that Ax = b and x ≥ 0. In other words,
assume

b /∈ S
def
= {Ax |x ≥ 0}.

Clearly, 0 ∈ S and it can be shown that S is closed and convex.

Since b /∈ S, the separating hyperplane theorem tells us that(
∃ y ∈ Rm, β ∈ R :

y⊺v ≤ β, ∀ v ∈ S

y⊺b > β

)

Since 0 ∈ S, we must have β ≥ 0. So,(
∃ y ∈ Rm, β ≥ 0 :

y⊺v ≤ β, ∀ v ∈ S

y⊺b > 0

)

holds.
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Proof of Farkas

(
∃ y ∈ Rm, β ≥ 0 :

y⊺v ≤ β, ∀ v ∈ S

y⊺b > 0

)

The value of β ≥ 0 may be strictly positive, but we argue that it can be
tightened to 0. Note that S = {Ax |x ≥ 0} has the property that v ∈ S
and α > 0 implies αv ∈ S. If y⊺v > 0 for any v ∈ S, then y⊺(αv)→∞
and this would contradict the condition that y⊺(αv) ≤ β for (αv) ∈ S.
Therefore, y⊺v ≤ 0 for any v ∈ S, and we conclude that there exists
y ∈ Rm such that (

∃ y ∈ Rm :
y⊺v ≤ 0, ∀ v ∈ S

y⊺b > 0

)
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Proof of Farkas

(
∃ y ∈ Rm :

y⊺v ≤ 0, ∀ v ∈ S

y⊺b > 0

)

Next, plugging S = {Ax |x ≥ 0} into the condition above, we get(
∃ y ∈ Rm :

y⊺Ax ≤ 0, ∀x ≥ 0

y⊺b > 0

)
As discussed in a previous lemma,

sup
x∈Rn

+

y⊺Ax =

{
0 if A⊺y ≤ 0
∞ otherwise.

(So [y⊺Ax ≤ 0 for all x ≥ 0] if and only if A⊺y ≤ 0.) Therefore,(
∃ y ∈ Rm :

A⊺y ≤ 0

y⊺b > 0

)
Thus we conclude the second statement, and we conclude the proof.



Strong duality

Theorem (Strong duality).
Consider the primal and dual LPs

minimize
x∈Rn

c⊺x

subject to Ax = b
x ≥ 0

(P)
dual←→

maximize
y∈Rm

b⊺y

subject to A⊺y ≤ c,
(D)

where A ∈ Rm×n, b ∈ Rm, and c ∈ Rn. Then, there are 4 (and no
other) possible scenarios:

1 (P) and (D) both infeasible (−∞ = d⋆ < p⋆ =∞)

2 (P) unbounded and (D) infeasible (−∞ = d⋆ = p⋆)

3 (P) infeasible and (D) unbounded (d⋆ = p⋆ =∞)

4 (P) and (D) have solutions and s.d. holds (−∞ < d⋆ = p⋆ <∞).

In case 1, strong duality fails. In Cases 2–4, strong duality holds.
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Proof of strong duality

Proof. Regarding feasibility, there are 4 cases:

Primal Feasible Dual Feasible
Case 1 ✗ ✗
Case 2 ✓ ✗
Case 3 ✗ ✓
Case 4 ✓ ✓

Case 1. There is nothing to show in this case.

Case 2. Primal feasible and dual infeasible. So, −∞ = d⋆ ≤ p⋆ <∞. It
remains to show that p⋆ = −∞, i.e., we need to show the existence of a
primal direction of unboundedness. The argument is similar to that of
Case 3, and we leave it as a homework exercise.
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Proof of strong duality

Case 3. Primal infeasible and dual feasible. So, −∞ < d⋆ ≤ p⋆ =∞. It
remains to show that d⋆ =∞, i.e., we need to show the existence of a
dual direction of unboundedness.

maximize
y∈Rm

b⊺y

subject to A⊺y ≤ c
(D)

Let y0 ∈ Rm be a dual feasible point. Since the primal problem is
infeasible, i.e., there is no x such that [Ax = b and x ≥ 0], Farkas’
lemma tells us that there is a y such that [A⊺y ≤ 0 and b⊺y > 0]. Then,

A⊺(y0 + αy) ≤ A⊺y0 ≤ c ((y0 + αy) is feasible for α ≥ 0)

b⊺(y0 + αy) = b⊺y0 + αb⊺y →∞ (objective is unbounded)

as α→∞. (I.e., with a feasible point and a direction of unboundedness,
we can drive the objective function to ∞.) Therefore, d⋆ =∞.
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Proof of strong duality

Consider case 4. Primal and dual are feasible. So, −∞ < d⋆ ≤ p⋆ <∞.
It remains to show that p⋆ = d⋆.

Since the primal LP is feasible, i.e., there is an x such that [Ax = b and
x ≥ 0]. By Farkas’ lemma, we know that there is no y such that
[A⊺y ≤ 0 and b⊺y > 0].
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Proof of strong duality

Let v ∈ R. Then, by Farkas’ lemma∃x ∈ Rn :

Ax = b

c⊺x ≤ v

x ≥ 0


︸ ︷︷ ︸
=
there is a primal feasible x with
objective value no worse than v

⇔

∃x ∈ Rn, s ∈ R :

[
A 0
c⊺ 1

] [
x
s

]
=

[
b
v

]
x ≥ 0, s ≥ 0


XOR∃ ỹ ∈ Rm, η̃ ∈ R :

[
A⊺ c
0 1

] [
ỹ
η̃

]
≤
[
0
0

]
b⊺ỹ + vη̃ > 0
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Proof of strong duality

∃ ỹ ∈ Rm, η̃ ∈ R :

[
A⊺ c
0 1

] [
ỹ
η̃

]
≤
[
0
0

]
b⊺ỹ + vη̃ > 0


(1)⇔

∃ ỹ ∈ Rm, η ∈ R :

A⊺ỹ ≤ ηc

η ≥ 0

b⊺ỹ > vη


(2)⇔

(
∃ ỹ ∈ Rm, η > 0 :

A⊺ỹ ≤ ηc

b⊺ỹ > vη

)
(3)⇔

(
∃ y ∈ Rm :

A⊺y ≤ c

b⊺y > v

)
= there is a dual feasible y with

objective value strictly better than v

where (1) follows from setting η̃ = −η, (2) follows from recognizing that
η ̸= 0 because we established in the previous slide that there is no y such
that A⊺y ≤ 0 and b⊺y > 0, and (3) follows setting y = ỹ/η.
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Proof of strong duality

Therefore,∃x ∈ Rn :

Ax = b

c⊺x ≤ v

x ≥ 0


︸ ︷︷ ︸
=
there is a primal feasible x with
objective value no worse than v

XOR

(
∃ y ∈ Rm :

A⊺y ≤ c

b⊺y > v

)
︸ ︷︷ ︸

=
there is a dual feasible y with

objective value strictly better than v

Set v = p⋆ − ε with any ε > 0, note that such an x does not exist
because a primal feasible x cannot attain an objective value better than
p⋆. Since the XOR characterization, such a y does exist. So there is a
dual feasible y attaining objective value b⊺y > p⋆ − ε, and
p⋆ − ε < d⋆ ≤ p⋆. By taking ε→ 0, we conclude d⋆ = p⋆, i.e., strong
duality holds.
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Proof of strong duality

It remains to show that a primal and dual solution exists, i.e., we must
show that the optimal value is attained.

By setting v = d⋆ = p⋆, we see that(
∃ y ∈ Rm :

A⊺y ≤ c

b⊺y > d⋆

)
is fails, so ∃x ∈ Rn :

Ax = b

c⊺x ≤ p⋆

x ≥ 0


is holds. In particular, there is a x that is primal feasible and c⊺x = p⋆,
so a primal solution exists.

The argument that a dual solution exists follows similar steps, and we
leave it as a homework exercise.
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