Chapter A: Convex Analysis

Ernest K. Ryu

MATH 164: Optimization University of California, Los Angeles Department of Mathematics

Last edited: January 17, 2025

Line segment

Given $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^n$,

$$\theta x + (1 - \theta)y$$

is a point in between x and y if $\theta \in [0, 1]$.

The set of all points between a given $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^n$

$$\{\theta x + (1-\theta)y \,|\, \theta \in [0,1]\}$$

is called the *line segment* between x and y

Convex combinations

Given $x_1, \ldots, x_k \in \mathbb{R}^n$,

 $\theta_1 x_1 + \cdots + \theta_k x_k$

is called a *convex combination* or a *weighted average* of x_1, \ldots, x_k if $\theta_1, \ldots, \theta_k \ge 0$ and $\theta_1 + \cdots + \theta_k = 1$.

Given $x_1,\ldots,x_k\in\mathbb{R}^n$, the set of all convex combinations

$$\{\theta_1 x_1 + \dots + \theta_k x_k \,|\, \theta_1, \dots, \theta_k \ge 0, \, \theta_1 + \dots + \theta_k = 1\}$$

is called the *convex hull* of x_1, \ldots, x_k .

Convex sets

We say a set $C \subseteq \mathbb{R}^n$ is *convex* if

$$\theta x + (1 - \theta)y \in C, \quad \forall x, y \in C, \ \theta \in (0, 1).$$

In other words, C is convex if $x, y \in C$ implies the line segment connecting x and y is wholly contained in C.

TODO: Add picture

Theorem.

A convex set is closed under convex combinations, i.e. if $x_1, \ldots, x_k \in C$ for a convex set $C \subseteq \mathbb{R}^n$, then $\theta_1 x_1 + \cdots + \theta_k x_k \in C$ for any $\theta_1, \ldots, \theta_k \ge 0$ and $\theta_1 + \cdots + \theta_k = 1$. **Proof.**

Convex functions

We say a function $f : \mathbb{R}^n \to \mathbb{R}$ is *convex* if

 $f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y), \qquad \forall x, y \in \mathbb{R}^n, \, \theta \in [0, 1].$

In other words, f is convex if the line segment connecting (x,f(x)) and (y,f(y)) lies above the graph of f.

TODO: Picture

No bad local minima for cvx. functions

Theorem.

Let f be convex. Then any local minimizer is a global minimizer.

Thus, when we minimize convex functions, we never get stuck at bad local minima because there aren't any bad local minima.

Proof. TODO: Picture

No bad local minima for cvx. functions

Theorem.

Let f be convex. Then any local minimizer is a global minimizer.

Proof. Let $x_{\star} \in \mathbb{R}^n$ be a local minimizer of f. Assume for contradiction that there is $y_{\star} \in \mathbb{R}^n$ such that $f(y_{\star}) < f(x_{\star})$, i.e., assume for contradiction that x_{\star} is not a global minimizer. By convexity,

$$f(\theta x_{\star} + (1-\theta)y_{\star}) \le \theta f(x_{\star}) + (1-\theta)f(y_{\star}) < f(x_{\star})$$

for any $\theta \in (0, 1)$, even for θ very close to 1. However, x_{\star} is a local minimizer, so $f(\theta x_{\star} + (1 - \theta)y_{\star}) \ge f(x_{\star})$ for θ sufficiently close to 1, and we have a contradiction. Thus we conclude that such y_{\star} cannot exist, i.e., x_{\star} is a global minimizer.

Gradient provides global lower bound for cvx. functions

Theorem.

Let $f : \mathbb{R}^n \to \mathbb{R}$ be convex. Assume f is differentiable at x. Then,

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle, \qquad \forall y \in \mathbb{R}^n.$$

I.e., the first-order Taylor expansion of f is a global lower bound of f. **Proof.** XXX Proof by picture XXX

Gradient provides global lower bound for cvx. functions

Theorem.

Let $f : \mathbb{R}^n \to \mathbb{R}$ be convex. Assume f is differentiable at x. Then,

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle, \qquad \forall y \in \mathbb{R}^n.$$

Proof. By convexity,

$$f(x + \theta(y - x)) \le (1 - \theta)f(x) + \theta f(y), \quad \forall \theta \in (0, 1).$$

Reorganizing, we get

$$f(y) \ge f(x) + \frac{f(x+\theta(y-x)) - f(x)}{\theta}, \qquad \forall \theta \in (0,1).$$

By taking $\theta \rightarrow 0$, we get the desired inequality.