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Line segment

Given z € R™ and y € R",
Oz + (1 -0)y
is a point in between z and y if 6 € [0, 1].
The set of all points between a given z € R™ and y € R”
{6z 4+ (1-0)y|6 0,1]}

is called the line segment between x and y
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Convex combinations
Given z1,...,xr € R",
01z + -+ Oy
is called a convex combination or a weighted average of x1,...,xy if
01,...,0,>0and 0y +---+ 0, = 1.
Given z1,...,x € R", the set of all convex combinations
{01x1+ -+ Opxp |01,...,0,>0,0,+--+ 6, =1}
is called the convex hull of x1, ..., xk.
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Convex sets

We say a set C' C R" is convex if
bz + (1 -0)y € C, Vaz,ye C,0¢€(0,1).

In other words, C'is convex if z,y € C implies the line segment
connecting x and y is wholly contained in C.

TODO: Add picture

Theorem.

A convex set is closed under convex combinations, i.e. if x1,...,zp € C
for a convex set C C R", then 61z, + - - - + Opxy, € C for any
01,...,0,>0and 0y +---+ 0, = 1.

Proof.



Convex functions

We say a function f: R™ — R is convex if
fx+ (1 =0)y) <0f(z)+(1-0)f(y), Va,yeR" 6c0,1]

In other words, f is convex if the line segment connecting (, f(z)) and
(y, f(y)) lies above the graph of f.

TODO: Picture



No bad local minima for cvx. functions

Theorem.
Let f be convex. Then any local minimizer is a global minimizer.

Thus, when we minimize convex functions, we never get stuck at bad
local minima because there aren’t any bad local minima.

Proof. TODO: Picture



No bad local minima for cvx. functions

Theorem.
Let f be convex. Then any local minimizer is a global minimizer.

Proof. Let z, € R™ be a local minimizer of f. Assume for contradiction
that there is y, € R™ such that f(y,) < f(zy), i.e., assume for
contradiction that x, is not a global minimizer. By convexity,

fOz, + (1= 0)y.) <Of(2,) + (1= 0)f(ye) < f(xs)

for any 6 € (0,1), even for 6 very close to 1. However, z, is a local
minimizer, so f(0z, + (1 — 0)y,) > f(x4) for 6 sufficiently close to 1, and
we have a contradiction. Thus we conclude that such y, cannot exist,
i.e., Ty is a global minimizer. U



Gradient provides global lower bound for cvx. functions

Theorem.
Let f: R™ — R be convex. Assume f is differentiable at x. Then,

fy) = f(x) +(Vf(z),y— ), Yy e R™.

l.e., the first-order Taylor expansion of f is a global lower bound of f.

Proof. XXX
Proof by picture XXX



Gradient provides global lower bound for cvx. functions

Theorem.
Let f: R™ — R be convex. Assume f is differentiable at x. Then,

fy) = f@) +(Vf(x),y—z), VyeR"
Proof. By convexity,

fle+0(y—2) <(1-0)f(x)+0f(y), VOe(0,1)
Reorganizing, we get

flz+0y—x) - fz)
0 )

fly) > flx) + Ve e (0,1).

By taking 8 — 0, we get the desired inequality. O



