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Line segment

Given x ∈ Rn and y ∈ Rn,

θx+ (1− θ)y

is a point in between x and y if θ ∈ [0, 1].

The set of all points between a given x ∈ Rn and y ∈ Rn

{θx+ (1− θ)y | θ ∈ [0, 1]}

is called the line segment between x and y
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Convex combinations

Given x1, . . . , xk ∈ Rn,

θ1x1 + · · ·+ θkxk

is called a convex combination or a weighted average of x1, . . . , xk if
θ1, . . . , θk ≥ 0 and θ1 + · · ·+ θk = 1.

Given x1, . . . , xk ∈ Rn, the set of all convex combinations

{θ1x1 + · · ·+ θkxk | θ1, . . . , θk ≥ 0, θ1 + · · ·+ θk = 1}

is called the convex hull of x1, . . . , xk.
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Convex sets

We say a set C ⊆ Rn is convex if

θx+ (1− θ)y ∈ C, ∀x, y ∈ C, θ ∈ (0, 1).

In other words, C is convex if x, y ∈ C implies the line segment
connecting x and y is wholly contained in C.

TODO: Add picture

Theorem.
A convex set is closed under convex combinations, i.e. if x1, . . . , xk ∈ C
for a convex set C ⊆ Rn, then θ1x1 + · · ·+ θkxk ∈ C for any
θ1, . . . , θk ≥ 0 and θ1 + · · ·+ θk = 1.

Proof.
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Convex functions

We say a function f : Rn → R is convex if

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y), ∀x, y ∈ Rn, θ ∈ [0, 1].

In other words, f is convex if the line segment connecting (x, f(x)) and
(y, f(y)) lies above the graph of f .

TODO: Picture
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No bad local minima for cvx. functions

Theorem.
Let f be convex. Then any local minimizer is a global minimizer.

Thus, when we minimize convex functions, we never get stuck at bad
local minima because there aren’t any bad local minima.

Proof. TODO: Picture

6



No bad local minima for cvx. functions

Theorem.
Let f be convex. Then any local minimizer is a global minimizer.

Proof. Let x⋆ ∈ Rn be a local minimizer of f . Assume for contradiction
that there is y⋆ ∈ Rn such that f(y⋆) < f(x⋆), i.e., assume for
contradiction that x⋆ is not a global minimizer. By convexity,

f(θx⋆ + (1− θ)y⋆) ≤ θf(x⋆) + (1− θ)f(y⋆)<f(x⋆)

for any θ ∈ (0, 1), even for θ very close to 1. However, x⋆ is a local
minimizer, so f(θx⋆ + (1− θ)y⋆)≥ f(x⋆) for θ sufficiently close to 1, and
we have a contradiction. Thus we conclude that such y⋆ cannot exist,
i.e., x⋆ is a global minimizer.
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Gradient provides global lower bound for cvx. functions

Theorem.
Let f : Rn → R be convex. Assume f is differentiable at x. Then,

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩, ∀ y ∈ Rn.

I.e., the first-order Taylor expansion of f is a global lower bound of f .

Proof. XXX
Proof by picture XXX
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Gradient provides global lower bound for cvx. functions

Theorem.
Let f : Rn → R be convex. Assume f is differentiable at x. Then,

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩, ∀ y ∈ Rn.

Proof. By convexity,

f(x+ θ(y − x)) ≤ (1− θ)f(x) + θf(y), ∀ θ ∈ (0, 1).

Reorganizing, we get

f(y) ≥ f(x) +
f(x+ θ(y − x))− f(x)

θ
, ∀ θ ∈ (0, 1).

By taking θ → 0, we get the desired inequality.
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