Chapter A: Convex Analysis

Ernest K. Ryu

MATH 164: Optimization University of California, Los Angeles Department of Mathematics

Last edited: January 17, 2025

Line segment

Given $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^n$,

$$
\theta x + (1 - \theta)y
$$

is a point in between x and y if $\theta \in [0, 1]$.

The set of all points between a given $x\in\mathbb{R}^n$ and $y\in\mathbb{R}^n$

$$
\{\theta x + (1 - \theta)y \, | \, \theta \in [0, 1]\}
$$

is called the line segment between x and y

Convex combinations

Given $x_1, \ldots, x_k \in \mathbb{R}^n$,

 $\theta_1x_1+\cdots+\theta_kx_k$

is called a convex combination or a weighted average of x_1, \ldots, x_k if $\theta_1, \ldots, \theta_k \geq 0$ and $\theta_1 + \cdots + \theta_k = 1$.

Given $x_1, \ldots, x_k \in \mathbb{R}^n$, the set of all convex combinations

 $\{\theta_1x_1 + \cdots + \theta_kx_k | \theta_1,\ldots,\theta_k \geq 0, \theta_1 + \cdots + \theta_k = 1\}$

is called the *convex hull* of x_1, \ldots, x_k .

Convex sets

We say a set $C \subseteq \mathbb{R}^n$ is *convex* if

$$
\theta x + (1 - \theta)y \in C, \qquad \forall x, y \in C, \theta \in (0, 1).
$$

In other words, C is convex if $x, y \in C$ implies the line segment connecting x and y is wholly contained in C .

TODO: Add picture

Theorem.

A convex set is closed under convex combinations, i.e. if $x_1, \ldots, x_k \in C$ for a convex set $C \subseteq \mathbb{R}^n$, then $\theta_1 x_1 + \cdots + \theta_k x_k \in C$ for any $\theta_1, \ldots, \theta_k \geq 0$ and $\theta_1 + \cdots + \theta_k = 1$. Proof.

Convex functions

We say a function $f: \mathbb{R}^n \to \mathbb{R}$ is *convex* if

 $f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y), \quad \forall x, y \in \mathbb{R}^n, \theta \in [0, 1].$

In other words, f is convex if the line segment connecting $(x, f(x))$ and $(y, f(y))$ lies above the graph of f.

TODO: Picture

No bad local minima for cvx. functions

Theorem.

Let f be convex. Then any local minimizer is a global minimizer.

Thus, when we minimize convex functions, we never get stuck at bad local minima because there aren't any bad local minima.

Proof. TODO: Picture

No bad local minima for cvx. functions

Theorem.

Let f be convex. Then any local minimizer is a global minimizer.

Proof. Let $x_* \in \mathbb{R}^n$ be a local minimizer of f. Assume for contradiction that there is $y_\star \in \mathbb{R}^n$ such that $f(y_\star) < f(x_\star)$, i.e., assume for contradiction that x_* is not a global minimizer. By convexity,

$$
f(\theta x_{\star} + (1 - \theta)y_{\star}) \leq \theta f(x_{\star}) + (1 - \theta)f(y_{\star}) < f(x_{\star})
$$

for any $\theta \in (0,1)$, even for θ very close to 1. However, x_* is a local minimizer, so $f(\theta x_{\star} + (1 - \theta) y_{\star}) \ge f(x_{\star})$ for θ sufficiently close to 1, and we have a contradiction. Thus we conclude that such y_* cannot exist, i.e., x_{\star} is a global minimizer.

Gradient provides global lower bound for cvx. functions

Theorem.

Let $f: \mathbb{R}^n \to \mathbb{R}$ be convex. Assume f is differentiable at x. Then,

$$
f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle, \qquad \forall y \in \mathbb{R}^n.
$$

I.e., the first-order Taylor expansion of f is a global lower bound of f . Proof. XXX

Proof by picture XXX

Gradient provides global lower bound for cvx. functions

Theorem.

Let $f: \mathbb{R}^n \to \mathbb{R}$ be convex. Assume f is differentiable at x. Then,

$$
f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle, \qquad \forall y \in \mathbb{R}^n.
$$

Proof. By convexity,

$$
f(x + \theta(y - x)) \le (1 - \theta)f(x) + \theta f(y), \qquad \forall \theta \in (0, 1).
$$

Reorganizing, we get

$$
f(y) \ge f(x) + \frac{f(x + \theta(y - x)) - f(x)}{\theta}, \qquad \forall \theta \in (0, 1).
$$

By taking $\theta \rightarrow 0$, we get the desired inequality.