
Optimization, MATH 164
E. K. Ryu
Winter 2025

Homework 1
Due on Friday, January 24, 2025.

Problem 1: Least-squares derivatives. Let X1, . . . , XN ∈ Rp and Y1, . . . , YN ∈ R. Define

X =

X⊺
1
...

X⊺
N

 ∈ RN×p, Y =

Y1
...

YN

 ∈ RN .

Let

L(θ) = 1

2
∥Xθ − Y ∥2.

Show that ∇θL(θ) = X⊺(Xθ − Y ).

Hint. Use the fact that

Mv =

N∑
i=1

M:,ivi ∈ Rp

for any M ∈ Rp×N , v ∈ RN , where M:,i is the ith column of M for i = 1, . . . , N .

Problem 2: Diverging univariate GD. Consider the univariate function f(x) = x2/2. Show that

xk+1 = xk − αf ′(xk)

with x0 ̸= 0 diverges if α > 2.

Problem 3: Diverging multivariate GD. LetX ∈ RN×p and Y ∈ RN , and consider the optimization
problem

minimize
θ∈Rp

f(θ)

with

f(θ) =
1

2
∥Xθ − Y ∥2.

Show
θk+1 = θk − α∇f(θk)

with α > 2/ρ(X⊺X) diverges for most starting points θ0 ∈ Rm. Here, ρ denotes the spectral
radius, i.e., ρ(X⊺X) is the largest eigenvalue of the symmetric matrix X⊺X. For simplicity, you
may assume X⊺X is invertible.

Hint. Let θ⋆ = (X⊺X)−1X⊺Y and show that

θk+1 − θ⋆ = Some function of (θk − θ⋆).

Remark. “Most starting points” can be formalized as “almost everywhere with respect to the
Lebesgue measure”. If you are unfamiliar with measure theory, you can understand the statement
as holding for all starting points except for a lower dimensional set.
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Problem 4: GD converging to wide local minima. Consider the optimization problem

minimize
x∈R

f(x)

with

f(x) =
10x2 + e3(x−3)((x− 10)2/2 + 50)

1 + e3(x−3)
.

Code for evaluating f and f ′ is implemented in the starter code wideMinima.py. We call the global
minimum near x = 0 the sharp minimum and the local minimum near x = 10 the wide minimum.
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Implement gradient descent and run it with random starting points within the range [−5, 20].
Experimentally demonstrate that gradient descent with step size α = 0.01 converges to either of
the two minima, with α = 0.3 converges to the wide minimum, and with α = 4 does not converge
for most starting points.

Remark. The moral of this problem is that the step size of GD (and SGD) determines the sharpness
of the minima the algorithm converges to. This has implications on the generalization performance
in machine learning.1

1Y. Jiang, B. Neyshabur, H. Mobahi, D. Krishnan, S. Bengio, Fantastic Generalization Measures and Where to
Find Them, ICLR, 2020.
P. Foret, A. Kleiner, H. Mobahi, B. Neyshabur, Sharpness-aware Minimization for Efficiently Improving Generaliza-
tion, ICLR, 2020.
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Problem 5: L-smoothness lemma. Let f : Rn → R be L-smooth. Show that

f(x) + ⟨∇f(x), δ⟩ − L

2
∥δ∥2 ≤ f(x+ δ), ∀x, δ ∈ Rn.

Problem 6: Verifying L-smoothness. Let

ℓ(r) =

{
r2/2 for − 1 ≤ r ≤ 1
|r| − 1/2 otherwise

be the so-called Huber loss function. Consider the optimization problem

minimize
x∈Rd

f(x) =

N∑
i=1

ℓ(a⊺i x− bi),

where ai ̸= 0 and bi ∈ R for i = 1, . . . , N . Show the following:

(a) ℓ is 1-smooth.

(b) ℓ(a⊺i x− b) is (∥ai∥2)-smooth for i = 1, . . . , N .

(c) f is (
∑N

i=1 ∥ai∥2)-smooth.

Hint. For (a), note that ℓ is continuously differentiable with |ℓ′(·)| ≤ 1, and use the fundamen-
tal theorem of calculus. For (b), use the Cauchy–Schwartz inequality. For (c), use the triangle
inequality.
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Figure 1: The Huber loss function of Problem 6.
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Problem 7: Counterexamples with gradient descent. Consider the problem

minimize
x∈Rd

f(x)

and the gradient descent algorithm

xk+1 = xk − α∇f(xk).

We describe several problem instances in the following. For each instance, answer the following
questions. (i) What is p⋆ = infx f(x)? (ii) Does xk → x⋆ for some global minimizer x⋆ ∈ Rd? (iii)
Does ∇f(xk) → 0? (iv) Does f(xk) → p⋆?

(a) Consider any x0 ∈ Rd and f(x) = c⊺x with some c ̸= 0.

(b) Consider x0 = 0 and f defined as

g(r) =

{
1− r for r ≤ 0
1

r+1 for r > 0

f(x) = g(c⊺x)

with some nonzero c ∈ Rd.

(c) Consider x0 = 0 and f defined as

h(r) =

{
2− r for r ≤ 1
1− log(r) for r > 1

f(x) = h(c⊺x+ 1)

with some nonzero c ∈ Rd.
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Figure 2: Functions g and h of Problem 7.
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