
Optimization, MATH 164
E. K. Ryu
Winter 2025

Homework 2
Due on Friday, February 7, 2025.

Problem 1: Sum of smooth functions is smooth.

(a) Let f1 be L1-smooth and f2 be L2-smooth. Show that f1 + f2 is (L1 + L2)-smooth.

(b) Let f1 be L-smooth and f2 be affine. Show that f1 + f2 is L-smooth.

Problem 2: Overestimating the smoothness constant. Let 0 < L1 < L2 and let f : Rn → R be
convex. Imagine the circumstance where you know f is L2-smooth, and you know the numerical
value of L2, but, unbeknownst to you, f is furthermore L1-smooth. (So you have overestimated
the smoothness constant of f .)

(a) Show that if f is L1-smooth, then it is L2-smooth.

(b) Show that if f is L1-smooth and you use

xk+1 = xk − α∇f(xk)

with α ∈ (0, 1/L1], then GD converges with the rate

f(xk)− f(x⋆) ≤
1

2αk
∥x0 − x⋆∥2.

(Note that the constant is optimized at α = 1/L1.)

Hint. For part (b), there is no need to carry out the convergence analysis from scratch. You can
use the convergence result proved in class.

Remark. The point of this problem is that overestimating the smoothness constant will lead to a
worse constant in the convergence guarantee but will otherwise not break the convergence guarantee.

Problem 3: Underestimating the smoothness constant. Let 0 < L1 < L2/2 (note the factor 1/2)
and let f : Rn → R be convex. Imagine the circumstance where you think f is L1-smooth f , but f is
in fact only L2-smooth and not L1-smooth. (So you have underestimated the smoothness constant
of f .)

(a) Show that

f(x) =
L2

2
∥x∥2

is (i) convex, (ii) L2-smooth, (iii) not L1-smooth, and (iv) has the global minimizer x⋆ = 0.

(b) Show that GD with stepsize α = 1/L1 diverges unless the iteration starts at the solution.

Remark. The point of this problem is that underestimating the smoothness constant can break the
convergence guarantee.
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Problem 4: Show that a convex set is closed under convex combinations, i.e. if x1, . . . , xk ∈ C for
a convex set C ⊆ Rn, then θ1x1 + · · ·+ θkxk ∈ C for any θ1, . . . , θk ≥ 0 and θ1 + · · ·+ θk = 1.

Hint. Use induction on k.

Problem 5: Show that the intersection of convex sets is convex.

Problem 6: Show that a nonnegative combination of convex functions is convex.

Problem 7: Show that a sublevel set of a convex function is convex.

Problem 8: Stationary points of convex functions are global minimizers. Let f : Rn → R be convex
and differentiable at x ∈ Rn. Show that if ∇f(x) = 0, then x is a global minimizer of f .

Clarification. In class, we showed that if x is a local minimizer, then x is a global minimizer. You
are being asked to show a slightly stronger result.

Problem 9: Method of Lagrange multipliers for multiple constraints. Consider the optimization
problem with multiple equality constraints

minimize
x∈Rn

f(x),

subject to g1(x) = 0
...

gm(x) = 0,

where all functions are continuously differentiable. It can be shown that all extremum point x⃗ =
(x, y, z) must satisfy the system of equations

∇f(x⃗) =
m∑
i=1

λi∇gi(x⃗)

gi(x⃗) = 0 for i = 1, . . . ,m

for some λ1, . . . , λm ∈ R. Use this version of the method of Lagrange multipliers to find the solution
of the optimization problem

minimize
x,y,z∈R

3x− y − 3z

subject to x+ y − z = 0
x2 + 2z2 = 1.

Problem 10: Convex optimization problems have convex solution sets. Consider the constrained
optimization problem

minimize
x∈Rn

f(x)

subject to g(x) ≤ 0

where f : Rn → R and g : Rn → R are convex. Show that the set of solutions is convex.
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