Optimization, MATH 164 E. K. Ryu Winter 2025

UCLA

Homework 3 Due on Wednesday, February 12, 2025.

Problem 1: Analysis of non-convex projected gradient. Let L > 0 and $\alpha \in (0, 2/L)$. Let $f : \mathbb{R}^n \to \mathbb{R}$ be L-smooth and $C \subseteq \mathbb{R}^n$ be nonempty closed convex. Consider the projected GD method

$$x_{k+1} = \Pi_C (x_k - \alpha \nabla f(x_k))$$

for k = 0, 1, ... with $x_0 \in C$.

for $k = 0, 1, \ldots$

(a) Show that

$$||G_{\alpha}(x_k)||^2 \le \langle G_{\alpha}(x_k), \nabla f(x_k) \rangle$$

(b) Show that

$$f(x_{k+1}) \le f(x_k) - \alpha \left(1 - \frac{L\alpha}{2}\right) \|G_{\alpha}(x_k)\|^2$$

(c) Assuming $\inf_{x \in C} f(x) > -\infty$, show that $G_{\alpha}(x_k) \to 0$.

Hint. For (a), use the projection theorem. For (b), use the *L*-smoothness lemma.

Problem 2: A gradient provides a cutting plane for solutions. Let $f: \mathbb{R}^n \to \mathbb{R}$ be convex.

(a) Show that if $\nabla f(x) \neq 0$, then

$$\operatorname{argmin} f \subseteq \{ y \in \mathbb{R}^n \, | \, \langle \nabla f(x), y - x \rangle < 0 \}.$$

(b) The above inclusion implies that a non-zero gradient at $x \in \mathbb{R}^n$ defines a half-space (which boundary goes through x) in which minimizers don't lie. Draw a 2D depiction of this.

Problem 3: Simple projections. Provide formulae for the projections onto the following sets.

- (a) $\{x \in \mathbb{R}^n \mid x_i \ge 0, i = 1, \dots, n\}.$
- (b) $\{x \in \mathbb{R}^n \mid ||x|| \le D\}.$
- (c) $\{x \in \mathbb{R}^n | l_i \leq x_i \leq u_i, i = 1, \dots, n\}$, where $l, u \in \mathbb{R}^n$.

Problem 4: Projection onto a subspace. In this problem, we will compute the projection onto $C = \{x \in \mathbb{R}^n | Ax = b\}$, where $A \in \mathbb{R}^{m \times n}$ has $\operatorname{rank}(A) = m < n$ and $b \in \mathbb{R}^m$. Use the notation

$$A = \begin{bmatrix} -a_1^{\mathsf{T}} - \\ -a_2^{\mathsf{T}} - \\ \vdots \\ -a_m^{\mathsf{T}} - \end{bmatrix}, \qquad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}.$$

The optimization problem of interest is

$$\begin{array}{ll} \underset{x \in \mathbb{R}^n}{\text{minimize}} & \frac{1}{2} \| x - x_0 \|^2, \\ \text{subject to} & g_1(x) = 0 \\ & \vdots \\ & g_m(x) = 0, \end{array}$$

where $g_i(x) = a_i^{\mathsf{T}} x - b_i$ for i = 1, ..., m.

(a) Using the method of Lagrange multipliers, show that an optimal x satisfies

$$x - x_0 = A^T \lambda, \qquad Ax = b$$

for some $\lambda \in \mathbb{R}^m$.

(b) Show that the corresponding λ is given by

$$\lambda = (AA^{\mathsf{T}})^{-1}(b - Ax_0).$$

(c) Show that

$$\Pi_C(x_0) = x_0 + A^{\mathsf{T}} (AA^{\mathsf{T}})^{-1} (b - Ax_0).$$

Problem 5: Proximal interpretation of projected GD. Let $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable, $C \subset \mathbb{R}^n$ be non-empty closed convex, and $\alpha > 0$. Recall that the projected gradient descent has the update

$$x_{k+1} = \prod_C (x_k - \alpha \nabla f(x_k)).$$

Show that x_{k+1} can be equivalently defined as

$$x_{k+1} = \operatorname*{argmin}_{y \in C} \left\{ f(x_k) + \langle \nabla f(x_k), y - x_k \rangle + \frac{1}{2\alpha} \|y - x_k\|^2 \right\}$$

Remark. The interpretation is that the k-th projected GD step is minimizing over the constraint set C the first-order Taylor expansion of f about x_k with an added "proximal term" that penalizes moving away from x_k too much. So it is minimizing a simpler approximation of f while staying in proximity to x_k , which is the region where the approximation is accurate.