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Goal of this class

This class is about (mathematical) optimization.1

▶ Many engineering problems: We need to make a choice, and we
want to make the “best” choice.

▶ Many scientific problems are: Nature will equilibrate at the
“minimum” energy configuration, and we wish to find this
configuration.

▶ Many data science problems: We want to find the model
configuration (parameter) that “best” explains the data.

Mathematical optimization is the underlying math problem that abstracts
away the engineering/scientific context. (Calculus is used to model
physical systems, but calculating derivatives and integrals is independent
of the physical context the calculus problems originate from.)

1Mathematical optimization contrasts with, say, compiler optimization or code
optimization
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Unconstrained optimization

An unconstrained optimization problem has the form

minimize
x∈Rn

f(x),

where f : Rn → R has appropriate assumptions.

We refer to x as the optimization variable or decision variable and f as
the objective function or loss function.

In this class, we assume x is a continuous variable and that f is
continuous and (usually) differentiable. Problems with such structure are
referred to as continuous optimization problems.

Problems with Boolean- or integer-values x are referred to as
combinatorial optimization problems. (Not our focus.)
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Local vs. global minima

x⋆ is a local minimum if f(x) ≥ f(x⋆) within a small neighborhood.2

x⋆ is a global minimum if f(x) ≥ f(x⋆) for all x ∈ Rn

In the worst case, finding the global minimum of an optimization problem
is difficult. (The class of non-convex optimization problems is NP-hard.)

f(x)

local min global min

2if ∃ r > 0 s.t. ∀x s.t. ∥x− x⋆∥ ≤ r ⇒ f(x) ≥ f(x⋆)
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Minimization vs. maximization

Why consider minimization problems? Why not maximize?

Minimization and maximization problems are equivalent since

maximize
x∈Rn

f(x) ⇔ minimize
x∈Rn

−f(x).

When maximizing, we refer to f as the objective function, reward
function, and merit function.

Min vs. max: Choose what is more natural given the problem context.

The baseline convention is to minimize because of convexity.
More on this later.
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Definition of solutions

For minimization problems, we define solutions to be global minimizers.

▶ A solution may or may not exist.

▶ A solution may or may not be unique.

Some refer to a local minimizer as a “local solution.” We will not use
this terminology.

Some refer to any (feasible) point as a “ solution.” (In a business
context, if a company is selling you a “solution,” this is an actionable
plan that is hopefully decent, but there is no promise of the optimality of
this plan.) We will not use this terminology.

In maximization problems, we define solutions to be global maximizers.
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Solving unconstrained optimization with calculus

In calculus, you have actually seen some optimization.

minimize
x∈Rn

f(x),

and assume f : Rn → R is differentiable. Then,

argmin f ⊆ {x ∈ Rn | ∇f(x) = 0}.

(min f is the minimum value of f while argmin f is the set of input x’s
minimizing f .)

In other words, the minimizers must have zero-gradient (∇f(x) = 0 is a
necessary condition). However, this is not a sufficient condition, and you
did things like the second derivative test.

7



Solving unconstrained optimization with calculus

Consider
maximize

x,y∈R
f(x, y) = 2xy + 2x− x2 − 2y2.

Then,

∇f(x, y) =

[
2y + 2− 2x
2x− 4y

]
.

Solving for ∇f(x, y) = 0 yields (x, y) = (2, 1). Next, carry out the
second derivative test.

∇2f(2, 1) =

[
∂2f
∂x2 (2, 1)

∂2f
∂x∂y (2, 1)

∂2f
∂x∂y (2, 1)

∂2f
∂y2 (2, 1)

]
=

[
−2 +2
+2 −4

]
Then det

(
∇2f(x)

)
> 0 and fxx(2, 1) < 0, so (2, 1) is a local maximum

of f . (Alternatively, we can note that both eigenvalues of ∇2f(x, y) are
negative.) With a little bit more work, we can show that (2, 1) is the
global maximum.

Very nice. We can do this all the time?
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Can’t solve unconstrained optimization with calculus

Consider minimizing the Mishra’s Bird function

minimize
x,y∈R

f(x, y) = sin(x)e(1−cos(y))2 + cos(y)e(1−sin(x))2 + (x− y)2.

(This is a commonly used non-convex test function to evaluate the
performance of optimization algorithms.) Then,

∇f(x, y) =

[
cos(x)e(1−cos(y))2 − 2 cos(y) cos(x)(1− sin(x))e(1−sin(x))2 + 2(x− y)

2 sin(x) sin(y)(1− cos(y))e(1−cos(y))2 − sin(y)e(1−sin(x))2 − 2(x− y)

]
.

Solving for ∇f(x, y) = 0 analytically is impossible.

Recommended solution 1: Plot the 2D function and eyeball the solution.

Recommended solution 2: Take the eyeballed solution and run GD to
refine it to local optimality.
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Can’t solve unconstrained optimization with calculus

Consider the ℓ2-regularized logistic regression problem

minimize
x∈Rd

N∑
i=1

log
(
1 + exp(v⊺i x)

)
+

λ

2
∥x∥2,

for some λ > 0 and v1, . . . , vN ∈ R. (These arise in statistics and
machine learning.)

Then,

∇f(x) = λx+

N∑
i=1

1

1 + exp(−v⊺i x)
vi

Solving for ∇f(x, y) = 0 analytically is impossible. When d > 2, plotting
and eyeballing the solution is impossible.

We must use a numerical algorithm.

It turns out, there is a unique point satisfying ∇f(x) = 0, and it can be
computed reliably with GD. 10


