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Winter 2025

Midterm Exam
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50 minutes, 4 questions, 100 points, 6 pages

This exam is open-book in the sense that you may use any non-electronic resource.
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you may continue on the back of the pages.
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1. (25 points) Strict convezity inequality. Let f: R™ — R be convex.

(a) Let x,y € R™. We claim
fx+0(y—=)) - f(z)
0
is a non-decreasing function of § € (0,1). Provide a geometric illustration justifying this claim.
(b) Prove the claim of part (a).

(¢) Further, assume that f is strictly convex and that f is differentiable at € R™. Show that

h(0) =

Clarification. Recall that f: R — R is strictly convex if

Hint. In (c), it is not enough to simply take the limit 6 — 0 on

because the limit of strictly positive numbers is not necessarily strictly positive.
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2. (25 points) Method of Lagrange multipliers for inequality constraints. Consider the inequality-constrained
optimization problem

minimize f(z)

subject to  g(x) <0,
where f: R” — R and g: R® — R are differentiable.

(a) Show that if « is a solution and g(z) < 0, then V f(z) = 0.

(b) Show that if = is a solution and g(x) = 0, then z is in fact a solution to the optimization problem

minimize f(z)

subject to g(z) = 0.

(c¢) Show that if  is a solution and g(z) = 0, then there is a A > 0 such that
Vf(z) + AVg(z) = 0.

(d) Show that if = is a solution, then there exists a A such that  and A satisfy

Vf(z)+ AVg(xz) =0, g(z) <0, A >0, Ag(z) = 0.
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3. (25 points) Majorization-minimization interpretation of projected GD. Let L > 0 and « € (0,1/L]. Let
f:R™ = R be L-smooth and convex. Let C C R"™ be nonempty closed convex. Recall that projected

gradient descent has the form
Tk+1 = HC (:L'k - ()LVf(Ik))

for k=0,1,... For any z), € R™, define f as

~ 1

Flws o, 0) = flan) + (Vf(2e), @ = ap) + 5o — .
(a) Show that )
f@) < flz;zg, ), Vz,z, € R
(b) Show that the iterates of projected gradient descent {zy}) satisfy

Tpy1 = argmin f(z; zp, a), for k=0,1,....

zeC

(c) Use the characterization of (b) to conclude that

f(zrs1) < flagk), for k=0,1,....

Remark. Majorization-minimization refers to the process of constructing an upper bound (majorize)
and then minimizing the upper bound. The majorization-minimization view of projected GD makes it

clear that it is a descent method.
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4. (25 points) Convergence rate of gradient norm for GD. Let L > 0. Let f: R — R be L-smooth and
convex. Assume f has a minimizer z, and write f, = f(z4). Consider the gradient descent algorithm

1
$k+1=$k—ZVf(xk), for k=0,1,....

(a) Show that
1 1
Foren) + o [V F@ren) P+ or IVF@OIP € Fz). fork=0.1.....

(b) Show that
_%va(mlc)HQ < flzps1) — f(zr), for k=0,1,....

(¢) Show that
IV f(zre)|? < [VF@o)l?,  fork=0,1,....

(d) Show that
Ex = 2k + DL(f(mr) — £2) + k(k + 2V F @) + L2 ap — 2.

for k=0,1,... is a dissipative sequence.
(e) Show that

IV f(xn)|? < ﬁ(l’,(f(xo) — fi) + L?||lzo — z4|?), for k=1,2,....

Clarification. In class, we have shown
1
Flawsn) + 57 IV @Rl < fla)

and )
f(@rg1) — flag) < —ﬁl\vf(xk)llz,

which are related but different from the inequalities of Parts (a) and (b).
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