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1. (25 points) Strict convexity inequality. Let f : Rn → R be convex.

(a) Let x, y ∈ Rn. We claim

h(θ) =
f(x+ θ(y − x))− f(x)

θ

is a non-decreasing function of θ ∈ (0, 1). Provide a geometric illustration justifying this claim.

(b) Prove the claim of part (a).

(c) Further, assume that f is strictly convex and that f is differentiable at x ∈ Rn. Show that

f(y) > f(x) + ⟨∇f(x), y − x⟩, ∀x, y ∈ Rn, x ̸= y.

Clarification. Recall that f : R → R is strictly convex if

f(θx+ (1− θ)y) < θf(x) + (1− θ)f(y), ∀x, y ∈ Rn, x ̸= y, θ ∈ (0, 1).

Hint. In (c), it is not enough to simply take the limit θ → 0 on

f(y)− f(x)− f(x+ θ(y − x))− f(x)

θ
> 0

because the limit of strictly positive numbers is not necessarily strictly positive.
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2. (25 points) Method of Lagrange multipliers for inequality constraints. Consider the inequality-constrained
optimization problem

minimize
x∈Rn

f(x)

subject to g(x) ≤ 0,

where f : Rn → R and g : Rn → R are differentiable.

(a) Show that if x is a solution and g(x) < 0, then ∇f(x) = 0.

(b) Show that if x is a solution and g(x) = 0, then x is in fact a solution to the optimization problem

minimize
x∈Rn

f(x)

subject to g(x) = 0.

(c) Show that if x is a solution and g(x) = 0, then there is a λ ≥ 0 such that

∇f(x) + λ∇g(x) = 0.

(d) Show that if x is a solution, then there exists a λ such that x and λ satisfy

∇f(x) + λ∇g(x) = 0, g(x) ≤ 0, λ ≥ 0, λg(x) = 0.
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3. (25 points) Majorization-minimization interpretation of projected GD. Let L > 0 and α ∈ (0, 1/L]. Let
f : Rn → R be L-smooth and convex. Let C ⊂ Rn be nonempty closed convex. Recall that projected
gradient descent has the form

xk+1 = ΠC

(
xk − α∇f(xk)

)
for k = 0, 1, . . . For any xk ∈ Rn, define f̃ as

f̃(x;xk, α) = f(xk) + ⟨∇f(xk), x− xk⟩+
1

2α
∥x− xk∥2.

(a) Show that
f(x) ≤ f̃(x;xk, α), ∀x, xk ∈ Rn.

(b) Show that the iterates of projected gradient descent {xk}k satisfy

xk+1 = argmin
x∈C

f̃(x;xk, α), for k = 0, 1, . . . .

(c) Use the characterization of (b) to conclude that

f(xk+1) ≤ f(xk), for k = 0, 1, . . . .

Remark. Majorization-minimization refers to the process of constructing an upper bound (majorize)
and then minimizing the upper bound. The majorization-minimization view of projected GD makes it
clear that it is a descent method.
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4. (25 points) Convergence rate of gradient norm for GD. Let L > 0. Let f : Rn → R be L-smooth and
convex. Assume f has a minimizer x⋆ and write f⋆ = f(x⋆). Consider the gradient descent algorithm

xk+1 = xk − 1

L
∇f(xk), for k = 0, 1, . . . .

(a) Show that

f(xk+1) +
1

2L
∥∇f(xk+1)∥2 +

1

2L
∥∇f(xk)∥2 ≤ f(xk), for k = 0, 1, . . . .

(b) Show that

− 1

L
∥∇f(xk)∥2 ≤ f(xk+1)− f(xk), for k = 0, 1, . . . .

(c) Show that
∥∇f(xk+1)∥2 ≤ ∥∇f(xk)∥2, for k = 0, 1, . . . .

(d) Show that
Ek = (2k + 1)L

(
f(xk)− f⋆

)
+ k(k + 2)∥∇f(xk)∥2 + L2∥xk − x⋆∥2

for k = 0, 1, . . . is a dissipative sequence.

(e) Show that

∥∇f(xk)∥2 ≤ 1

k(k + 2)

(
L
(
f(x0)− f⋆

)
+ L2∥x0 − x⋆∥2

)
, for k = 1, 2, . . . .

Clarification. In class, we have shown

f(xk+1) +
1

2L
∥∇f(xk)∥2 ≤ f(xk)

and

f(xk+1)− f(xk) ≤ − 1

2L
∥∇f(xk)∥2,

which are related but different from the inequalities of Parts (a) and (b).
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