Advanced Numerical Analysis, MATH 269A
v UCLA

Fall 2024
Homework 2
Due on Monday, October 21, 2024.

Problem 1: Matriz exponential. In this problem, we quickly review the matrix exponential.
(a) Consider the complex scalar ODE

v =y, y(0) = vo

for t > 0, where A € C. (This is called the test equation.) Assume yy # 0. Show that
lim; o y(t) = 0 if and only if Re(\) < 0.

(b) For A € R4 the matrix exponential is defined as
1
et = Z HAk’
k=0
where A° = I by convention. Consider the ODE

y = Ay, y(0) = yo

for t > 0, where y(t) € R and A € R%<. Show that

y(t) = e'tyo
is a solution.

(c) Let A € R¥*4 is diagonalizable, and write
A =Vdiag(A1,...,A\q)V L.

Show that
et = Vdiag(e™, ... M)V L

(d) Consider the ODE
for t > 0. Assume A € R%*? is diagonalizable, i.e., A = VAV ™!, where A is a diagonal
matrix. Show that [lim; s y(¢) = 0 for any yo € R? if and only if Re(\),...,Re(A\q) < 0.

Remark. Solutions to ¥ = Ay and ¢ = Ay uniquely exists. Also, e? is well-defined, i.e., the
power series always converges. You may use these facts without proof.

Remark. You may argue without proof that

d o0 [e.9]
PX-y
k=0 k=0

=

Remark. The conclusion of (d) holds without the assumption of diagonalizability, and the proof
can be done using the Jordan canonical form.



Problem 2: Stepsize control (impractical version). Consider the ODE

y, = f(ta y)v y(O) =Yo

for ¢t € [0,T] with a solution y(-). Let L > 0, and assume f(¢,y) is L-Lipschitz in y. Consider

the forward Euler method with non-uniform steps

tn—i—l =ty + hn
Yn+l = Yn + hnf(tna yn)

with h, >0 forn =20,1,...,N — 1, 7o = 0, and t5y = T. Define the local truncation error 7,

via
Y(tnt1) = y(tn) + hof(tn, y(tn)) + Tn,

(a) Show that

n—1

T5 )
ly(tn) —yn| <D |h{|e(tn—t]+1)th

j=0 "7

forn=0,...,N —1.

N
|7 (txn—tjr1)L
< (g, ) ety

= max
§=0,..N—=1 hj L

(b) Assume f(t,y) is continuously differentiable. Let hq,...

that 7, = o(hy) as h, — 0, i.e., show that

lim sup |7, |/hyn, = 0.

hp—r00

(c) Let € > 0. Assume we can somehow choose each hy, ..

alln=0,...,N — 1. Then, show that

E(BTL

ly(tn) —yn| < 7

Remark. So, given any hq, ..

,hn—1 be given and fixed. Show

., hy—1 such that |7,|/h, < e for

—1).

.yhn—1, we can make |7,|/h, as small as we want by making h,,

sufficiently small. In theory, this stepsize control scheme would allow us to achieve arbitrarily
small global error. (Although we do not yet know how large N will be or if N = 0o.) What is
missing, however, is an implementable mechanism to determine/approximate the magnitude of

|7n|/hyn in choosing hy,.



Problem 3: Error analysis of Heun. Consider the ODE

y/ = f(ta y)v y(O) = Yo

for ¢t € [0,7]. Assume all functions are sufficiently smooth. Let L > 0 and assume f(t,y) is
L-Lipschitz in y. Consider the Heun’s method

y" 2 =y hf (e, yn)

h
*(f(tmyn) + f(tn+1ayn+1/2))7

yn+1 =Yn + 9

also written as

Yt =y, + h (f(tnsyn) + f(tns1, yn + hf (tns yn)))

2
forn=0,1,..., N — 1. Define the local truncation error (LTE) 7, as
h
Y(tnr1) = y(tn) + 5 (f(tm Y(tn)) + f(tns1, y(tn) + I f(tn, y(tn)))) + T
forn=0,1,...,N — 1.
(a) Show that
h3 h3
ro = (far2 b+ b P+ 18 G| imtnins = (Ft2fuf i) mting
y=y(tn+h7) y=y(tn)+h3 f(tn,y(tn))
for some h¥,h% € [0, h], where
_ _ Of(t.y) of(t,y)
f_f(tay)a ft— at ) fy 8y
f = 0*f(t,y) b= 0*f(t,y) _ P f(ty)
tt o2 ty oty vy E R

(b) Assume M > 1 satisfies
sup maX{‘f‘a|ft’v‘fy‘yyftt‘:‘fty’a‘fyy’}SM'

t€[0,T], yeR

Show that
T < 2M3K3 forn=0,...,N—1.

(c) Still assuming the M-bound of part (b), show that

2M3h? , op
Jmax [y(tn) = ynl (e )
Hint. Let
h
Tn = y(tn + h) - y(tn) ) (f(tmy(tn)) + f(tn + hay(tn) + h’f(tmy(t ))))a
42 () &t (h)
and use the Taylor remainder theorem to get
~ / h? " h? (3) (1% *
7(h) = 7(0) + h7'(0) + 57 (0) + i (hY), for some hi € [0, h]
h2
n(h) = n(0) + hn' (0) + En"(hg), for some h5 € [0, h].



Problem 4: Stability of implicit Euler. Consider the ODE

y'=—100(y —sin(t)),  y(0) =1
for t € [0, 3]. Consider the following implementation of implicit Euler using Newton’s method.

import math as math
import matplotlib.pyplot as plt

# Sepcify ODE
f = lambda t,y: -100*(y-math.sin(t))

fp = lambda t,y: -100
yo = 1.
T = 3.0

# Set stepsize
N 1000
h T/N

# Pre-allocate 1list for timesteps and solution

t_list = [h*i for i in range(N+1)]
y_list = [0 for i in range(N+1)]
y_1list [0] = yO # set initial condition

# Implicit Euler
for ind in range(N):
tnxt, y = t_list[ind]+h, y_list[ind] #t_next, y_curr
ynxt =y #y_next
while True: #Newton iteration
update = (ynxt-y-h*f(tnxt,ynxt))/(l1-h*xfp(tnxt,ynxt))
if abs(update)<le-10: break
ynxt -= (ynxt-y-hx*f(tnxt,ynxt))/(1-h*fp(tnxt,ynxt))
y_list[ind + 1] = ynxt

# Plotting code

plt.plot(t_list, y_list, label="Implict Euler’s Method")
plt.xlabel (’t’)

plt.ylabel(’y’)

plt.title(’Euler Method Solution to ODE’)

plt.legend ()

plt.grid (True)

plt.savefig(’plot.png’)

plt.show ()

At around what value of N does the numerical solution “stabilize”? How is the behavior different
from that of explicit Euler?



Problem 5: Implicit Fuler update is well defined. Consider the equation defining the implicit
Euler update:
Y=1Yn + hf(tn+17y) € Rda

where f(tn+1,-) is continuously differentiable in a neighborhood of y = y,,. Show that a solution
y uniquely exists for sufficiently small h > 0.

Hint. Let
G(ha y) =Y —Yn — hf(thrl?y)

Clearly, G(0,y) = 0 is solved with y = y,,. Use the implicit function theorem.

Problem 6: Implicit Euler on a singular ODE. Consider the ODE

for ¢t > 0.

(a) Is the implicit Euler update well defined for sufficiently small h > 07

(b) Implement implicit Euler. For what values of N do the results look good?

Problem 7: Non-unique solutions and implicit Euler. Consider the ODE
y =93, y(0)=0

for ¢ > 0. Show that the first-step of implicit Euler with A > 0 is not uniquely defined.



