
Advanced Numerical Analysis, MATH 269A
E. K. Ryu
Fall 2024

Homework 2
Due on Monday, October 21, 2024.

Problem 1: Matrix exponential. In this problem, we quickly review the matrix exponential.

(a) Consider the complex scalar ODE

ẏ = λy, y(0) = y0

for t ≥ 0, where λ ∈ C. (This is called the test equation.) Assume y0 ̸= 0. Show that
limt→∞ y(t) = 0 if and only if Re(λ) < 0.

(b) For A ∈ Rd×d, the matrix exponential is defined as

eA =
∞∑
k=0

1

k!
Ak,

where A0 = I by convention. Consider the ODE

ẏ = Ay, y(0) = y0

for t ≥ 0, where y(t) ∈ Rd and A ∈ Rd×d. Show that

y(t) = etAy0

is a solution.

(c) Let A ∈ Rd×d is diagonalizable, and write

A = V diag(λ1, . . . , λd)V
−1.

Show that
etA = V diag(etλ1 , . . . , etλd)V −1.

(d) Consider the ODE
ẏ = Ay, y(0) = y0

for t ≥ 0. Assume A ∈ Rd×d is diagonalizable, i.e., A = V ΛV −1, where Λ is a diagonal
matrix. Show that [limt→∞ y(t) = 0 for any y0 ∈ Rd] if and only if Re(λ1), . . . ,Re(λd) < 0.

Remark. Solutions to ẏ = λy and ẏ = Ay uniquely exists. Also, eA is well-defined, i.e., the
power series always converges. You may use these facts without proof.

Remark. You may argue without proof that

d

dt

∞∑
k=0

=

∞∑
k=0

d

dt
.

Remark. The conclusion of (d) holds without the assumption of diagonalizability, and the proof
can be done using the Jordan canonical form.
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Problem 2: Stepsize control (impractical version). Consider the ODE

y′ = f(t, y), y(0) = y0

for t ∈ [0, T ] with a solution y(·). Let L > 0, and assume f(t, y) is L-Lipschitz in y. Consider
the forward Euler method with non-uniform steps

tn+1 = tn + hn

yn+1 = yn + hnf(tn, yn)

with hn > 0 for n = 0, 1, . . . , N − 1, τ0 = 0, and tN = T . Define the local truncation error τn
via

y(tn+1) = y(tn) + hnf(tn, y(tn)) + τn, for n = 0, . . . , N − 1.

(a) Show that

|y(tN )− yN | ≤
n−1∑
j=0

|τj |
hj

e(tn−tj+1)Lhj

≤
(

max
j=0,...,N−1

|τj |
hj

)N−1∑
j=0

e(tN−tj+1)Lhj

≤ max
j=0,...,N−1

|τj |
hj

eTL

∫ T

0
e−tL dt

= max
j=0,...,N−1

|τj |
hj

1

L
(eTL − 1).

(b) Assume f(t, y) is continuously differentiable. Let h1, . . . , hn−1 be given and fixed. Show
that τn = o(hn) as hn → 0, i.e., show that

lim sup
hn→∞

|τn|/hn = 0.

(c) Let ε > 0. Assume we can somehow choose each h0, . . . , hN−1 such that |τn|/hn ≤ ε for
all n = 0, . . . , N − 1. Then, show that

|y(tN )− yN | ≤ ε

L
(eTL − 1).

Remark. So, given any h1, . . . , hn−1, we can make |τn|/hn as small as we want by making hn
sufficiently small. In theory, this stepsize control scheme would allow us to achieve arbitrarily
small global error. (Although we do not yet know how large N will be or if N = ∞.) What is
missing, however, is an implementable mechanism to determine/approximate the magnitude of
|τn|/hn in choosing hn.
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Problem 3: Error analysis of Heun. Consider the ODE

y′ = f(t, y), y(0) = y0

for t ∈ [0, T ]. Assume all functions are sufficiently smooth. Let L > 0 and assume f(t, y) is
L-Lipschitz in y. Consider the Heun’s method

yn+1/2 = yn + hf(tn, yn)

yn+1 = yn +
h

2

(
f(tn, yn) + f(tn+1, yn+1/2)

)
,

also written as

yn+1 = yn +
h

2

(
f(tn, yn) + f(tn+1, yn + hf(tn, yn))

)
for n = 0, 1, . . . , N − 1. Define the local truncation error (LTE) τn as

y(tn+1) = y(tn) +
h

2

(
f(tn, y(tn)) + f(tn+1, y(tn) + hf(tn, y(tn)))

)
+ τn

for n = 0, 1, . . . , N − 1.

(a) Show that

τn =
h3

6

(
ftt+2ftyf+fyyf

2+fyft+(fy)
2f

)∣∣∣ t=tn+h∗
1

y=y(tn+h∗
1)

−h3

4

(
ftt+2ftyf+fyyf

2
)∣∣∣ t=tn+h∗

2
y=y(tn)+h∗

2f(tn,y(tn))

for some h∗1, h
∗
2 ∈ [0, h], where

f = f(t, y), ft =
∂f(t, y)

∂t
, fy =

∂f(t, y)

∂y

ftt =
∂2f(t, y)

∂t2
, fty =

∂2f(t, y)

∂t∂y
, fyy =

∂2f(t, y)

∂y2
.

(b) Assume M ≥ 1 satisfies

sup
t∈[0,T ], y∈R

max{|f |, |ft|, |fy|, |ftt|, |fty|, |fyy|} ≤ M.

Show that
τn ≤ 2M3h3 for n = 0, . . . , N − 1.

(c) Still assuming the M -bound of part (b), show that

max
n=0,...,N

|y(tn)− yn| ≤
2M3h2

L
(eTL − 1).

Hint. Let

τn = y(tn + h)− y(tn)︸ ︷︷ ︸
def
= τ̃(h)

−h

2

(
f(tn, y(tn)) + f(tn + h, y(tn) + hf(tn, y(tn)))

)︸ ︷︷ ︸
def
= η(h)

,

and use the Taylor remainder theorem to get

τ̃(h) = τ(0) + hτ ′(0) +
h2

2
τ ′′(0) +

h3

6
τ (3)(h∗1), for some h∗1 ∈ [0, h]

η(h) = η(0) + hη′(0) +
h2

2
η′′(h∗2), for some h∗2 ∈ [0, h].
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Problem 4: Stability of implicit Euler. Consider the ODE

y′ = −100(y − sin(t)), y(0) = 1

for t ∈ [0, 3]. Consider the following implementation of implicit Euler using Newton’s method.

import math as math

import matplotlib.pyplot as plt

# Sepcify ODE

f = lambda t,y: -100*(y-math.sin(t))

fp = lambda t,y: -100

y0 = 1.

T = 3.0

# Set stepsize

N = 1000

h = T/N

# Pre -allocate list for timesteps and solution

t_list = [h*i for i in range(N+1)]

y_list = [0 for i in range(N+1)]

y_list [0] = y0 # set initial condition

# Implicit Euler

for ind in range(N):

tnxt , y = t_list[ind]+h, y_list[ind] #t_next , y_curr

ynxt = y #y_next

while True: #Newton iteration

update = (ynxt -y-h*f(tnxt ,ynxt ))/(1-h*fp(tnxt ,ynxt))

if abs(update)<1e-10: break

ynxt -= (ynxt -y-h*f(tnxt ,ynxt ))/(1-h*fp(tnxt ,ynxt))

y_list[ind + 1] = ynxt

# Plotting code

plt.plot(t_list , y_list , label="Implict Euler’s Method")

plt.xlabel(’t’)

plt.ylabel(’y’)

plt.title(’Euler Method Solution to ODE’)

plt.legend ()

plt.grid(True)

plt.savefig(’plot.png’)

plt.show()

At around what value ofN does the numerical solution “stabilize”? How is the behavior different
from that of explicit Euler?
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Problem 5: Implicit Euler update is well defined. Consider the equation defining the implicit
Euler update:

y = yn + hf(tn+1, y) ∈ Rd,

where f(tn+1, ·) is continuously differentiable in a neighborhood of y = yn. Show that a solution
y uniquely exists for sufficiently small h > 0.

Hint. Let
G(h, y) = y − yn − hf(tn+1, y).

Clearly, G(0, y) = 0 is solved with y = yn. Use the implicit function theorem.

Problem 6: Implicit Euler on a singular ODE. Consider the ODE

y′ = − y√
t
, y(0) = 1

for t ≥ 0.

(a) Is the implicit Euler update well defined for sufficiently small h > 0?

(b) Implement implicit Euler. For what values of N do the results look good?

Problem 7: Non-unique solutions and implicit Euler. Consider the ODE

y′ = y2/3, y(0) = 0

for t ≥ 0. Show that the first-step of implicit Euler with h > 0 is not uniquely defined.
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