
Advanced Numerical Analysis, MATH 269A
E. K. Ryu
Fall 2024

Homework 4
Due on Wednesday, November 27, 2024.

Problem 1: Stability function adjoint methods. Consider an s-stage RK method with stability
function ψ(z). Show that its adjoint method has stability function 1/ψ(−z).

Problem 2: Implementing implicit midpoint. Consider the Runge–Kutta method expressed by the
Butcher Tableau
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(a) Show that the method can be equivalently expressed as

yn+1 = yn + hf
(
tn + h

2 ,
1
2(yn + yn+1)

)
(b) Let

G(y) = y − yn − hf
(
tn + h

2 ,
1
2(yn + y)

)
.

Show that the Newton iteration for finding a root of G is

y = y −
(
I − h

2fy
(
tn + h

2 ,
1
2(yn + y)

))−1
G(y),

where

fy(t, y) =
∂f

∂y
(t, y).

(c) Consider the ODE
y′ = −100(y − sin(t)), y(0) = 1

for t ∈ [0, 3]. Implement the midpoint method in Python.
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Problem 3: Implementing Gauss–Legendre. Consider the Runge–Kutta method expressed by the
Butcher Tableau
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(a) Show that the method can be equivalently expressed as

kn+1/3 = f
(
tn + (12 −

√
3
6 )h, yn + 1

4hkn+1/3 + (14 −
√
3
6 )hkn+2/3)

)
kn+2/3 = f

(
tn + (12 +

√
3
6 )h, yn + (14 +

√
3
6 )hkn+1/3 +

1
4hkn+2/3)

)
yn+1 = yn + h

2 (kn+1/3 + kn+2/3)

(b) Show that the method can be equivalently expressed as[
yn+1/3

yn+2/3

]
︸ ︷︷ ︸

=y⃗

= yn1+ h

[
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]
︸ ︷︷ ︸

=M

[
f
(
tn + (12 −

√
3
6 )h, yn+1/3

)
f
(
tn + (12 +

√
3
6 )h, yn+2/3

) ]︸ ︷︷ ︸
=F (y⃗)

yn+1 = yn + h
21

⊺F (y⃗).

(c) Let
G(y⃗) = y⃗ − yn1− hMF (y⃗).

Show that the Newton iteration for finding a root of G is

y⃗ = y⃗ −

(
I − hM

[
fy
(
tn + (12 −

√
3
6 )h, yn+1/3

)
0

0 fy
(
tn + (12 +

√
3
6 )h, yn+2/3

)])−1

G(y⃗),

where

fy(t, y) =
∂f

∂y
(t, y).

(d) Consider the ODE
y′ = −100(y − sin(t)), y(0) = 1

for t ∈ [0, 3]. Implement the Gauss–Legendre method in Python.
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Problem 4: Cost of Newton for implicit RK. Consider a fully implicit s-stage RK method with
Butcher tableau

c1 a11 a12 . . . a1s
c2 a21 a22 . . . a2s
...

...
...

. . .
...

cs as1 as2 . . . ass
b1 b2 . . . bs

applied to y′ = f(t, y), where y ∈ Rd.

(a) Show that yn 7→ yn+1 can be obtained by solving a (sd)-dimensional root-finding problem.

(b) Show that Newton’s iteration for finding such a root requires inverting (sd)× (sd) matrices.
(Therefore, if K Newton steps are required, the cost is O(Ks3d3) flops.)

Problem 5: Diagonally implicit RK method. A Diagonally Implicit RK (DIRK) method is an RK
method with a lower triangular Butcher tableau

c1 a11 0 . . . 0
c2 a21 a22 . . . 0
...

...
...

. . .
...

cs as1 as2 . . . ass
b1 b2 . . . bs

(Recall that explicit RK methods have strictly lower triangular Butcher tableaus.) Consider the
DIRK method applied to y′ = f(t, y), where y ∈ Rd.

(a) Show that yn 7→ yn+1 can be obtained by solving s separate d-dimensional root-finding
problems.

(b) Show that Newton’s iteration for finding such roots requires inverting d×d matrices. (There-
fore, if K Netwton steps are required for each of the s stages, the cost is O(Ksd3) flops.)

(c) Consider the ODE
y′ = −100(y − sin(t)), y(0) = 1

for t ∈ [0, 3]. Implement the DIRK method

x x 0 0
1+x
2

1−x
2 x 0

1 −3x2/2 + 4x− 1/4 3x2/2− 5x+ 5/4 x

−3x2/2 + 4x− 1/4 3x2/2− 5x+ 5/4 x

with x = 0.4358665215. (The x = 0.4358665215 is a root of the polynomial 6x3−18x2+9x−1.)

Remark. It can be shown that DIRK methods have an order barrier of p ≤ s+ 1.
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Problem 6: Splitting method for a simple pendulum. Consider the ODE

q′ =
p

mL2
q(0) = 0 ∈ R

p′ = −mgL sin q p(0) = 1 ∈ R

for t ∈ [0, 10]. This is the Hamiltonian dynamics of a simple pendulum with angle q from the vertical
(in radians), angular momentum p = mL2q′, mass m, (rigid) string length L, and gravitational
acceleration g = 9.81. For simplicity, set m = 1 and L = 1. Consider the splitting

d

dt

[
q
p

]
=

[ p
mL2

0

]
+

[
0

−mgL sin q

]
.

Implement the Lie–Trotter and Strang splitting methods.

Problem 7: Baker–Campbell–Hausdorff formula. Consider the linear ODE

y′ = (B + C)︸ ︷︷ ︸
=A

y, y(0) = y0.

Consider using the Lie–Trotter splitting method, and consider the local error ehAy0 − ehCehBy0.
Show

ehA − ehCehB =
h2

2
[B,C] +O(h3),

where [B,C] = BC − CB is the commutator of the matrices B and C.
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