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Goal of this class

This class is about (mathematical) optimization.1

▶ Many engineering problems: We need to make a choice, and we
want to make the “best” choice.

▶ Many scientific problems are: Nature will equilibrate at the
“minimum” energy configuration, and we wish to find this
configuration.

▶ Many data science problems: We want to find the model
configuration (parameter) that “best” explains the data.

Mathematical optimization is the underlying math problem that abstracts
away the engineering/scientific context. (Calculus is used to model
physical systems, but calculating derivatives and integrals is independent
of the physical context the calculus problems originate from.)

1Mathematical optimization contrasts with, say, compiler optimization or code
optimization.
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Unconstrained optimization

An unconstrained optimization problem has the form

minimize
x∈Rn

f(x),

where f : Rn → R has appropriate assumptions.

We refer to x as the optimization variable or decision variable and f as
the objective function or loss function.

We refer to p⋆ = infx∈Rn f(x) ∈ [−∞,∞) as the optimal value of
theoptimization problem.

In this class, we assume x is a continuous variable and that f is
continuous and (usually) differentiable. Problems with such structure are
referred to as continuous optimization problems.

Problems with Boolean- or integer-values x are referred to as
combinatorial optimization problems. (Not our focus.)
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Local vs. global minima

x⋆ is a local minimum if f(x) ≥ f(x⋆) within a small neighborhood.2

x⋆ is a global minimum if f(x) ≥ f(x⋆) for all x ∈ Rn

In the worst case, finding the global minimum of an optimization problem
is difficult. (The class of non-convex optimization problems is NP-hard.)

f(x)

local min global min

2if ∃ r > 0 s.t. ∀x s.t. ∥x− x⋆∥ ≤ r ⇒ f(x) ≥ f(x⋆)
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Minimization vs. maximization

Why consider minimization problems? Why not maximize?

Minimization and maximization problems are equivalent since

maximize
x∈Rn

f(x) ⇔ minimize
x∈Rn

−f(x).

When maximizing, we refer to f as the objective function, reward
function, and merit function.

Min vs. max: Choose what is more natural given the problem context.

The baseline convention is to minimize because of convexity.
More on this later.
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Definition of solutions

For minimization problems, we define solutions to be global minimizers.

▶ A solution may or may not exist.

▶ A solution may or may not be unique.

Some refer to a local minimizer as a “local solution.” We will not use
this terminology.

Some refer to any (feasible) point as a “ solution.” (In a business
context, if a company is selling you a “solution,” this is an actionable
plan that is hopefully decent, but there is no promise of the optimality of
this plan.) We will not use this terminology.

In maximization problems, we define solutions to be global maximizers.
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Solving unconstrained optimization with calculus

In calculus, you have actually seen some optimization. Consider

minimize
x∈Rn

f(x),

and assume f : Rn → R is differentiable. Then,

argmin f ⊆ {x ∈ Rn | ∇f(x) = 0}.

(min f is the minimum value of f while argmin f is the set of input x’s
minimizing f .)

In other words, the minimizers must have zero gradient (∇f(x) = 0 is a
necessary condition). However, this is not a sufficient condition, and you
did things like the second derivative test.
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Solving univariate optimization problems

It is perhaps worth explicitly noting that unconstrained and constrained
minimization of f : R → R can often be done simply by plotting the
function and identifying the minimizer by visual inspection.

Of course, plotting is imperfect, and there are some exceptions. However,
there is usually no need to over-complicate univariate optimization.

Global min is here.
Visually obvious.
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Solving unconstrained optimization with calculus

Consider
maximize

x,y∈R
f(x, y) = 2xy + 2x− x2 − 2y2.

Then,

∇f(x, y) =

[
2y + 2− 2x
2x− 4y

]
.

Solving for ∇f(x, y) = 0 yields (x, y) = (2, 1). Next, carry out the
second derivative test.

∇2f(2, 1) =

[
∂2f
∂x2 (2, 1)

∂2f
∂x∂y (2, 1)

∂2f
∂x∂y (2, 1)

∂2f
∂y2 (2, 1)

]
=

[
−2 +2
+2 −4

]
Then det

(
∇2f(x)

)
> 0 and fxx(2, 1) < 0, so (2, 1) is a local maximum

of f . (Alternatively, we can note that both eigenvalues of ∇2f(x, y) are
negative.) With a little bit more work, we can show that (2, 1) is the
global maximum.

Very nice. Can we do this all the time?
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Can’t solve unconstrained optimization with calculus

Consider minimizing the Mishra’s Bird function

minimize
x,y∈R

f(x, y) = sin(x)e(1−cos(y))2 + cos(y)e(1−sin(x))2 + (x− y)2.

(This is a commonly used non-convex test function to evaluate the
performance of optimization algorithms.) Then,

∇f(x, y) =

[
cos(x)e(1−cos(y))2 − 2 cos(y) cos(x)(1− sin(x))e(1−sin(x))2 + 2(x− y)

2 sin(x) sin(y)(1− cos(y))e(1−cos(y))2 − sin(y)e(1−sin(x))2 − 2(x− y)

]
.

Solving for ∇f(x, y) = 0 analytically is impossible.

Recommended solution 1: Plot the 2D function and eyeball the solution.

Recommended solution 2: Take the eyeballed solution and run GD to
refine it to local optimality.
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Can’t solve unconstrained optimization with calculus

Consider the ℓ2-regularized logistic regression problem

minimize
x∈Rn

N∑
i=1

log
(
1 + exp(v⊺i x)

)
+

λ

2
∥x∥2,

for some λ > 0 and v1, . . . , vN ∈ R. (These arise in statistics and
machine learning.)

Then,

∇f(x) = λx+

N∑
i=1

1

1 + exp(−v⊺i x)
vi

Solving for ∇f(x, y) = 0 analytically is impossible. When d > 2, plotting
and eyeballing the solution is impossible.

We must use a numerical algorithm.

It turns out that there is a unique point satisfying ∇f(x) = 0, and it can
be computed reliably with GD. 11



Constrained optimization

Constrained optimization problems have the form

minimize
x∈Rn

f(x)

subject to x ∈ C
or

minimize
x∈Rn

f(x)

subject to g(x) = 0
or

minimize
x∈Rn

f(x)

subject to g(x) ≤ 0

where C ⊆ Rn is nonempty, f : Rn → R, and g : Rn → R. We can also
have combinations of these kinds of constraints.

We call x ∈ C a set constraint, g(x) = 0 an equality constraint, and
g(x) ≤ 0 an inequality constraint.

We say an optimization variable x ∈ Rn is feasible if it satisfies the
constraints. Otherwise, we say x is infeasible.
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Local vs. global minima with constraints

x⋆ is a local minimum if f(x) ≥ f(x⋆) among the feasible points within

a small neighborhood.3

x⋆ is a global minimum if f(x) ≥ f(x⋆) for all feasible x.

The optimal value p⋆ ∈ [−∞,∞) is

p⋆ =

 inf{f(x) |x ∈ C} in case 1
inf{f(x) | g(x) = 0, x ∈ Rn} in case 2
inf{f(x) | g(x) ≤ 0, x ∈ Rn} in case 3.

I.e., p⋆ is the minimum (infimum) value attained among feasible points.

3if ∃ r > 0 s.t. ∀x s.t. ∥x− x⋆∥ ≤ r and x feasible ⇒ f(x) ≥ f(x⋆)
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Local vs. global minima with constraints

Show figure:
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Transforming constraints

Constrained optimization problems in different forms can be transformed
into one another.

Any inequality can be written as LHS ≤ 0:

minimize
x∈Rn

f(x)

subject to g(x) ≤ h(x)
⇔

minimize
x∈Rn

f(x)

subject to g(x)− h(x) ≤ 0

Multiple constraints can be combined into one:

minimize
x∈Rn

f(x)

subject to g1(x) ≤ 0
...

gm(x) ≤ 0

⇔
minimize

x∈Rn
f(x)

subject to max
i=1,...,m

gi(x) ≤ 0

Multiple constraints can be combined into one:

minimize
x∈Rn

f(x)

subject to x ∈ C1

...
x ∈ Cm

⇔
minimize

x∈Rn
f(x)

subject to x ∈
⋂

i=1,...,m

Ci
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Solving constrained optimization with calculus:

Method of Lagrange multipliers

Consider
minimize

x,y∈R
f(x, y) = −8x2 + 2y

subject to g(x, y) = x2 + y2 − 1 = 0.

Extrema solve the system of equations

∇f(x, y) =λ∇g(x, y), g(x, y) = 0,

where a Lagrange multiplier λ ∈ R is introduced. For the problem at
hand, [

−16x
2

]
= λ

[
2x
2y

]
, x2 + y2 = 1.

With calculations, we find that there are four solutions to the equations

(x, y, λ) = (0,−1, 1), (0,+1,−1), (− 3
√
7

8 ,− 1
8 , 8) (+

3
√
7

8 ,− 1
8 , 8).

Plugging (x, y) values into f , we get the objective values

−2, +2, −65
8 , − 65

8

So, the solutions are (x⋆, y⋆) = (±3
√
7

8 ,− 1
8 ). 16



Failure of the method of Lagrange multipliers

For most problems of practical interest, the method of Lagrange
multipliers fails because:

(i) ∇f(x) = λ∇g(x) may not have an analytical solution or

(ii) the constraint function g may not be differentiable.

In most cases, we must use a numerical algorithm.
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Reducing constrained opt. to unconstrained opt.

using penalty functions

Consider the equality constrained optimization problem

minimize
x∈Rn

f(x)

subject to Ax = b.

The unconstrained optimization problem

minimize
x∈Rn

f(x) +
ρ

2
∥Ax− b∥2

with sufficiently large ρ > 0, can be a good approximation to the
constrained optimization problem.

How large should ρ be? Figure it out with trial and error.
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Reducing constrained opt. to unconstrained opt.

using penalty functions

Consider the inequality constrained optimization problem

minimize
x∈Rn

f(x)

subject to g(x) ≤ 0.

The unconstrained optimization problems

minimize
x∈Rn

f(x) + ρmax{0, g(x)} or minimize
x∈Rn

f(x) + ρ
(
max{0, g(x)}

)2
with sufficiently large ρ > 0, can be a good approximation to the
constrained optimization problem.

Approximating a constrained optimization problem with an unconstrained
one and using unconstrained optimization algorithms to solve it is a
simple heuristic that is widely used. This is not always a bad idea.

However, there are better approaches that directly address constraints.
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