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1 Gradient descent-type methods

Consider the optimization problem

minimize
x∈Rn

f(x),

where f : Rn → R is differentiable.1

Gradient descent (GD) has the form

xk+1 = xk − αk∇f(xk)

for k = 0, 1, . . . , where x0 ∈ Rn is a suitably chosen starting point and α0, α1, . . . ∈
R is a positive step size sequence.

Under suitable conditions, we hope xk
?→ x⋆ for some solution x⋆.

x⋆ is a local minimum if f(x) ≥ f(x⋆) within a small neighborhood.2

x⋆ is a global minimum if f(x) ≥ f(x⋆) for all x ∈ Rn

Local vs. global minima In the worst case, finding the global minimum
of an optimization problem is difficult. (The class of non-convex optimization
problems is NP-hard.)

1If f is not differentiable, then gradient descent is not well defined, right?

2if ∃ r > 0 s.t. ∀x s.t. ∥x− x⋆∥ ≤ r ⇒ f(x) ≥ f(x⋆)
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f(x)

local min global min

What can we prove? Without further assumptions, there is no hope of
showing that GD finds the global minimum since GD can never “know” if it is
stuck in a local minimum.

We cannot prove the function value converges to the global optimum. We
instead prove ∇f(xk) → 0. Roughly speaking, this is similar but weaker than
proving that xk converges to a local minimum.3

−∇f is steepest descent direction From vector calculus, we know that ∇f
is the steepest ascent direction, so −∇f is the steepest descent direction. In
other words,

xk+1 = xk − αk∇f(xk)

is moving in the steepest descent direction, which is −∇f(xk) at the current
position xk, scaled by αk > 0.

Taylor expansion of f about xk

f(x) = f(xk) + ⟨∇f(xk), x− xk⟩+O
(
∥x− xk∥2

)
.

Plugging in xk+1

f(xk+1) = f(xk)− αk∥∇f(xk)∥2 +O(α2
k).

For small (cautious) αk, a GD step reduces the function value.

Is GD a “descent method”?

xk+1 = xk − αk∇f(xk)

Without further assumptions, −∇f(xk) only provides directional informa-
tion. How far should you go? How large should αk be?

3Without further assumptions, we cannot show that xk converges to a limit, and even
xk does converge to a limit, we cannot guarantee that that limit is not a saddle point or
even a local maximum. Nevertheless, people commonly use the argument that xk “usually”
converges and that it is “unlikely” that the limit is a local maximum or a saddle point. More
on this later.
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A step of GD need not result in descent, i.e., f(xk+1) > f(xk) is possible.

Calculus only guarantees the accuracy of the Taylor expansion in an in-
finitesimal neighborhood.

f(x)

xk

f(xk) + f ′(xk)(x− xk)

Step size selection for GD How do we choose the step size αk and ensure
convergence?

We consider 3 solutions:

• Make an assumption allowing us to choose αk and ensures f(xk) will
descend.

– Estimate the L needed to choose αk.

• Do a line search to ensure that f(xk) will descend.

1.1 GD for smooth non-convex functions

Consider the optimization problem

minimize
x∈Rn

f(x),

where f : Rn → R is “L-smooth” (but not necessarily convex).

We consider GD with constant step size:

xk+1 = xk − α∇f(xk).

(So α = α0 = α1 = · · · .)

We will show the following.

Theorem 1. Assume f : Rn → R is L-smooth and inf f > −∞. Let α ∈
(0, 2/L). Then, the GD iterates satisfy ∇f(xk)→ 0.
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L-smoothness For L > 0, we say f : Rn → R is L-smooth if f is differentiable
and

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥, ∀x, y ∈ Rn.

I.e., ∇f : Rn → Rn is L-Lipschitz continuous. We say f is smooth if it is L-
smooth for some L > 0. 4

Interpretation 1: ∇f does not change too rapidly. This makes the first-
order Taylor expansion reliable beyond an infinitesimal neighborhood. (Further
quantified on next slide.)

Lemma 1. If f twice-continuously differentiable, then L-smoothness is equiva-
lent to

−L ≤ λmin(∇2f(x)) ≤ λmax(∇2f(x)) ≤ L, ∀x ∈ Rn.

Interpretation 2: The curvature f , quantified by ∇2f , has lower and upper
bounds ±L.

Smoothness ⇒ first-order Taylor has small remainder For GD to work
with a fixed non-adaptive step size, we need assurance that the first-order Taylor
expansion is a good approximation within a sufficiently large neighborhood. L-
smoothness provides this assurance.

Lemma 2. Let f : Rn → R be L-smooth. Then∣∣f(x + δ)−
(
f(x) + ⟨∇f(x), δ⟩

)∣∣ ≤ L

2
∥δ∥2, ∀x, δ ∈ Rn.

Note
R1(δ;x) = f(x + δ)−

(
f(x) + ⟨∇f(x), δ⟩

)
is the remainder between f and its first-order Taylor expansion about x. This
lemma provides a quantitative bound |R1(δ;x)| ≤ O(∥δ∥2).

Proof of the upper bound ≤. Define g : R→ R by

g(t) = f(x + t δ).

Then g is differentiable, and its derivative is

g′(t) = ⟨∇f(x + t δ), δ⟩.

Next, observe that g′ is (L∥δ∥2)-Lipschitz continuous. Indeed,

|g′(t1)− g′(t0)| =
∣∣⟨∇f(x + t1 δ)−∇f(x + t0 δ), δ⟩

∣∣
≤

∥∥∇f(x + t1 δ)−∇f(x + t0 δ)
∥∥∥δ∥ ≤ L∥δ∥2|t1 − t0|.

4The name “smoothness”, as used in optimization, is somewhat confusing because in other
areas of mathematics, “smoothness” often refers to infinite differentiability.
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Finally, we conclude that

f(x + δ) = g(1) = g(0) +

∫ 1

0

g′(t) dt

≤ f(x) +

∫ 1

0

(
g′(0) + L∥δ∥2t

)
dt

= f(x) + ⟨∇f(x), δ⟩+
L

2
∥δ∥2.

Summability lemma

Lemma 3. Let V0, V1, . . . ∈ R and S0, S1, . . . ∈ R be nonnegative sequences
satisfying

Vk+1 ≤ Vk − Sk

for k = 0, 1, . . . . Then Sk → 0.

Key idea. Sk measures progress (decrease) made in iteration k. Since Vk ≥ 0,
Vk cannot decrease forever, so the progress (magnitude of Sk) must diminish to
0.

Proof. Sum the inequality from i = 0 to k

Vk+1 +

k∑
i=0

Si ≤ V0.

Let k →∞ ∞∑
i=0

Si ≤ V0 − lim
k→∞

Vk ≤ V0

Since
∑∞

i=0 Si <∞, we conclude Si → 0.

Convergence proof for smooth non-convex functions

Theorem 2. Assume f : Rn → R is L-smooth and inf f > −∞. Let α ∈
(0, 2/L). Then, the GD iterates satisfy ∇f(xk)→ 0.

Proof. Use the Lipschitz gradient lemma with x = xk and δ = −α∇f(xk)
to obtain

f(xk+1) ≤ f(xk)− α
(
1− αL

2

)
∥∇f(xk)∥2,

and

def
= Vk+1︷ ︸︸ ︷(

f(xk+1)− inf
x

f(x)
)
≤

def
= Vk︷ ︸︸ ︷(

f(xk) − inf
x

f(x)
)
−

def
= Sk︷ ︸︸ ︷

α
(
1− αL

2

)︸ ︷︷ ︸
>0

for α∈(0,2/L)

∥∇f(xk)∥2 .

By the summability lemma, we have ∥∇f(xk)∥2 → 0 and thus ∇f(xk)→ 0.
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GD with line search Consider

minimize
x∈Rn

f(x),

where f : Rn → R is differentiable but not necessarily smooth.
GD with exact line search

gk = ∇f(xk)

αk ∈ argmin
α∈R

f(xk − αgk)

xk+1 = xk − αk∇f(xk)

performs a one-dimensional search in the direction of the gradient. (XXX we
need to assume the iterations exist.)

Theorem 3. Let f : Rn → R be differentiable. Then GD with exact line search
satisfies

f(xk)↘ f∞ ∈ [−∞,∞).

Proof. By construction, we have f(xk+1) ≤ f(xk). A non-increasing se-
quence of real numbers converges to a value in [−∞,∞).

GD with inexact line search Computing the exact line search is often
expensive and unnecessary.
GD with inexact line search

gk = ∇f(xk)

αk = InexLineSearch(f, xk, gk)

xk+1 = xk − αk∇f(xk)

InexLineSearch(f, x, g) :

α← β // some initial constant > 0

if g == 0 : return α

while f(x− αg) ≥ f(x)

α← α/2

return α

This inexact line search is also called a backtracking line search.

Theorem 4. If f is differentiable, the line search terminates in finite steps.

Proof. Since f is differentiable,

f(x− αg) = f(x)− α∥g∥2 + o(α)

and there is a threshold A > 0 such that f(x− αg) < f(x) for α ∈ (0, A). The
halving process of α eventually results in f(x− αg) < f(x) (by coincidence) or
enters the interval α ∈ (0, A).

GD with inexact line search The starting step size β > 0 is a parameter
to be tuned.

With large β, we have to perform the backtracking loop many times, but we
have the opportunity to take a long step.
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With small β, the backtracking loop may terminate more quickly, but we
won’t take steps larger than β.

One can modify the algorithm to adaptively decrease or increase β based on
the history of backtracking.

How to choose the starting point x0 Most (if not all) optimization algo-
rithms require a starting point x0. It is optimal to choose x0 to be close (or
equal to) x⋆, but, of course, we don’t know where x⋆ is.

If one has an estimate of x⋆ based on problem structure, should utilize it.
In convex optimization problems, we often have convergence to the global

minimum regardless of x0, so it is okay to choose x0 = 0.
For non-convex optimization problems, the general prescription is to start

with x0 = random noise.
In some non-convex optimization problems (such as training deep neural

networks), one must not use x0 = 0, and a well-tuned random initialization is
crucial.

2 Smooth convex GD

Convex optimization The problem

minimize
x∈Rn

f(x)

is a convex optimization problem if f : Rn → R is convex, i.e., if

f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y), ∀x, y ∈ Rn, θ ∈ [0, 1].

Finding the global minimum of a convex function is tractable.

“In fact, the great watershed in optimization isn’t between linearity
and nonlinearity, but convexity and nonconvexity.”
— R. Tyrrell Rockafellar, in SIAM Review, 1993

(In other areas of mathematics, linear things tend to be easier, while non-
linear things tend to be significantly harder, but not in optimization.)

−∇f points toward x⋆ Why can GD find global minimizers of convex func-
tions?

Reason 1. Moving in the −∇f direction reduces the function value, taking
you to a local minimum, which is a global minimum by convexity.

Reason 2. The −∇f direction points toward global minimizers. (This is
the more fundamental reason.)
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Theorem 5. Let f : Rn → R be differentiable and convex. Assume f has a
minimizer and let x⋆ ∈ argmin f . Let x ∈ Rn such that ∇f(x) ̸= 0. Then,

⟨x⋆ − x,−∇f(x)⟩ > 0.

x⋆

−∇f(x)

< 90◦
x

Proof. Note that x is not a local or global minimizer since ∇f(x) ̸= 0. So,
f(x)− f(x⋆) > 0. By the convexity inequality, we conclude

⟨x⋆ − x,−∇f(x)⟩ ≥ f(x)− f(x⋆) > 0.

Consequence: For small αk, a GD step reduces the distance to a solution.

∥xk − αk∇f(xk)︸ ︷︷ ︸
=xk+1

−x⋆∥2 = ∥xk − x⋆∥2 − 2αk ⟨xk − x⋆,∇f(xk)⟩︸ ︷︷ ︸
>0

+α2
k∥∇f(xk)∥2

< ∥xk − x⋆∥2

for sufficiently small αk > 0, if ∇f(xk) ̸= 0.
We quickly establish an inequality we need for the subsequent proof.

Lemma 4. Let f : Rn → R be L-smooth and convex. Let x⋆ ∈ argmin f be a
minimizer. Then

⟨∇f(x), x− x⋆⟩ ≥
1

L
∥∇f(x)∥2

Proof. Note, ∇f(x⋆) = 0. By the cocoercivity inequality, we have

f(x⋆) ≥ f(x) + ⟨∇f(x), x⋆ − x⟩+
1

2L
∥∇f(x)∥2

and

f(x) ≥ f(x⋆) +
1

2L
∥∇f(x)∥2.

Adding these two inequalities yield the stated result.

Theorem 6. Let f : Rn → R be L-smooth and convex. Assume f has a min-
imizer. Then GD with constant stepsize α satisfying α ∈ (0, 2/L) converges in
the sense of xk → x⋆ for some x⋆ ∈ argmin f .
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Proof. Let x̃⋆ ∈ argmin f . Using the cocoercivity inequality,

∥xk+1 − x̃⋆∥2 = ∥xk − x̃⋆ − α∇f(xk)∥2

= ∥xk − x̃⋆∥2 − 2α⟨∇f(xk), xk − x̃⋆⟩+ α2∥∇f(xk)∥2

≤ ∥xk − x̃⋆∥2 − 2α
L ∥∇f(xk)∥2 + α2∥∇f(xk)∥2

= ∥xk − x̃⋆∥2 − α
(
2
L − α

)︸ ︷︷ ︸
>0

∥∇f(xk)∥2.

By the summability lemma, ∇f(xk)→ 0.
The proof of xk → x⋆ for some x⋆ ∈ argmin f requires a somewhat delicate

analysis argument. By,

∥xk+1 − x̃⋆∥2 ≤ ∥xk − x̃⋆∥2 (1)

∥xk − x̃⋆∥2 is a decreasing sequence and thus has a limit, but the limit is not
necessarily 0 (especially if the minimizer is not unique). We argue that xk → x⋆

for some x⋆ ∈ argmin f with the steps: (i) xk has an accumulation point (ii)
this accumulation point is a minimizer (iii) this is the only accumulation point.

(i) Inequality (1) tells us {xk}k lie within {x | ∥x−x̃⋆∥ ≤ ∥x0−x̃⋆∥}, a compact
set, so {xk}k has an accumulation point x∞. I.e., there is a convergent
subsequence xkj

→ x∞, where x∞ is the limit point.

(ii) Accumulation point x∞ satisfies ∇f(x∞) = 0, as ∇f(xk) → 0 and ∇f is
continuous, i.e., x∞ ∈ argmin f . (We now know that the limit point x∞
is a solution.)

(iii) Apply (1) to this accumulation point x∞ ∈ argmin f (i.e., plug in x̃⋆ =
x∞) to conclude ∥xk − x∞∥ monotonically decreases to 0, i.e., the entire
sequence converges to x∞ and x∞ = x⋆ is the solution GD converges to.

Note, xk → x⋆ immediately implies f(xk) → f(x⋆) and ∇f(xk) → 0. (L-
smoothness implies f and ∇f are continuous.)

As we show next, we can establish a rate (speed) guarantee on f(xk) →
f(x⋆). Namely, we will show

f(xk)− f(x⋆) ≤ O(1/k).

It is also possible to establish a rate guarantee on ∇f(xk)→ 0. It can be shown
that

∥∇f(xk)∥ ≤ O(1/k).

2.1 Convergence rate of GD for smooth convex functions

Theorem 7. Let f : Rn → R be L-smooth and convex. Assume f has a mini-
mizer x⋆. Consider gradient descent with constant stepsize α = 1/L. Then, for
k = 1, 2, . . . ,

f(xk)− f(x⋆) ≤ L

2k
∥x0 − x⋆∥2.
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Outline of proof. This proof technique is called an energy function anal-
ysis, potential function analysis, or Lyapunov analysis. The key insight is to
define an appropriate dissipative (non-increasing) quantity.The main challenge
is in identifying the right energy function, which in some cases is highly non-
obvious. (The “energy functions” are often unrelated to any notion of physical
energy.)

Proof. Define the energy function

Ek = k
(
f(xk)− f(x⋆)

)
+

L

2
∥xk − x⋆∥2

for k = 0, 1, . . . . If the energy is dissipative, then we conclude

k(f(xk)− f(x⋆)) ≤ Ek ≤ · · · ≤ E0 =
L

2
∥x0 − x⋆∥2.

It remains to show Ek+1 ≤ Ek for k = 0, 1, . . . . We have

Ek+1 − Ek = (k + 1)
(
f(xk+1)− f(x⋆)

)
− k

(
f(xk)− f(x⋆)

)
− αL⟨∇f(xk), xk − x⋆⟩+

α2L

2
∥∇f(xk)∥2

≤ f(xk)− f(x⋆)− k + 1

2L
∥∇f(xk)∥2 − ⟨∇f(xk), xk − x⋆⟩+

1

2L
∥∇f(xk)∥2

≤ − 1

2L
∥∇f(xk)∥2 − k + 1

2L
∥∇f(xk)∥2 +

1

2L
∥∇f(xk)∥2 = − k

2L
∥∇f(xk)∥2 ≤ 0,

where the first inequality follows from the L-smoothness lemma

(k + 1)f(xk+1) = (k + 1)f
(
xk − 1

L∇f(xk)
)
≤ (k + 1)f(xk)− (k + 1)

2L
∥∇f(xk)∥2

and the second inequality follows from the cocoercivity inequality

f(xk)− f(x⋆)− ⟨∇f(xk), xk − x⋆⟩ ≤ −
1

2L
∥∇f(xk)∥2.

Theorem 8. Let f : Rn → R be L-smooth and µ-strongly convex. Consider GD
with αk = 1/L. Then, for k = 0, 1, . . . ,

∥xk − x⋆∥2 ≤
(
1− µ

L

)k∥x0 − x⋆∥2.

Proof. From L-smoothness, we have

f(xk) ≥ f(x⋆) + 1
2L∥∇f(xk)∥2

f(x⋆) ≥ f(xk) + ⟨∇f(xk), x⋆ − xk⟩+ 1
2L∥∇f(xk)∥2.

Adding the two gives us

⟨∇f(xk), x− xk⟩ ≥ 1
L∥∇f(x)−∇f(y)∥2.
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Likewise from µ-strong convexity, we have

f(xk) ≥ f(x⋆) + µ
2 ∥xk − x⋆∥2

f(x⋆) ≥ f(xk) + ⟨∇f(xk), x⋆ − xk⟩+ µ
2 ∥xk − x⋆∥2.

Adding the two gives us

⟨∇f(xk), xk − x⋆⟩ ≥ µ∥xk − x⋆∥2.

Then, we have

∥xk+1 − x⋆∥2 = ∥xk − x⋆∥2 − 2
L ⟨∇f(xk), xk − x⋆⟩+ 1

L2 ∥∇f(xk)∥2

≤ ∥xk − x⋆∥2 − 1
L ⟨∇f(xk), xk − x⋆⟩

≤
(
1− µ

L

)
∥xk − x⋆∥2

for k = 0, 1, . . . . Finally, by a recursive argument, we have

∥xk − x⋆∥2 ≤
(
1− µ

L

)k∥x0 − x⋆∥2.

Using the Polyak–  Lojasiewicz inequality, we can obtain a rate on f .

Theorem 9. Let f : Rn → R be L-smooth, convex, and µ-strongly convex.
Consider gradient descent with constant stepsize αk = 1/L. Then, for k =
0, 1, . . . ,

f(xk)− f(x⋆) ≤
(
1− µ

L

)k
(f(x0)− f(x⋆))

Proof.

f(xk+1)− f(x⋆) = f(xk − α∇f(xk))− f(x⋆)

≤ f(xk)− α⟨∇f(xk),∇f(xk))⟩+
α2L

2
∥∇f(xk)∥2 − f(x⋆)

= f(xk)− f(x⋆)− 1

2L
∥∇f(xk)∥2

≤ (1− 1/κ)(f(xk)− f(x⋆)),

where the first inequality follow from L-smoothness and the third follows from
PL.

2.2 Projected gradient method

Constrained optimization problem

minimize
x∈Rn

f(x),

subject to x ∈ C,
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where C ⊂ Rn is a nonempty closed convex set and f : Rn → R is differentiable.
Assume the constraint set C is computationally easy to project onto.

Projected gradient descent has the form

xk+1 = ΠC

(
xk − α∇f(xk)

)
for k = 0, 1, . . . , where x0 ∈ Rn is a suitably chosen starting point and α ∈ R is
a positive step size.

In other words, projected GD alternates gradient descent steps and projec-
tions onto C.

Example: Projection onto ℓ∞-ball Consider the ℓ∞-ball

C = {x ∈ Rn | ∥x∥∞ ≤ 1} = {x ∈ Rn | |xi| ≤ 1, for i = 1, . . . , n}.

Then, ΠC is the thresholding operator

(
ΠC(x)

)
i

= Π[−1,1](xi) =

 −1 if xi < −1
xi if − 1 ≤ xi ≤ 1
+1 if 1 < xi

applied element-wise for i = 1, . . . , n.

Since projected GD uses ΠC every iteration, it is important that computing
ΠC is inexpensive.

(It’s also nice for humans if the code for ΠC is easy to implement.)

Example: ℓ∞-constrained logistic regression Consider the ℓ∞-constrained
logistic regression problem

minimize
x∈Rn

N∑
i=1

log
(
1 + exp(v⊺i x)

)
subject to ∥x∥∞ ≤ 1

for some v1, . . . , vN ∈ R.

Projected GD is

xk+1 = Π
(
xk − α

N∑
i=1

1

1 + exp(−v⊺i xk)
vi

)
,

where Π is the element-wise projection onto [−1, 1]. This is quite simple to
implement.
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Recall that in unconstrained convex optimization, ∇f(x) = 0 is a necessary
and sufficient condition for x to be a solution. This is called an optimality condi-
tion. We have an analogous optimality condition for constrained optimization.

Motivation. Imagine we are minimizing a linear objective subject to a
constraint:

minimize
x∈Rn

⟨g, x⟩
subject to x ∈ C.

Then, x⋆ being a solution is defined as

⟨g, x⟩ ≥ ⟨g, x⋆⟩, ∀x ∈ C.

When f is not linear, we expect something similar within a neighborhood.

Theorem 10. Let C ⊂ Rn be nonempty closed convex and f : Rn → R be
differentiable and convex. Then, x⋆ ∈ argminx∈C f(x) if and only if

⟨∇f(x⋆), x− x⋆⟩ ≥ 0, ∀x ∈ C.

Proof. (⇒) Let x ∈ C. If x = x⋆, there is nothing to prove, so assume x ̸= x⋆.
Then,

f(x⋆) ≤ f
(
x⋆ + θ(x− x⋆)︸ ︷︷ ︸
=(1−θ)x⋆+θx∈C

)
∀ θ ∈ (0, 1].

and

0 ≤ lim
θ→0

f(x⋆ + θ(x− x⋆))− f(x⋆)

θ
= ⟨∇f(x⋆), x− x⋆⟩.

(⇐) Assume
⟨∇f(x⋆), x− x⋆⟩ ≥ 0, ∀x ∈ C.
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By the convexity inequality,

f(x) ≥ f(x⋆) + ⟨∇f(x⋆), x− x⋆⟩
≥ f(x⋆),

and we conclude x⋆ is a global minimizer.

Optimality ⇔ stationarity

Theorem 11. Let C ⊂ Rn be nonempty closed convex and f : Rn → R be
differentiable and convex. Let α > 0. Then, x⋆ ∈ argminx∈C f(x) if and only if

x⋆ = ΠC(x⋆ − α∇f(x⋆)).

I.e., projected GD stops moving if and only if you are at a solution.

Proof. By the optimality condition, x⋆ is a solution if and only if

⟨∇f(x⋆), x− x⋆⟩ ≥ 0, ∀x ∈ C.

This holds if and only if

⟨x− x⋆, x⋆ − α∇f(x⋆)− x⋆⟩ ≤ 0, ∀x ∈ C.

By the projection theorem, this holds if and only if

x⋆ = ΠC(x⋆ − α∇f(x⋆)).

Lemma 5. Let C ⊆ Rn be nonempty closed covnex. Let f : Rn → R be µ-
strongly convex. Then,

minimzie
x∈Rn

f(x)

subject to x ∈ C

has a unique solution.

Theorem 12. Let C ⊆ Rn be nonempty closed covnex. Let f : Rn → R be
L-smooth, and µ-strongly convex. Let x⋆ = argminx∈C f(x). Consider projcted
gradient descent with constant stepsize αk = 1/L. Then, for k = 0, 1, . . . ,

∥xk − x⋆∥2 ≤
(
1− µ

L

)k∥x0 − x⋆∥2.

Proof.

∥xk+1 − x⋆∥2 = ∥ΠC(xk − α∇f(xk))−ΠC(x⋆ − α∇f(x⋆))∥2

≤ ∥(xk − α∇f(xk))− (x⋆ − α∇f(x⋆))∥2

= ∥xk − x⋆∥2 − 2α⟨∇f(xk)−∇f(x⋆), xk − x⋆⟩+ α2∥∇f(xk)−∇f(x⋆)∥2

≤ ∥xk − x⋆∥2 − 2α⟨∇f(xk)−∇f(x⋆), xk − x⋆⟩+ α2L⟨∇f(xk)−∇f(x⋆), xk − x⋆⟩

= ∥xk − x⋆∥2 −
1

L
⟨∇f(xk)−∇f(x⋆), xk − x⋆⟩

≤
(
1− µ

L

)
∥xk − x⋆∥2

14



2.2.1 Sublinear convergence results

The following results can be show with more work, but we shall move on.

Theorem 13. Let C ⊂ Rn be nonempty closed convex and f : Rn → R be
L-smooth and convex. Assume argminx∈C f(x) has a solution. Then projected
GD with constant stepsize α satisfying α ∈ (0, 1/L] converges in the sense of
xk → x⋆ for some x⋆ ∈ argminx∈C f(x).

Theorem 14. Let C ⊂ Rn be nonempty closed convex and f : Rn → R be L-
smooth and convex. Assume argminx∈C f(x) has a solution. Consider projected
gradient descent with constant stepsize α = 1/L. Then, for k = 1, 2, . . . ,

f(xk)− f(x⋆) ≤ L

2k
∥x0 − x⋆∥2.

2.3 Subgradient methods

Consider the optimization problem

minimize
x∈Rn

f(x),

where f : Rn → R is convex but not necessarily differentiable.
The subgradient method is

xk+1 ∈ xk + αk∂f(xk)

Here, the inclusion notation is really a shorthand for

gk ∈ ∂f(xk)

xk+1 = xk + αk∂f(xk)

Lemma 6 (Quasi-summability Lemma). Let {Vk}k∈N, {Sk}k∈N, {Uk}k∈N be
sequences of nonnegative real numbers satisfying the inequality

Vk+1 ≤ Vk − Sk + Uk

for k = 0, 1, . . . and
∞∑
k=0

Uk <∞.

Then,
∞∑
k=0

Sk <∞, Vk → V∞ ∈ R.

Proof. By summation, we have

VK ≤ V0 −
K∑

k=0

Sk +

K∑
k=0

Uk.

15



Reorganizing, we get

K∑
k=0

Sk ≤ V0 − Vk +

K∑
k=0

Uk ≤ V0 +

∞∑
k=0

Uk.

By letting K →∞, we have
∞∑
k=0

Sk <∞.

Next, we define

Ṽk = Vk −
k−1∑
j=0

Uj .

Then
Ṽk+1 ≤ Ṽk − Sk

and the nonincreasing sequence {Ṽk}k∈N (lower bounded by −
∑∞

k=0 Uk) has a
limit. So Vk has a limit.

Theorem 15. Let f : Rn → R be convex. Assume ∥∂f(x)∥ ≤ G. Let αk be a
sequence of positive scalars such that∑

k

αk =∞,
∑
k

α2
k <∞

Then

gk ∈ ∂f(xk)

xk+1 = xk − αkgk

converges in the sense of xk → x∞ ∈ argmin f .

Proof. Let x̃⋆ ∈ argmin f .

∥xk+1 − x̃⋆∥2 = ∥xk − x̃⋆ − αkgk∥2

= ∥xk − x̃⋆∥2 − 2αk⟨gk, xk − x̃⋆⟩+ α2
k∥gk∥2

≤ ∥xk − x̃⋆∥2 − 2αk

(
f(xk)− f⋆

)
+ α2

kG
2

By the quasi-summability lemma, ∥xk − x̃⋆∥ is bounded. we have

∞∑
k

αk

(
f(xk)− f⋆

)
<∞.

Since αk is not summable this implies

lim inf
k→∞

(
f(xk)− f⋆

)
= 0.

Pick a convergent subsequence xkj such that f(xkj ) → f⋆. Since {xk}k is
bounded, we can choose a further convergent subsequence to ensure xkj

→ x∞.
Since f is continuous, f(x∞) = f⋆ and thus x∞ ∈ argmin f . Finally, since
∥xk − x∞∥2 has a limit, we know that the limit is 0, i.e., the entire sequence
converges to x∞.
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Lemma 7 (Jensen’s inequality). Let X ∈ Rn be a random variable such that
E[X] ∈ Rn is well defined, and let φ : Rn → R be convex. Then,

φ
(
E[X]

)
≤ E[φ(X)].

Proof. Let g ∈ ∂φ(E[X]). Then,

φ(X) ≥ φ(E[X]) + ⟨g,X − E[X]⟩.

Taking expectations on both sides completes the proof.

Theorem 16. Let f : Rd → R be a G-Lipschitz continuous convex function.
Assume f has a minimizer x⋆. Let x0 ∈ Rd be a starting point and write
R = ∥x0 − x⋆∥2. Let K > 0 be the total iteration count. Then, subgradient
descent with the constant stepsize

αk = α =
R

G
√
K + 1

exhibits the rate

min
0≤k≤K

f(xk)− f(x⋆) ≤ GR√
K + 1

and

f((x̄K)− f(x⋆) ≤ GR√
K + 1

,

where

(x̄K =
1

K + 1

K∑
k=0

xk.

Proof. for k = 0, 1, 2, . . . ,

∥xk+1 − x⋆∥22 = ∥xk − αgk − x⋆∥22
= ∥xk − x⋆∥22 − 2α⟨gk, xk − x⋆⟩+ α2∥gk∥22
≤ ∥xk − x⋆∥22 − 2α(f(xk)− f(x⋆)) + α2G2.

Therefore,

2α(f(xk)− f(x⋆)) ≤ ∥xk − x⋆∥22 − ∥xk+1 − x⋆∥22 + α2G2.

With a telescoping sum argument, we get

2α

K∑
k=0

(f(xk)− f(x⋆)) ≤ ∥x0 − x⋆∥22 − ∥xK+1 − x⋆∥22 +

K∑
k=0

α2G2

≤ R2 + (K + 1)α2G2,

and

1

K + 1

K∑
k=0

f(xk)− f(x⋆) ≤ R2 + α2G2(K + 1)

2α(K + 1)
=

GR√
K + 1

.
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Therefore,

min
0≤k≤K

f(xk)− f(x⋆) =
1

K + 1

K∑
k=0

min
0≤k≤K

f(xk)− f(x⋆)

≤ 1

K + 1

K∑
k=0

f(xk)− f(x⋆) ≤ GR√
K + 1

.

Likewise, using Jensen’s inequality, we conclude

f(x̄K)− f(x⋆) ≤ E
k∼Uniform({0,1,...,K})

[
f(xk)− f(x⋆)

]
=

1

K + 1

K∑
k=0

f(xk)− f(x⋆) ≤ GR√
K + 1

.

Note that x̄K can be computed with the following online averaging formula
(without having to store all of the x0, x1, . . . , xK):

x̄K =
1

K + 1
xK +

K

K + 1
x̄K−1.

Theorem 17. Let f : Rd → R be a G-Lipschitz continuous convex function.
Assume f has a minimizer x⋆. Let x0 ∈ Rd be a starting point and write
R = ∥x0 − x⋆∥2. Then, subgradient descent with positive stepsizes {αk}Kk=0

satisfies

f(x̄K)− f(x⋆) ≤
R2 + G2

∑K
k=0 α

2
k

2
∑K

k=0 αk

,

where

x̄K =

∑K
k=0 αkxk∑K
k=0 αk

.

Proof. For k = 0, 1, . . . ,K,

∥xk+1 − x⋆∥22 = ∥xk − αkgk − x⋆∥22 ≤ ∥xk − x⋆∥22 − 2αk⟨gk, xk − x⋆⟩+ α2
k∥gk∥22.

By convexity, ⟨gk, xk − x⋆⟩ ≥ f(xk) − f(x⋆) for gk ∈ ∂f(xk), and by G-
Lipschitzness ∥gk∥2 ≤ G. Hence

2αk

(
f(xk)− f(x⋆)

)
≤ ∥xk − x⋆∥22 − ∥xk+1 − x⋆∥22 + α2

kG
2.

Summing from k = 0 to K gives

2

K∑
k=0

αk

(
f(xk)−f(x⋆)

)
≤ ∥x0−x⋆∥22−∥xK+1−x⋆∥22+G2

K∑
k=0

α2
k ≤ R2+G2

K∑
k=0

α2
k.
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Let AK =
∑K

k=0 αk. By convexity of f ,

f(x̄K) ≤ 1

AK

K∑
k=0

αkf(xk), x̄K =
1

AK

K∑
k=0

αkxk.

Therefore

2AK

(
f(x̄K)− f(x⋆)

)
≤ E

k

[
f(xk)− f(x⋆)

]
= 2

K∑
k=0

αk

(
f(xk)− f(x⋆)

)
≤ R2 + G2

K∑
k=0

α2
k,

with the distribution on the random index k defined as

P(k = j) =
αj∑i
k=0 αi

.

This yields the claim.

Corollary 1. With stepsize αk = C/
√
K, we get the rate

f(x̄k)− f(x⋆) ≤ O(log k/
√
k)
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