Math 273A Notes: Chapter1

Ernest K. Ryu

October 29, 2025

1 Gradient descent-type methods

Consider the optimization problem

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad f(x),$$

where $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable.¹

Gradient descent (GD) has the form

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$

for k = 0, 1, ..., where $x_0 \in \mathbb{R}^n$ is a suitably chosen starting point and $\alpha_0, \alpha_1, ... \in \mathbb{R}$ is a positive step size sequence.

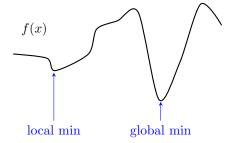
Under suitable conditions, we hope $x_k \stackrel{?}{\to} x_{\star}$ for some solution x_{\star} . x_{\star} is a *local minimum* if $f(x) \geq f(x_{\star})$ within a small neighborhood.²

 x_{\star} is a global minimum if $f(x) \geq f(x_{\star})$ for all $x \in \mathbb{R}^n$

Local vs. global minima In the worst case, finding the global minimum of an optimization problem is difficult. (The class of non-convex optimization problems is NP-hard.)

 $^{^{1}}$ If f is not differentiable, then gradient descent is not well defined, right?

²if $\exists r > 0$ s.t. $\forall x$ s.t. $||x - x_{\star}|| \le r \Rightarrow f(x) \ge f(x_{\star})$



What can we prove? Without further assumptions, there is no hope of showing that GD finds the global minimum since GD can never "know" if it is stuck in a local minimum.

We cannot prove the function value converges to the global optimum. We instead prove $\nabla f(x_k) \to 0$. Roughly speaking, this is similar but weaker than proving that x_k converges to a local minimum.³

 $-\nabla f$ is steepest descent direction. From vector calculus, we know that ∇f is the steepest ascent direction, so $-\nabla f$ is the steepest descent direction. In other words,

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$

is moving in the steepest descent direction, which is $-\nabla f(x_k)$ at the current position x_k , scaled by $\alpha_k > 0$.

Taylor expansion of f about x_k

$$f(x) = f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \mathcal{O}(\|x - x_k\|^2).$$

Plugging in x_{k+1}

$$f(x_{k+1}) = f(x_k) - \alpha_k ||\nabla f(x_k)||^2 + \mathcal{O}(\alpha_k^2).$$

For small (cautious) α_k , a GD step reduces the function value.

Is GD a "descent method"?

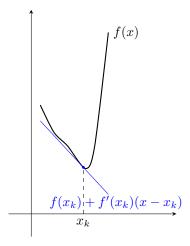
$$x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$

Without further assumptions, $-\nabla f(x_k)$ only provides directional information. How far should you go? How large should α_k be?

 $^{^3}$ Without further assumptions, we cannot show that x_k converges to a limit, and even x_k does converge to a limit, we cannot guarantee that that limit is not a saddle point or even a local maximum. Nevertheless, people commonly use the argument that x_k "usually" converges and that it is "unlikely" that the limit is a local maximum or a saddle point. More on this later.

A step of GD need not result in descent, i.e., $f(x_{k+1}) > f(x_k)$ is possible.

Calculus only guarantees the accuracy of the Taylor expansion in an infinitesimal neighborhood.



Step size selection for GD How do we choose the step size α_k and ensure convergence?

We consider 3 solutions:

- Make an assumption allowing us to choose α_k and ensures $f(x_k)$ will descend.
 - Estimate the L needed to choose α_k .
- Do a line search to ensure that $f(x_k)$ will descend.

1.1 GD for smooth non-convex functions

Consider the optimization problem

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad f(x),$$

where $f: \mathbb{R}^n \to \mathbb{R}$ is "L-smooth" (but not necessarily convex).

We consider GD with constant step size:

$$x_{k+1} = x_k - \alpha \nabla f(x_k).$$

(So
$$\alpha = \alpha_0 = \alpha_1 = \cdots$$
.)

We will show the following.

Theorem 1. Assume $f: \mathbb{R}^n \to \mathbb{R}$ is L-smooth and $\inf f > -\infty$. Let $\alpha \in (0, 2/L)$. Then, the GD iterates satisfy $\nabla f(x_k) \to 0$.

L-smoothness For L > 0, we say $f: \mathbb{R}^n \to \mathbb{R}$ is L-smooth if f is differentiable and

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|, \quad \forall x, y \in \mathbb{R}^n.$$

I.e., $\nabla f \colon \mathbb{R}^n \to \mathbb{R}^n$ is L-Lipschitz continuous. We say f is smooth if it is L-smooth for some L>0.

Interpretation 1: ∇f does not change too rapidly. This makes the first-order Taylor expansion reliable beyond an infinitesimal neighborhood. (Further quantified on next slide.)

Lemma 1. If f twice-continuously differentiable, then L-smoothness is equivalent to

$$-L \le \lambda_{\min}(\nabla^2 f(x)) \le \lambda_{\max}(\nabla^2 f(x)) \le L, \quad \forall x \in \mathbb{R}^n.$$

Interpretation 2: The curvature f, quantified by $\nabla^2 f$, has lower and upper bounds $\pm L$.

Smoothness \Rightarrow first-order Taylor has small remainder For GD to work with a fixed non-adaptive step size, we need assurance that the first-order Taylor expansion is a good approximation within a sufficiently large neighborhood. L-smoothness provides this assurance.

Lemma 2. Let $f: \mathbb{R}^n \to \mathbb{R}$ be L-smooth. Then

$$|f(x+\delta) - (f(x) + \langle \nabla f(x), \delta \rangle)| \le \frac{L}{2} ||\delta||^2, \quad \forall x, \delta \in \mathbb{R}^n.$$

Note

$$R_1(\delta; x) = f(x + \delta) - (f(x) + \langle \nabla f(x), \delta \rangle)$$

is the remainder between f and its first-order Taylor expansion about x. This lemma provides a quantitative bound $|R_1(\delta;x)| \leq \mathcal{O}(\|\delta\|^2)$.

Proof of the upper bound \leq . Define $g : \mathbb{R} \to \mathbb{R}$ by

$$g(t) = f(x + t \delta).$$

Then g is differentiable, and its derivative is

$$g'(t) = \langle \nabla f(x+t\,\delta), \delta \rangle.$$

Next, observe that q' is $(L||\delta||^2)$ -Lipschitz continuous. Indeed,

$$|g'(t_1) - g'(t_0)| = |\langle \nabla f(x + t_1 \delta) - \nabla f(x + t_0 \delta), \delta \rangle|$$

$$\leq ||\nabla f(x + t_1 \delta) - \nabla f(x + t_0 \delta)|| ||\delta|| \leq L||\delta||^2 |t_1 - t_0|.$$

 $^{^4}$ The name "smoothness", as used in optimization, is somewhat confusing because in other areas of mathematics, "smoothness" often refers to infinite differentiability.

Finally, we conclude that

$$f(x+\delta) = g(1) = g(0) + \int_0^1 g'(t) dt$$

$$\leq f(x) + \int_0^1 (g'(0) + L ||\delta||^2 t) dt$$

$$= f(x) + \langle \nabla f(x), \delta \rangle + \frac{L}{2} ||\delta||^2.$$

Summability lemma

Lemma 3. Let $V_0, V_1, \ldots \in \mathbb{R}$ and $S_0, S_1, \ldots \in \mathbb{R}$ be nonnegative sequences satisfying

$$V_{k+1} \le V_k - S_k$$

for $k = 0, 1, \ldots$ Then $S_k \to 0$.

Key idea. S_k measures progress (decrease) made in iteration k. Since $V_k \geq 0$, V_k cannot decrease forever, so the progress (magnitude of S_k) must diminish to 0.

Proof. Sum the inequality from i = 0 to k

$$V_{k+1} + \sum_{i=0}^{k} S_i \le V_0.$$

Let $k \to \infty$

$$\sum_{i=0}^{\infty} S_i \le V_0 - \lim_{k \to \infty} V_k \le V_0$$

Since $\sum_{i=0}^{\infty} S_i < \infty$, we conclude $S_i \to 0$.

Convergence proof for smooth non-convex functions

Theorem 2. Assume $f: \mathbb{R}^n \to \mathbb{R}$ is L-smooth and $\inf f > -\infty$. Let $\alpha \in (0, 2/L)$. Then, the GD iterates satisfy $\nabla f(x_k) \to 0$.

Proof. Use the Lipschitz gradient lemma with $x=x_k$ and $\delta=-\alpha\nabla f(x_k)$ to obtain

$$f(x_{k+1}) \le f(x_k) - \alpha \left(1 - \frac{\alpha L}{2}\right) \|\nabla f(x_k)\|^2,$$

and

$$\underbrace{\left(f(x_{k+1}) - \inf_{x} f(x)\right)}^{\frac{\operatorname{def}}{=} V_{k+1}} \leq \underbrace{\left(f(x_{k}) - \inf_{x} f(x)\right)}_{for \ \alpha \in (0, 2/L)} + \underbrace{\left(\frac{\operatorname{def}}{=} S_{k}\right)}_{for \ \alpha \in (0, 2/L)} \|\nabla f(x_{k})\|^{2}.$$

By the summability lemma, we have $\|\nabla f(x_k)\|^2 \to 0$ and thus $\nabla f(x_k) \to 0$. \square

GD with line search Consider

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad f(x),$$

where $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable but not necessarily smooth.

GD with exact line search

$$g_k = \nabla f(x_k)$$

$$\alpha_k \in \underset{\alpha \in \mathbb{R}}{\operatorname{argmin}} f(x_k - \alpha g_k)$$

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$

performs a one-dimensional search in the direction of the gradient. (XXX we need to assume the iterations exist.)

Theorem 3. Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable. Then GD with exact line search satisfies

$$f(x_k) \searrow f_{\infty} \in [-\infty, \infty).$$

Proof. By construction, we have $f(x_{k+1}) \leq f(x_k)$. A non-increasing sequence of real numbers converges to a value in $[-\infty, \infty)$.

GD with inexact line search Computing the exact line search is often expensive and unnecessary.

InexLineSearch(f, x, g):

GD with inexact line search

$$g_k = \nabla f(x_k)$$

$$\alpha_k = \text{InexLineSearch}(f, x_k, g_k)$$

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$

$$\alpha_k = \text{InexLineSearch}(f, x_k, g_k)$$

$$\alpha_k = \text{InexLineSearch}(f, x_k, g_k)$$

$$\alpha_k = \text{InexLineSearch}(f, x_k, g_k)$$

$$\alpha_k = 0 : \text{ return } \alpha$$

$$\text{while } f(x - \alpha g) \ge f(x)$$

$$\alpha \leftarrow \alpha/2$$

$$\text{return } \alpha$$

This inexact line search is also called a backtracking line search.

Theorem 4. If f is differentiable, the line search terminates in finite steps.

Proof. Since f is differentiable,

$$f(x - \alpha q) = f(x) - \alpha ||q||^2 + o(\alpha)$$

and there is a threshold A > 0 such that $f(x - \alpha g) < f(x)$ for $\alpha \in (0, A)$. The halving process of α eventually results in $f(x - \alpha g) < f(x)$ (by coincidence) or enters the interval $\alpha \in (0, A)$.

GD with inexact line search The starting step size $\beta > 0$ is a parameter to be tuned.

With large β , we have to perform the backtracking loop many times, but we have the opportunity to take a long step.

With small β , the backtracking loop may terminate more quickly, but we won't take steps larger than β .

One can modify the algorithm to adaptively decrease or increase β based on the history of backtracking.

How to choose the starting point x_0 Most (if not all) optimization algorithms require a starting point x_0 . It is optimal to choose x_0 to be close (or equal to) x_{\star} , but, of course, we don't know where x_{\star} is.

If one has an estimate of x_{\star} based on problem structure, should utilize it.

In convex optimization problems, we often have convergence to the global minimum regardless of x_0 , so it is okay to choose $x_0 = 0$.

For non-convex optimization problems, the general prescription is to start with $x_0 = \text{random noise}$.

In some non-convex optimization problems (such as training deep neural networks), one must not use $x_0 = 0$, and a well-tuned random initialization is crucial

2 Smooth convex GD

Convex optimization The problem

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad f(x)$$

is a convex optimization problem if $f: \mathbb{R}^n \to \mathbb{R}$ is convex, i.e., if

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y), \quad \forall x, y \in \mathbb{R}^n, \theta \in [0, 1].$$

Finding the global minimum of a convex function is tractable.

"In fact, the great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity."

— R. Tyrrell Rockafellar, in SIAM Review, 1993

(In other areas of mathematics, linear things tend to be easier, while non-linear things tend to be significantly harder, but not in optimization.)

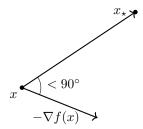
 $-\nabla f$ **points toward** x_{\star} Why can GD find global minimizers of convex functions?

Reason 1. Moving in the $-\nabla f$ direction reduces the function value, taking you to a local minimum, which is a global minimum by convexity.

Reason 2. The $-\nabla f$ direction points toward global minimizers. (This is the more fundamental reason.)

Theorem 5. Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable and convex. Assume f has a minimizer and let $x_* \in \operatorname{argmin} f$. Let $x \in \mathbb{R}^n$ such that $\nabla f(x) \neq 0$. Then,

$$\langle x_{\star} - x, -\nabla f(x) \rangle > 0.$$



Proof. Note that x is not a local or global minimizer since $\nabla f(x) \neq 0$. So, $f(x) - f(x_*) > 0$. By the convexity inequality, we conclude

$$\langle x_{\star} - x, -\nabla f(x) \rangle \ge f(x) - f(x_{\star}) > 0.$$

Consequence: For small α_k , a GD step reduces the distance to a solution.

$$\|\underbrace{x_k - \alpha_k \nabla f(x_k)}_{=x_{k+1}} - x_{\star}\|^2 = \|x_k - x_{\star}\|^2 - 2\alpha_k \underbrace{\langle x_k - x_{\star}, \nabla f(x_k) \rangle}_{>0} + \alpha_k^2 \|\nabla f(x_k)\|^2$$

$$< \|x_k - x_{\star}\|^2$$

for sufficiently small $\alpha_k > 0$, if $\nabla f(x_k) \neq 0$.

We quickly establish an inequality we need for the subsequent proof.

Lemma 4. Let $f: \mathbb{R}^n \to \mathbb{R}$ be L-smooth and convex. Let $x_{\star} \in \operatorname{argmin} f$ be a minimizer. Then

$$\langle \nabla f(x), x - x_{\star} \rangle \ge \frac{1}{L} \|\nabla f(x)\|^2$$

Proof. Note, $\nabla f(x_{\star}) = 0$. By the cocoercivity inequality, we have

$$f(x_{\star}) \ge f(x) + \langle \nabla f(x), x_{\star} - x \rangle + \frac{1}{2L} \|\nabla f(x)\|^2$$

and

$$f(x) \ge f(x_\star) + \frac{1}{2L} \|\nabla f(x)\|^2.$$

Adding these two inequalities yield the stated result.

Theorem 6. Let $f: \mathbb{R}^n \to \mathbb{R}$ be L-smooth and convex. Assume f has a minimizer. Then GD with constant stepsize α satisfying $\alpha \in (0, 2/L)$ converges in the sense of $x_k \to x_\star$ for some $x_\star \in \operatorname{argmin} f$.

Proof. Let $\tilde{x}_{\star} \in \operatorname{argmin} f$. Using the cocoercivity inequality,

$$||x_{k+1} - \tilde{x}_{\star}||^{2} = ||x_{k} - \tilde{x}_{\star} - \alpha \nabla f(x_{k})||^{2}$$

$$= ||x_{k} - \tilde{x}_{\star}||^{2} - 2\alpha \langle \nabla f(x_{k}), x_{k} - \tilde{x}_{\star} \rangle + \alpha^{2} ||\nabla f(x_{k})||^{2}$$

$$\leq ||x_{k} - \tilde{x}_{\star}||^{2} - \frac{2\alpha}{L} ||\nabla f(x_{k})||^{2} + \alpha^{2} ||\nabla f(x_{k})||^{2}$$

$$= ||x_{k} - \tilde{x}_{\star}||^{2} - \underbrace{\alpha \left(\frac{2}{L} - \alpha\right)}_{>0} ||\nabla f(x_{k})||^{2}.$$

By the summability lemma, $\nabla f(x_k) \to 0$.

The proof of $x_k \to x_{\star}$ for some $x_{\star} \in \operatorname{argmin} f$ requires a somewhat delicate analysis argument. By,

$$||x_{k+1} - \tilde{x}_{\star}||^2 \le ||x_k - \tilde{x}_{\star}||^2 \tag{1}$$

 $||x_k - \tilde{x}_{\star}||^2$ is a decreasing sequence and thus has a limit, but the limit is not necessarily 0 (especially if the minimizer is not unique). We argue that $x_k \to x_{\star}$ for some $x_{\star} \in \operatorname{argmin} f$ with the steps: (i) x_k has an accumulation point (ii) this accumulation point is a minimizer (iii) this is the only accumulation point.

- (i) Inequality (1) tells us $\{x_k\}_k$ lie within $\{x \mid ||x-\tilde{x}^*|| \leq ||x_0-\tilde{x}^*||\}$, a compact set, so $\{x_k\}_k$ has an accumulation point x_∞ . I.e., there is a convergent subsequence $x_{k_i} \to x_\infty$, where x_∞ is the limit point.
- (ii) Accumulation point x_{∞} satisfies $\nabla f(x_{\infty}) = 0$, as $\nabla f(x_k) \to 0$ and ∇f is continuous, i.e., $x_{\infty} \in \operatorname{argmin} f$. (We now know that the limit point x_{∞} is a solution.)
- (iii) Apply (1) to this accumulation point $x_{\infty} \in \operatorname{argmin} f$ (i.e., plug in $\tilde{x}_{\star} = x_{\infty}$) to conclude $||x_k x_{\infty}||$ monotonically decreases to 0, i.e., the entire sequence converges to x_{∞} and $x_{\infty} = x_{\star}$ is the solution GD converges to.

Note, $x_k \to x_\star$ immediately implies $f(x_k) \to f(x_\star)$ and $\nabla f(x_k) \to 0$. (L-smoothness implies f and ∇f are continuous.)

As we show next, we can establish a rate (speed) guarantee on $f(x_k) \to f(x_{\star})$. Namely, we will show

$$f(x_k) - f(x_\star) \le \mathcal{O}(1/k).$$

It is also possible to establish a rate guarantee on $\nabla f(x_k) \to 0$. It can be shown that

$$\|\nabla f(x_k)\| \leq \mathcal{O}(1/k).$$

2.1 Convergence <u>rate</u> of GD for smooth convex functions

Theorem 7. Let $f: \mathbb{R}^n \to \mathbb{R}$ be L-smooth and convex. Assume f has a minimizer x_{\star} . Consider gradient descent with constant stepsize $\alpha = 1/L$. Then, for $k = 1, 2, \ldots$,

$$f(x_k) - f(x_\star) \le \frac{L}{2k} ||x_0 - x_\star||^2.$$

Outline of proof. This proof technique is called an *energy function* analysis, *potential function* analysis, or *Lyapunov analysis*. The key insight is to define an appropriate dissipative (non-increasing) quantity. The main challenge is in identifying the right energy function, which in some cases is highly non-obvious. (The "energy functions" are often unrelated to any notion of physical energy.)

Proof. Define the energy function

$$\mathcal{E}_{k} = k (f(x_{k}) - f(x_{\star})) + \frac{L}{2} ||x_{k} - x_{\star}||^{2}$$

for $k = 0, 1, \ldots$ If the energy is dissipative, then we conclude

$$k(f(x_k) - f(x_*)) \le \mathcal{E}_k \le \dots \le \mathcal{E}_0 = \frac{L}{2} ||x_0 - x_*||^2.$$

It remains to show $\mathcal{E}_{k+1} \leq \mathcal{E}_k$ for $k = 0, 1, \ldots$ We have

$$\mathcal{E}_{k+1} - \mathcal{E}_{k} = (k+1) \left(f(x_{k+1}) - f(x_{\star}) \right) - k \left(f(x_{k}) - f(x_{\star}) \right) \\ - \alpha L \langle \nabla f(x_{k}), x_{k} - x_{\star} \rangle + \frac{\alpha^{2} L}{2} \| \nabla f(x_{k}) \|^{2} \\ \leq f(x_{k}) - f(x_{\star}) - \frac{k+1}{2L} \| \nabla f(x_{k}) \|^{2} - \langle \nabla f(x_{k}), x_{k} - x_{\star} \rangle + \frac{1}{2L} \| \nabla f(x_{k}) \|^{2} \\ \leq - \frac{1}{2L} \| \nabla f(x_{k}) \|^{2} - \frac{k+1}{2L} \| \nabla f(x_{k}) \|^{2} + \frac{1}{2L} \| \nabla f(x_{k}) \|^{2} = -\frac{k}{2L} \| \nabla f(x_{k}) \|^{2} \leq 0,$$

where the first inequality follows from the L-smoothness lemma

$$(k+1)f(x_{k+1}) = (k+1)f(x_k - \frac{1}{L}\nabla f(x_k)) \le (k+1)f(x_k) - \frac{(k+1)}{2L} \|\nabla f(x_k)\|^2$$

and the second inequality follows from the cocoercivity inequality

$$f(x_k) - f(x_\star) - \langle \nabla f(x_k), x_k - x_\star \rangle \le -\frac{1}{2L} \|\nabla f(x_k)\|^2.$$

Theorem 8. Let $f: \mathbb{R}^n \to \mathbb{R}$ be L-smooth and μ -strongly convex. Consider GD with $\alpha_k = 1/L$. Then, for $k = 0, 1, \ldots$,

$$||x_k - x_\star||^2 \le \left(1 - \frac{\mu}{L}\right)^k ||x_0 - x_\star||^2.$$

Proof. From L-smoothness, we have

$$f(x_k) \ge f(x_*) + \frac{1}{2L} \|\nabla f(x_k)\|^2 f(x_*) \ge f(x_k) + \langle \nabla f(x_k), x_* - x_k \rangle + \frac{1}{2L} \|\nabla f(x_k)\|^2.$$

Adding the two gives us

$$\langle \nabla f(x_k), x - x_k \rangle \ge \frac{1}{L} \|\nabla f(x) - \nabla f(y)\|^2.$$

Likewise from μ -strong convexity, we have

$$f(x_k) \ge f(x_{\star}) + \frac{\mu}{2} ||x_k - x_{\star}||^2$$

$$f(x_{\star}) \ge f(x_k) + \langle \nabla f(x_k), x_{\star} - x_k \rangle + \frac{\mu}{2} ||x_k - x_{\star}||^2.$$

Adding the two gives us

$$\langle \nabla f(x_k), x_k - x_\star \rangle \ge \mu ||x_k - x_\star||^2.$$

Then, we have

$$||x_{k+1} - x_{\star}||^{2} = ||x_{k} - x_{\star}||^{2} - \frac{2}{L} \langle \nabla f(x_{k}), x_{k} - x_{\star} \rangle + \frac{1}{L^{2}} ||\nabla f(x_{k})||^{2}$$

$$\leq ||x_{k} - x_{\star}||^{2} - \frac{1}{L} \langle \nabla f(x_{k}), x_{k} - x_{\star} \rangle$$

$$\leq (1 - \frac{\mu}{L}) ||x_{k} - x_{\star}||^{2}$$

for $k = 0, 1, \ldots$ Finally, by a recursive argument, we have

$$||x_k - x_\star||^2 \le \left(1 - \frac{\mu}{L}\right)^k ||x_0 - x_\star||^2.$$

Using the Polyak–Łojasiewicz inequality, we can obtain a rate on f.

Theorem 9. Let $f: \mathbb{R}^n \to \mathbb{R}$ be L-smooth, convex, and μ -strongly convex. Consider gradient descent with constant stepsize $\alpha_k = 1/L$. Then, for $k = 0, 1, \ldots$,

$$f(x_k) - f(x_*) \le \left(1 - \frac{\mu}{L}\right)^k (f(x_0) - f(x_*))$$

Proof.

$$f(x_{k+1}) - f(x_{\star}) = f(x_k - \alpha \nabla f(x_k)) - f(x_{\star})$$

$$\leq f(x_k) - \alpha \langle \nabla f(x_k), \nabla f(x_k) \rangle + \frac{\alpha^2 L}{2} \|\nabla f(x_k)\|^2 - f(x_{\star})$$

$$= f(x_k) - f(x_{\star}) - \frac{1}{2L} \|\nabla f(x_k)\|^2$$

$$\leq (1 - 1/\kappa) (f(x_k) - f(x_{\star})),$$

where the first inequality follow from L-smoothness and the third follows from PL. $\hfill\Box$

2.2 Projected gradient method

Constrained optimization problem

$$\begin{array}{ll}
\text{minimize} & f(x), \\
\text{subject to} & x \in C,
\end{array}$$

where $C \subset \mathbb{R}^n$ is a nonempty closed convex set and $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable. Assume the constraint set C is computationally easy to project onto.

Projected gradient descent has the form

$$x_{k+1} = \Pi_C (x_k - \alpha \nabla f(x_k))$$

for k = 0, 1, ..., where $x_0 \in \mathbb{R}^n$ is a suitably chosen starting point and $\alpha \in \mathbb{R}$ is a positive step size.

In other words, projected GD alternates gradient descent steps and projections onto ${\cal C}.$

Example: Projection onto ℓ_{∞} -ball Consider the ℓ_{∞} -ball

$$C = \{x \in \mathbb{R}^n \mid ||x||_{\infty} \le 1\} = \{x \in \mathbb{R}^n \mid |x_i| \le 1, \text{ for } i = 1, \dots, n\}.$$

Then, Π_C is the thresholding operator

$$(\Pi_C(x))_i = \Pi_{[-1,1]}(x_i) = \begin{cases} -1 & \text{if } x_i < -1 \\ x_i & \text{if } -1 \le x_i \le 1 \\ +1 & \text{if } 1 < x_i \end{cases}$$

applied element-wise for i = 1, ..., n.

Since projected GD uses Π_C every iteration, it is important that computing Π_C is inexpensive.

(It's also nice for humans if the code for Π_C is easy to implement.)

Example: ℓ_{∞} -constrained logistic regression Consider the ℓ_{∞} -constrained logistic regression problem

for some $v_1, \ldots, v_N \in \mathbb{R}$.

Projected GD is

$$x_{k+1} = \Pi \Big(x_k - \alpha \sum_{i=1}^N \frac{1}{1 + \exp(-v_i^{\mathsf{T}} x_k)} v_i \Big),$$

where Π is the element-wise projection onto [-1,1]. This is quite simple to implement.

Recall that in unconstrained convex optimization, $\nabla f(x) = 0$ is a necessary and sufficient condition for x to be a solution. This is called an *optimality condition*. We have an analogous optimality condition for constrained optimization.

Motivation. Imagine we are minimizing a linear objective subject to a constraint:

$$\begin{array}{ll} \underset{x \in \mathbb{R}^n}{\text{minimize}} & \langle g, x \rangle \\ \text{subject to} & x \in C. \end{array}$$

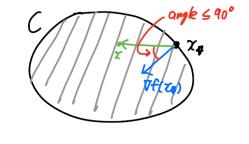
Then, x_{\star} being a solution is defined as

$$\langle g, x \rangle \ge \langle g, x_{\star} \rangle, \quad \forall x \in C.$$

When f is not linear, we expect something similar within a neighborhood.

Theorem 10. Let $C \subset \mathbb{R}^n$ be nonempty closed convex and $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable and convex. Then, $x_* \in \operatorname{argmin}_{x \in C} f(x)$ if and only if

$$\langle \nabla f(x_{\star}), x - x_{\star} \rangle \ge 0, \quad \forall x \in C.$$



Proof. (\Rightarrow) Let $x \in C$. If $x = x_*$, there is nothing to prove, so assume $x \neq x_*$. Then,

$$f(x_{\star}) \le f(\underbrace{x_{\star} + \theta(x - x_{\star})}_{=(1-\theta)x_{\star} + \theta x \in C}) \quad \forall \theta \in (0,1].$$

and

$$0 \le \lim_{\theta \to 0} \frac{f(x_{\star} + \theta(x - x_{\star})) - f(x_{\star})}{\theta} = \langle \nabla f(x_{\star}), x - x_{\star} \rangle.$$

 (\Leftarrow) Assume

$$\langle \nabla f(x_{\star}), x - x_{\star} \rangle \ge 0, \quad \forall x \in C.$$

By the convexity inequality,

$$f(x) \ge f(x_{\star}) + \langle \nabla f(x_{\star}), x - x_{\star} \rangle$$

 $\ge f(x_{\star}),$

and we conclude x_{\star} is a global minimizer.

Optimality \Leftrightarrow stationarity

Theorem 11. Let $C \subset \mathbb{R}^n$ be nonempty closed convex and $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable and convex. Let $\alpha > 0$. Then, $x_* \in \operatorname{argmin}_{x \in C} f(x)$ if and only if

$$x_{\star} = \Pi_C(x_{\star} - \alpha \nabla f(x_{\star})).$$

I.e., projected GD stops moving if and only if you are at a solution.

Proof. By the optimality condition, x_{\star} is a solution if and only if

$$\langle \nabla f(x_{\star}), x - x_{\star} \rangle \ge 0, \quad \forall x \in C$$

This holds if and only if

$$\langle x - x_{\star}, x_{\star} - \alpha \nabla f(x_{\star}) - x_{\star} \rangle < 0, \quad \forall x \in C.$$

By the projection theorem, this holds if and only if

$$x_{\star} = \Pi_C(x_{\star} - \alpha \nabla f(x_{\star})).$$

Lemma 5. Let $C \subseteq \mathbb{R}^n$ be nonempty closed covnex. Let $f: \mathbb{R}^n \to \mathbb{R}$ be μ -strongly convex. Then,

$$\begin{array}{ll} \underset{x \in \mathbb{R}^n}{minimzie} & f(x) \\ subject \ to \quad x \in C \end{array}$$

has a unique solution.

Theorem 12. Let $C \subseteq \mathbb{R}^n$ be nonempty closed covnex. Let $f: \mathbb{R}^n \to \mathbb{R}$ be L-smooth, and μ -strongly convex. Let $x_{\star} = \operatorname{argmin}_{x \in C} f(x)$. Consider projected gradient descent with constant stepsize $\alpha_k = 1/L$. Then, for $k = 0, 1, \ldots$,

$$||x_k - x_\star||^2 \le \left(1 - \frac{\mu}{L}\right)^k ||x_0 - x_\star||^2.$$

Proof.

$$\begin{aligned} \|x_{k+1} - x_{\star}\|^{2} &= \|\Pi_{C}(x_{k} - \alpha \nabla f(x_{k})) - \Pi_{C}(x_{\star} - \alpha \nabla f(x_{\star}))\|^{2} \\ &\leq \|(x_{k} - \alpha \nabla f(x_{k})) - (x_{\star} - \alpha \nabla f(x_{\star}))\|^{2} \\ &= \|x_{k} - x_{\star}\|^{2} - 2\alpha \langle \nabla f(x_{k}) - \nabla f(x_{\star}), x_{k} - x_{\star} \rangle + \alpha^{2} \|\nabla f(x_{k}) - \nabla f(x_{\star})\|^{2} \\ &\leq \|x_{k} - x_{\star}\|^{2} - 2\alpha \langle \nabla f(x_{k}) - \nabla f(x_{\star}), x_{k} - x_{\star} \rangle + \alpha^{2} L \langle \nabla f(x_{k}) - \nabla f(x_{\star}), x_{k} - x_{\star} \rangle \\ &= \|x_{k} - x_{\star}\|^{2} - \frac{1}{L} \langle \nabla f(x_{k}) - \nabla f(x_{\star}), x_{k} - x_{\star} \rangle \\ &\leq (1 - \frac{\mu}{L}) \|x_{k} - x_{\star}\|^{2} \end{aligned}$$

2.2.1 Sublinear convergence results

The following results can be show with more work, but we shall move on.

Theorem 13. Let $C \subset \mathbb{R}^n$ be nonempty closed convex and $f \colon \mathbb{R}^n \to \mathbb{R}$ be L-smooth and convex. Assume $\operatorname{argmin}_{x \in C} f(x)$ has a solution. Then projected GD with constant stepsize α satisfying $\alpha \in (0, 1/L]$ converges in the sense of $x_k \to x_\star$ for some $x_\star \in \operatorname{argmin}_{x \in C} f(x)$.

Theorem 14. Let $C \subset \mathbb{R}^n$ be nonempty closed convex and $f: \mathbb{R}^n \to \mathbb{R}$ be L-smooth and convex. Assume $\operatorname{argmin}_{x \in C} f(x)$ has a solution. Consider projected gradient descent with constant stepsize $\alpha = 1/L$. Then, for $k = 1, 2, \ldots$,

$$f(x_k) - f(x_\star) \le \frac{L}{2k} ||x_0 - x_\star||^2.$$

2.3 Subgradient methods

Consider the optimization problem

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad f(x),$$

where $f \colon \mathbb{R}^n \to \mathbb{R}$ is convex but not necessarily differentiable. The subgradient method is

$$x_{k+1} \in x_k + \alpha_k \partial f(x_k)$$

Here, the inclusion notation is really a shorthand for

$$g_k \in \partial f(x_k)$$

 $x_{k+1} = x_k + \alpha_k \partial f(x_k)$

Lemma 6 (Quasi-summability Lemma). Let $\{V_k\}_{k\in\mathbb{N}}$, $\{S_k\}_{k\in\mathbb{N}}$, $\{U_k\}_{k\in\mathbb{N}}$ be sequences of nonnegative real numbers satisfying the inequality

$$V_{k+1} \le V_k - S_k + U_k$$

for $k = 0, 1, \dots$ and

$$\sum_{k=0}^{\infty} U_k < \infty.$$

Then,

$$\sum_{k=0}^{\infty} S_k < \infty, \qquad V_k \to V_\infty \in \mathbb{R}.$$

Proof. By summation, we have

$$V_K \le V_0 - \sum_{k=0}^K S_k + \sum_{k=0}^K U_k.$$

Reorganizing, we get

$$\sum_{k=0}^{K} S_k \le V_0 - V_k + \sum_{k=0}^{K} U_k \le V_0 + \sum_{k=0}^{\infty} U_k.$$

By letting $K \to \infty$, we have

$$\sum_{k=0}^{\infty} S_k < \infty.$$

Next, we define

$$\tilde{V}_k = V_k - \sum_{j=0}^{k-1} U_j.$$

Then

$$\tilde{V}_{k+1} \le \tilde{V}_k - S_k$$

and the nonincreasing sequence $\{\tilde{V}_k\}_{k\in\mathbb{N}}$ (lower bounded by $-\sum_{k=0}^{\infty}U_k$) has a limit. So V_k has a limit.

Theorem 15. Let $f: \mathbb{R}^n \to \mathbb{R}$ be convex. Assume $\|\partial f(x)\| \leq G$. Let α_k be a sequence of positive scalars such that

$$\sum_{k} \alpha_k = \infty, \qquad \sum_{k} \alpha_k^2 < \infty$$

Then

$$g_k \in \partial f(x_k)$$
$$x_{k+1} = x_k - \alpha_k g_k$$

converges in the sense of $x_k \to x_\infty \in \operatorname{argmin} f$.

Proof. Let $\tilde{x}_{\star} \in \operatorname{argmin} f$.

$$||x_{k+1} - \tilde{x}_{\star}||^{2} = ||x_{k} - \tilde{x}_{\star} - \alpha_{k} g_{k}||^{2}$$

$$= ||x_{k} - \tilde{x}_{\star}||^{2} - 2\alpha_{k} \langle g_{k}, x_{k} - \tilde{x}_{\star} \rangle + \alpha_{k}^{2} ||g_{k}||^{2}$$

$$\leq ||x_{k} - \tilde{x}_{\star}||^{2} - 2\alpha_{k} (f(x_{k}) - f_{\star}) + \alpha_{k}^{2} G^{2}$$

By the quasi-summability lemma, $||x_k - \tilde{x}_{\star}||$ is bounded. we have

$$\sum_{k=0}^{\infty} \alpha_k (f(x_k) - f_{\star}) < \infty.$$

Since α_k is not summable this implies

$$\liminf_{k \to \infty} \left(f(x_k) - f_\star \right) = 0.$$

Pick a convergent subsequence x_{k_j} such that $f(x_{k_j}) \to f_\star$. Since $\{x_k\}_k$ is bounded, we can choose a further convergent subsequence to ensure $x_{k_j} \to x_\infty$. Since f is continuous, $f(x_\infty) = f_\star$ and thus $x_\infty \in \operatorname{argmin} f$. Finally, since $\|x_k - x_\infty\|^2$ has a limit, we know that the limit is 0, i.e., the entire sequence converges to x_∞ .

Lemma 7 (Jensen's inequality). Let $X \in \mathbb{R}^n$ be a random variable such that $\mathbb{E}[X] \in \mathbb{R}^n$ is well defined, and let $\varphi \colon \mathbb{R}^n \to \mathbb{R}$ be convex. Then,

$$\varphi(\mathbb{E}[X]) \le \mathbb{E}[\varphi(X)].$$

Proof. Let $g \in \partial \varphi(\mathbb{E}[X])$. Then,

$$\varphi(X) \ge \varphi(\mathbb{E}[X]) + \langle g, X - \mathbb{E}[X] \rangle.$$

Taking expectations on both sides completes the proof.

Theorem 16. Let $f: \mathbb{R}^d \to \mathbb{R}$ be a G-Lipschitz continuous convex function. Assume f has a minimizer x_{\star} . Let $x_0 \in \mathbb{R}^d$ be a starting point and write $R = \|x_0 - x_{\star}\|_2$. Let K > 0 be the total iteration count. Then, subgradient descent with the constant stepsize

$$\alpha_k = \alpha = \frac{R}{G\sqrt{K+1}}$$

exhibits the rate

$$\min_{0 \le k \le K} f(x_k) - f(x_\star) \le \frac{GR}{\sqrt{K+1}}$$

and

$$f((\bar{x}_K) - f(x_\star) \le \frac{GR}{\sqrt{K+1}},$$

where

$$(\bar{x}_K = \frac{1}{K+1} \sum_{k=0}^K x_k.$$

Proof. for k = 0, 1, 2, ...,

$$||x_{k+1} - x_{\star}||_{2}^{2} = ||x_{k} - \alpha g_{k} - x_{\star}||_{2}^{2}$$

$$= ||x_{k} - x_{\star}||_{2}^{2} - 2\alpha \langle g_{k}, x_{k} - x_{\star} \rangle + \alpha^{2} ||g_{k}||_{2}^{2}$$

$$\leq ||x_{k} - x_{\star}||_{2}^{2} - 2\alpha (f(x_{k}) - f(x_{\star})) + \alpha^{2} G^{2}.$$

Therefore,

$$2\alpha(f(x_k) - f(x_\star)) \le ||x_k - x_\star||_2^2 - ||x_{k+1} - x_\star||_2^2 + \alpha^2 G^2.$$

With a telescoping sum argument, we get

$$2\alpha \sum_{k=0}^{K} (f(x_k) - f(x_{\star})) \le ||x_0 - x_{\star}||_2^2 - ||x_{K+1} - x_{\star}||_2^2 + \sum_{k=0}^{K} \alpha^2 G^2$$

$$\le R^2 + (K+1)\alpha^2 G^2,$$

and

$$\frac{1}{K+1} \sum_{k=0}^{K} f(x_k) - f(x_{\star}) \le \frac{R^2 + \alpha^2 G^2(K+1)}{2\alpha(K+1)} = \frac{GR}{\sqrt{K+1}}.$$

Therefore,

$$\min_{0 \le k \le K} f(x_k) - f(x_\star) = \frac{1}{K+1} \sum_{k=0}^K \min_{0 \le k \le K} f(x_k) - f(x_\star) \\
\le \frac{1}{K+1} \sum_{k=0}^K f(x_k) - f(x_\star) \le \frac{GR}{\sqrt{K+1}}.$$

Likewise, using Jensen's inequality, we conclude

$$f(\bar{x}_K) - f(x_\star) \le \underset{k \sim \text{Uniform}(\{0,1,\dots,K\})}{\mathbb{E}} \left[f(x_k) - f(x_\star) \right]$$
$$= \frac{1}{K+1} \sum_{k=0}^K f(x_k) - f(x_\star) \le \frac{GR}{\sqrt{K+1}}.$$

Note that \bar{x}_K can be computed with the following online averaging formula (without having to store all of the x_0, x_1, \ldots, x_K):

$$\bar{x}_K = \frac{1}{K+1} x_K + \frac{K}{K+1} \bar{x}_{K-1}.$$

Theorem 17. Let $f: \mathbb{R}^d \to \mathbb{R}$ be a G-Lipschitz continuous convex function. Assume f has a minimizer x_{\star} . Let $x_0 \in \mathbb{R}^d$ be a starting point and write $R = \|x_0 - x_{\star}\|_2$. Then, subgradient descent with positive stepsizes $\{\alpha_k\}_{k=0}^K$ satisfies

$$f(\bar{x}_K) - f(x_\star) \le \frac{R^2 + G^2 \sum_{k=0}^K \alpha_k^2}{2 \sum_{k=0}^K \alpha_k},$$

where

$$\bar{x}_K = \frac{\sum_{k=0}^K \alpha_k x_k}{\sum_{k=0}^K \alpha_k}.$$

Proof. For k = 0, 1, ..., K,

$$\|x_{k+1} - x_{\star}\|_{2}^{2} = \|x_{k} - \alpha_{k}g_{k} - x_{\star}\|_{2}^{2} \leq \|x_{k} - x_{\star}\|_{2}^{2} - 2\alpha_{k}\langle g_{k}, x_{k} - x_{\star}\rangle + \alpha_{k}^{2}\|g_{k}\|_{2}^{2}.$$

By convexity, $\langle g_k, x_k - x_{\star} \rangle \geq f(x_k) - f(x_{\star})$ for $g_k \in \partial f(x_k)$, and by G-Lipschitzness $||g_k||_2 \leq G$. Hence

$$2\alpha_k (f(x_k) - f(x_{\star})) \le ||x_k - x_{\star}||_2^2 - ||x_{k+1} - x_{\star}||_2^2 + \alpha_k^2 G^2.$$

Summing from k = 0 to K gives

$$2\sum_{k=0}^{K} \alpha_k (f(x_k) - f(x_\star)) \le ||x_0 - x_\star||_2^2 - ||x_{K+1} - x_\star||_2^2 + G^2 \sum_{k=0}^{K} \alpha_k^2 \le R^2 + G^2 \sum_{k=0}^{K} \alpha_k^2.$$

Let $A_K = \sum_{k=0}^K \alpha_k$. By convexity of f,

$$f(\bar{x}^K) \le \frac{1}{A_K} \sum_{k=0}^K \alpha_k f(x_k), \quad \bar{x}^K = \frac{1}{A_K} \sum_{k=0}^K \alpha_k x_k.$$

Therefore

$$2A_K (f(\bar{x}^K) - f(x_\star)) \le \underset{k}{\mathbb{E}} [f(x_k) - f(x_\star)]$$
$$= 2\sum_{k=0}^K \alpha_k (f(x_k) - f(x_\star)) \le R^2 + G^2 \sum_{k=0}^K \alpha_k^2,$$

with the distribution on the random index k defined as

$$\mathbb{P}(k=j) = \frac{\alpha_j}{\sum_{k=0}^{i} \alpha_i}.$$

This yields the claim.

Corollary 1. With stepsize $\alpha_k = C/\sqrt{K}$, we get the rate

$$f(\bar{x}_k) - f(x_\star) \le \mathcal{O}(\log k / \sqrt{k})$$