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1 Optimization duality

Maximin-minimax inequality In many introductory texts of convex op-
timization, one starts with a primal optimization problem and finds a corre-
sponding dual problem. Here, we take a slightly different viewpoint. We view
the primal and dual problems as the two halves of a larger saddle point problem.

Let L : Rn × Rm → R. We say L(x, y) is convex-concave if L is convex in x
when y is fixed and concave in y when x is fixed. We say (x⋆, y⋆) is a saddle
point of L if

L(x⋆, y) ≤ L(x⋆, y⋆) ≤ L(x, y⋆) ∀x ∈ Rn, y ∈ Rm.

We call
minimize

x∈Rn
supy∈Rm L(x, y)

the primal problem generated by L and write p⋆ = infx supy L(x, y) for the
primal optimal value. We call

maximize
y∈Rm

infx∈Rn L(x, y)

the dual problem generated by L and write d⋆ = supy infx L(x, y) for the dual
optimal value. In most engineering settings, one starts with an optimization
problem, not a convex-concave saddle function. With this view of duality, the
trick is to find a convex-concave saddle function that generates the primal prob-
lem of interest.

Example. Let f be a CCP function on Rn, A ∈ Rm×n, and b ∈ Rm. Consider
the Lagrangian

L(x, y) = f(x) + ⟨y,Ax− b⟩, (1)

which generates the primal problem

minimize
x∈Rn

f(x)

subject to Ax = b
(2)
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and dual problem
maximize

y∈Rm
−f∗(−A⊺y)− b⊺y. (3)

The dual variable y is also called the Lagrange multipliers.

Example. Consider the Lagrangian

L(x, y) = f(x) + ⟨y,Ax⟩ − g∗(y), (4)

which generates the primal problem

minimize
x∈Rn

f(x) + g∗∗(Ax) (5)

and dual problem

maximize
y∈Rm

−f∗(−A⊺y)− g∗(y). (6)

This primal-dual problem pair is sometimes called the Fenchel–Rockafellar dual.
An augmented Lagrangian is a saddle function that has additional terms

while sharing the same saddle points as its unaugmented counterpart.

Example. Consider the Lagrangian

L(x, u) = f(x) + ⟨u,Ax− b⟩

with the associated primal problem

minimize
x∈Rn

f(x)

subject to Ax = b.

We will often use the augmented Lagrangian

Lρ(x, u) = f(x) + ⟨u,Ax− b⟩+ ρ

2
∥Ax− b∥2 (7)

with ρ > 0. It is straightforward to show that (x, u) is a saddle point of L if
and only if it is a saddle point of Lρ for any ρ > 0.

Example: Dual of the LASSO Problem Consider the optimization prob-
lem

min
x∈Rn

1

2
∥Ax− b∥22 + λ∥x∥1, (8)

with A ∈ Rm×n, b ∈ Rm, and λ > 0. We derive its Fenchel dual.
Step 1. Write the objective in the form

f(Ax) + g(x),

where

f(z) =
1

2
∥z − b∥2, g(x) = λ∥x∥1.
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The Fenchel–Rockafellar dual is

max
y∈Rm

{
−f∗(y)− g∗(−A⊤y)

}
.

Step 2. Conjugate the quadratic term For f(z) = 1
2∥z − b∥2, one computes

f∗(y) = sup
z

(
y⊤z − 1

2
∥z − b∥2

)
= y⊤b+

1

2
∥y∥2.

Step 3. Conjugate the ℓ1-term. Since the conjugate of λ∥x∥1 is the indicator
of the ℓ∞-ball of radius λ,

g∗(s) = δ{∥s∥∞≤λ}(s),

we obtain

g∗(−A⊤y) =

0, ∥A⊤y∥∞ ≤ λ,

+∞, otherwise.

Step 4. Substituting the conjugates into the dual expression gives

max
y

(
−y⊤b− 1

2
∥y∥2

)
s.t. ∥A⊤y∥∞ ≤ λ.

Equivalently, completing the square,

max
∥A⊤y∥∞≤λ

(
−1

2
∥y + b∥2 + 1

2
∥b∥2

)
,

where the constant term 1
2∥b∥

2 may be omitted.

Dual: max
y∈Rm

−1

2
∥y∥2 − b⊤y

subject to ∥A⊤y∥∞ ≤ λ.

(9)

Weak duality States d⋆ ≤ p⋆, always holds. To prove this, note that for any
x, u we have

inf
x

L(x, u) ≤ L(x, u)

sup
u

inf
x

L(x, u) ≤ sup
u

L(x, u)

d⋆ = sup
u

inf
x

L(x, u) ≤ inf
x

sup
u

L(x, u) = p⋆.

Lemma 1 (Maximin-minimax inequality). Let L : X × Y → R be an arbitrary
function. Then,

sup
y∈Y

inf
x∈X

L(x, y) ≤ inf
x∈X

sup
y∈Y

L(x, y).
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Proof. This follows from

L(x, y) ≤ sup
y∈Y

L(x, y), ∀x ∈ X, y ∈ Y

inf
x∈X

L(x, y) ≤ inf
x∈X

sup
y∈Y

L(x, y), ∀y ∈ Y

sup
y∈Y

inf
x∈X

L(x, y) ≤ inf
x∈X

sup
y∈Y

L(x, y).

General weak duality Let L : X × Y → R be an arbitrary function. Define
f : X → R ∪ {∞} and g : Y → R ∪ {−∞} as

f(x) = sup
y∈Y

L(x, y) g(y) = inf
x∈X

L(x, y)

We call
minimize

x∈X
f(x) (P)

the primal problem with optimal value p⋆ ∈ [−∞,∞]

maximize
y∈Y

g(y) (D)

the dual problem with optimal value d⋆ ∈ [−∞,∞].

Theorem 1 (General weak duality). For the primal and dual optimization
problems defined above, we have

d⋆ = sup
y∈Y

g(y) ≤ inf
x∈X

f(x) = p⋆.

Proof. Immediate consequence of the maximin-minimax inequality.

Primal-dual pair via Lagrangian L

f(x) = sup
y∈Y

L(x, y)

minimize
x∈X

f(x)

dual←→
g(y) = inf

x∈X
L(x, y)

maximize
y∈Y

g(y)

We call L a Lagrangian. (Terminology comes from method of Lagrange
multipliers.) Pick any L, and we get a primal-dual pair of problems. If we pick
L such that the primal problem becomes our problem of interest, then we have
a useful corresponding dual problem.

Strong duality. States d⋆ = p⋆, holds often but not always in convex opti-
mization. Regularity conditions that ensure strong duality are sometimes called
constraint qualifications.

4



Sion’s Minimax Theorem Sion’s minimax theorem is a powerful theorem
with a wide range of applications. Although it cannot be used to establish
strong duality in our context (due to the lack of compactness), it gives us a
sense of why strong duality is “morally” the right thing to expect.

Theorem 2 (Sion, 1958). Let X be a convex subset of a linear topological space,
and let Y be a convex subset of a linear topological space. Assume X or Y (or
both) is compact. Let F : X × Y → R satisfy:

• For every fixed y ∈ Y , the function x 7→ F (x, y) is convex in x

• For every fixed x ∈ X, the function y 7→ F (x, y) is concave in y.

Then the minimax identity holds:

inf
x∈X

sup
y∈Y

F (x, y) = sup
y∈Y

inf
x∈X

F (x, y).

The actual Sion’s theorem generalizes the convex-concavity condition slightly.
However, the compactness condition is crucial.

Total duality. States that a primal solution exists, a dual solution exists, and
strong duality holds. Total duality holds if and only if L has a saddle point.
Solving the primal and dual optimization problems is equivalent to finding a
saddle point of the saddle function generating the primal and dual problems,
provided that total duality holds.

Let us prove the equivalence. Assume L has a saddle point (x⋆, u⋆). Then

L(x⋆, u⋆) = inf
x

L(x, u⋆)

≤ sup
u

inf
x

L(x, u) = d⋆

≤ inf
x

sup
u

L(x, u) = p⋆

≤ sup
u

L(x⋆, u) = L(x⋆, u⋆),

and equality holds throughout. Since infx supu L(x, u) = supu L(x
⋆, u), x⋆ is a

primal solution. Since infx L(x, u
⋆) = supu infx L(x, u), u

⋆ is a dual solution.
Since d⋆ = supu infx L(x, u) = infx supu L(x, u) = p⋆, strong duality holds.

On the other hand, assume total duality holds and x⋆ and u⋆ are primal and
dual solutions. Then

inf
x

L(x, u⋆) = sup
u

inf
x

L(x, u) = d⋆

= inf
x

sup
u

L(x, u) = p⋆

= sup
u

L(x⋆, u).

Since
L(x⋆, u⋆) ≤ sup

u
L(x⋆, u) = inf

x
L(x, u⋆) ≤ L(x⋆, u⋆),
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equality holds throughout and we conclude

sup
u

L(x⋆, u) = L(x⋆, u⋆) = inf
x

L(x, u⋆),

i.e., (x⋆, u⋆) is a saddle point.

2 ADMM

Let f and g be convex, A ∈ Rn×p, B ∈ Rn×q, and c ∈ Rn. Consider the primal

minimize
x∈Rp, y∈Rq

f(x) + g(y)

subject to Ax+By = c

and the dual problem

maximize
u∈Rn

−f∗(−A⊺u)− g∗(−B⊺u)− c⊺u

generated by the Lagrangian

L(x, y, u) = f(x) + g(y) + ⟨u,Ax+By − c⟩.

We will use the augmented Lagrangian:

Lρ(x, y, u) = f(x) + g(y) + ⟨u,Ax+By − c⟩+ ρ

2
∥Ax+By − c∥2.

The algorithm alternating direction method of multipliers (ADMM) is

xk+1 ∈ argmin
x

Lρ(x, zk, yk)

zk+1 ∈ argmin
z

Lρ(xk, z, yk)

yk+1 = yk + ρ(Axk+1 +Bzk+1 − c)

ADMMConvergence via the Summability Lemma

xk+1 ∈ argmin
x

{
f(x) + g(zk) + ⟨yk, Ax+Bzk − c⟩+ ρ

2
∥Ax+Bzk − c∥2

}
zk+1 ∈ argmin

z

{
f(xk+1) + g(z) + ⟨yk, Axk+1 +Bz − c⟩+ ρ

2
∥Axk+1 +Bz − c∥2

}
yk+1 = yk + ρ(Axk+1 +Bzk+1 − c)

Theorem 3. Assume total duality holds, i.e., assume the unaugmented La-
grangian L0 has a saddle point (x⋆, z⋆, y⋆). Assume the iterates {xk}k and
{zk}k are well defined (exists, but need not unique). Then,

Axk +Bzk − c→ 0, f(xk) + g(zk)→ p⋆.
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(It is also true that yk → y⋆, where y⋆ is a dual solution, but we will not
prove this.)

Proof. Introduce the nonnegative Lyapunov function

Vk =
1

2ρ
∥yk − y⋆∥22 +

ρ

2
∥B(zk − z⋆)∥22.

Define the primal residual

rk+1 := Axk+1 +Bzk+1 − c,

We will show that

Vk+1

(iii)

≤ Vk − ρ∥rk+1∥22 − ρ∥B(zk+1 − zk)∥22.

This immediately implies that rk → 0 by the summability argument. This also
implies B(zk+1 − zk)→ 0.

Next, let
pk = f(xk) + g(zk).

Then we have

−⟨y⋆, rk+1⟩
(i)

≤ pk+1−p⋆
(ii)

≤ −⟨yk+1, rk+1⟩−ρ⟨B(zk+1−zk), B(zk+1−z⋆)−rk+1⟩.

This shows that pk → p⋆. It remains to show inequalities (i), (ii), and (iii).
Inequality (i).

p⋆ = f(x⋆) + g(z⋆) + ⟨y⋆, Ax⋆ +Bz⋆ − c︸ ︷︷ ︸
=0

⟩ = L0(x⋆, z⋆, y⋆)

≤ L0(xk+1, zk+1, y⋆) = f(xk+1) + g(zk+1) + ⟨y⋆, Axk+1 +Bzk+1 − c︸ ︷︷ ︸
=rk+1

⟩ = pk+1 + ⟨y⋆, rk+1⟩

Inequality (ii).

Lemma 2. Let h : Rn → R ∪ {∞} be convex and M ∈ Rm×n. If

x◦ ∈ argmin
x

{
h(x) +

1

2
∥M(x− x◦)∥2

}
then,

x◦ ∈ argmin
x

{
h(x)

}
Proof. For simplicity, assume h is differentiable at h◦. Then, the first condition
implies that

0 = ∇x

{
h(x) +

1

2
∥M(x− x◦)∥2

}∣∣∣
x=x◦

= h(x◦).

By convexity of h, stationarity of h at x◦ implies optimality of h at x◦. The
general proof can be done using subgradients.
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We can show that

xk+1 = argmin
x
{f(x) + ⟨yk, Ax⟩+ ρ

2
∥Ax+Bzk − c∥2}

= argmin
x
{f(x) + ⟨yk+1 − ρB(yk+1 − yk), Ax⟩+ ρ

2
∥A(x− xk+1)∥2}

By the lemma, this implies

f(xk+1)+ ⟨yk+1−ρB(yk+1−yk), Axk+1⟩ ≤ f(x⋆)+ ⟨yk+1−ρB(yk+1−yk), Ax⋆⟩
(10)

We can also show that

zk+1 = argmin
z

{
g(z) + ⟨yk+1, Bz⟩+ ρ

2
∥B(z − zk+1)∥2

}
By the lemma, this implies

g(zk+1) + ⟨yk+1, Bzk+1⟩ ≤ g(z⋆) + ⟨yk+1, Bz⋆⟩ (11)

Adding (10) and (11), we get

f(xk+1) + g(zk+1) + ⟨yk+1 − ρB(yk+1 − yk), Axk+1⟩+ ⟨yk+1, Bzk+1⟩
≤ f(x⋆) + ⟨yk+1 − ρB(yk+1 − yk), Ax⋆⟩+ g(z⋆) + ⟨yk+1, Bz⋆⟩

reorganizing, we get

pk+1 − p⋆ ≤ −⟨yk+1 − ρB(yk+1 − yk), Axk+1 −Ax⋆⟩ − ⟨yk+1, Bzk+1 −Bz⋆⟩
= −⟨yk+1, Axk+1 −Ax⋆ +Bzk+1 −Bz⋆⟩+ ⟨ρB(yk+1 − yk), Axk+1 −Ax⋆⟩
= −⟨yk+1, Axk+1 +Bzk+1 − c︸ ︷︷ ︸

=rk+1

⟩ − ρ⟨B(yk+1 − yk), B(zk+1 − z⋆)− rk+1⟩

where in the last step we substitute Ax⋆+Bz⋆ = c, Axk+1 = rk+1−Bzk+1+ c,
and Ax⋆ = −Bz⋆ + c. We now have inequality (ii).

Inequality (iii). Consider

2 · (Ineq (i) + Ineq (ii))

which gives us

−2⟨y⋆, rk+1⟩ ≤ −2⟨yk+1, rk+1⟩ − 2ρ⟨B(zk+1 − zk), B(zk+1 − z⋆)− rk+1⟩

which can be reorganized to

2⟨yk+1−y⋆, rk+1⟩+2ρ⟨B(zk+1−zk), B(zk+1−z⋆)⟩−2ρ⟨B(zk+1−zk), rk+1⟩ ≤ 0

Using yk+1 = yk + ρrk+1, we can show

2⟨yk+1 − y⋆, rk+1⟩ =
1

ρ

(
∥yk+1 − y⋆∥2 − ∥yk − y⋆∥2

)
+ ρ∥rk+1∥2.
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Then, we can show

ρ∥rk+1∥2 + 2ρ⟨B(zk+1 − zk), B(zk+1 − z⋆)⟩ − 2ρ⟨B(zk+1 − zk), rk+1⟩
= ρ∥rk+1 −B(zk+1 − zk)∥2 + ρ

(
∥B(zk+1 − z⋆)∥2 − ∥B(zk − z⋆)∥2

)
Therefore,

1

ρ

(
∥yk+1 − y⋆∥2 − ∥yk − y⋆∥2

)
+ ρ

(
∥B(zk+1 − z⋆)∥2 − ∥B(zk − z⋆)∥2

)
+ ρ∥rk+1 −B(zk+1 − zk)∥2 ≤ 0,

i.e.,

Vk+1 ≤ Vk − ρ∥rk+1 −B(zk+1 − zk)∥2
(∗)
≤ Vk − ρ∥rk+1∥22 − ρ∥B(zk+1 − zk)∥22.

It remains to show the final inequality (*), i.e., whether

− ρ∥rk+1 −B(zk+1 − zk)∥2 + ρ∥rk+1∥22 + ρ∥B(zk+1 − zk)∥22

= 2ρ⟨rk+1, B(zk+1 − zk)⟩ = 2⟨yk+1 − yk, B(zk+1 − zk)⟩
(∗)
≤ 0.

Recall,

zk+1 = argmin
z

{
g(z) + ⟨yk+1, Bz⟩+ ρ

2
∥B(z − zk+1)∥2

}
So, by the lemma, we have

g(zk+1) + ⟨yk+1, Bzk+1⟩ ≤ g(zk) + ⟨yk+1, Bzk⟩

Likewise,

zk = argmin
z

{
g(z) + ⟨yk, Bz⟩+ ρ

2
∥B(z − zk)∥2

}
So, by the lemma, we have

g(zk) + ⟨yk, Bzk⟩ ≤ g(zk+1) + ⟨yk, Bzk+1⟩

Adding the two inequalities gives us

⟨yk+1, Bzk+1⟩+ ⟨yk, Bzk⟩ − ⟨yk+1, Bzk⟩ − ⟨yk, Bzk+1⟩ ≤ 0

which can be reorganized to

⟨yk+1 − yk, B(zk+1 − zk)⟩ ≤ 0

This proves (*) and completes the proof.
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