

Math 273A Notes:

Chapter 3

Ernest K. Ryu

December 5, 2025

1 Optimization duality

Maximin-minimax inequality In many introductory texts of convex optimization, one starts with a primal optimization problem and finds a corresponding dual problem. Here, we take a slightly different viewpoint. We view the primal and dual problems as the two halves of a larger saddle point problem.

Let $\mathbf{L}: \mathbb{R}^n \times \mathbb{R}^m \rightarrow \mathbb{R}$. We say $\mathbf{L}(x, y)$ is convex-concave if \mathbf{L} is convex in x when y is fixed and concave in y when x is fixed. We say (x^*, y^*) is a saddle point of \mathbf{L} if

$$\mathbf{L}(x^*, y) \leq \mathbf{L}(x^*, y^*) \leq \mathbf{L}(x, y^*) \quad \forall x \in \mathbb{R}^n, y \in \mathbb{R}^m.$$

We call

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad \sup_{y \in \mathbb{R}^m} \mathbf{L}(x, y)$$

the *primal problem* generated by \mathbf{L} and write $p^* = \inf_x \sup_y \mathbf{L}(x, y)$ for the primal optimal value. We call

$$\underset{y \in \mathbb{R}^m}{\text{maximize}} \quad \inf_{x \in \mathbb{R}^n} \mathbf{L}(x, y)$$

the *dual problem* generated by \mathbf{L} and write $d^* = \sup_y \inf_x \mathbf{L}(x, y)$ for the dual optimal value. In most engineering settings, one starts with an optimization problem, not a convex-concave saddle function. With this view of duality, the trick is to find a convex-concave saddle function that generates the primal problem of interest.

Example. Let f be a CCP function on \mathbb{R}^n , $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^m$. Consider the Lagrangian

$$\mathbf{L}(x, y) = f(x) + \langle y, Ax - b \rangle, \tag{1}$$

which generates the primal problem

$$\begin{aligned} & \underset{x \in \mathbb{R}^n}{\text{minimize}} && f(x) \\ & \text{subject to} && Ax = b \end{aligned} \tag{2}$$

and dual problem

$$\underset{y \in \mathbb{R}^m}{\text{maximize}} \quad -f^*(-A^\top y) - b^\top y. \quad (3)$$

The dual variable y is also called the Lagrange multipliers.

Example. Consider the Lagrangian

$$\mathbf{L}(x, y) = f(x) + \langle y, Ax \rangle - g^*(y), \quad (4)$$

which generates the primal problem

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad f(x) + g^{**}(Ax) \quad (5)$$

and dual problem

$$\underset{y \in \mathbb{R}^m}{\text{maximize}} \quad -f^*(-A^\top y) - g^*(y). \quad (6)$$

This primal-dual problem pair is sometimes called the Fenchel–Rockafellar dual.

An *augmented Lagrangian* is a saddle function that has additional terms while sharing the same saddle points as its unaugmented counterpart.

Example. Consider the Lagrangian

$$\mathbf{L}(x, u) = f(x) + \langle u, Ax - b \rangle$$

with the associated primal problem

$$\begin{aligned} & \underset{x \in \mathbb{R}^n}{\text{minimize}} \quad f(x) \\ & \text{subject to} \quad Ax = b. \end{aligned}$$

We will often use the augmented Lagrangian

$$\mathbf{L}_\rho(x, u) = f(x) + \langle u, Ax - b \rangle + \frac{\rho}{2} \|Ax - b\|^2 \quad (7)$$

with $\rho > 0$. It is straightforward to show that (x, u) is a saddle point of \mathbf{L} if and only if it is a saddle point of \mathbf{L}_ρ for any $\rho > 0$.

Example: Dual of the LASSO Problem Consider the optimization problem

$$\underset{x \in \mathbb{R}^n}{\text{min}} \quad \frac{1}{2} \|Ax - b\|_2^2 + \lambda \|x\|_1, \quad (8)$$

with $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, and $\lambda > 0$. We derive its Fenchel dual.

Step 1. Write the objective in the form

$$f(Ax) + g(x),$$

where

$$f(z) = \frac{1}{2} \|z - b\|^2, \quad g(x) = \lambda \|x\|_1.$$

The Fenchel–Rockafellar dual is

$$\max_{y \in \mathbb{R}^m} \{-f^*(y) - g^*(-A^\top y)\}.$$

Step 2. Conjugate the quadratic term For $f(z) = \frac{1}{2}\|z - b\|^2$, one computes

$$f^*(y) = \sup_z \left(y^\top z - \frac{1}{2}\|z - b\|^2 \right) = y^\top b + \frac{1}{2}\|y\|^2.$$

Step 3. Conjugate the ℓ_1 -term. Since the conjugate of $\lambda\|x\|_1$ is the indicator of the ℓ_∞ -ball of radius λ ,

$$g^*(s) = \delta_{\{\|s\|_\infty \leq \lambda\}}(s),$$

we obtain

$$g^*(-A^\top y) = \begin{cases} 0, & \|A^\top y\|_\infty \leq \lambda, \\ +\infty, & \text{otherwise.} \end{cases}$$

Step 4. Substituting the conjugates into the dual expression gives

$$\max_y \left(-y^\top b - \frac{1}{2}\|y\|^2 \right) \quad \text{s.t.} \quad \|A^\top y\|_\infty \leq \lambda.$$

Equivalently, completing the square,

$$\max_{\|A^\top y\|_\infty \leq \lambda} \left(-\frac{1}{2}\|y + b\|^2 + \frac{1}{2}\|b\|^2 \right),$$

where the constant term $\frac{1}{2}\|b\|^2$ may be omitted.

Dual: $\max_{y \in \mathbb{R}^m} -\frac{1}{2}\|y\|^2 - b^\top y$

subject to $\|A^\top y\|_\infty \leq \lambda$.

(9)

Weak duality States $d^* \leq p^*$, always holds. To prove this, note that for any x, u we have

$$\begin{aligned} \inf_x \mathbf{L}(x, u) &\leq \mathbf{L}(x, u) \\ \sup_u \inf_x \mathbf{L}(x, u) &\leq \sup_u \mathbf{L}(x, u) \\ d^* &= \sup_u \inf_x \mathbf{L}(x, u) \leq \inf_x \sup_u \mathbf{L}(x, u) = p^*. \end{aligned}$$

Lemma 1 (Maximin-minimax inequality). *Let $L: X \times Y \rightarrow \mathbb{R}$ be an arbitrary function. Then,*

$$\sup_{y \in Y} \inf_{x \in X} L(x, y) \leq \inf_{x \in X} \sup_{y \in Y} L(x, y).$$

Proof. This follows from

$$\begin{aligned} L(\mathbf{x}, \mathbf{y}) &\leq \sup_{y \in Y} L(\mathbf{x}, y), \quad \forall \mathbf{x} \in X, \mathbf{y} \in Y \\ \inf_{x \in X} L(x, \mathbf{y}) &\leq \inf_{x \in X} \sup_{y \in Y} L(x, y), \quad \forall \mathbf{y} \in Y \\ \sup_{y \in Y} \inf_{x \in X} L(x, y) &\leq \inf_{x \in X} \sup_{y \in Y} L(x, y). \end{aligned}$$

□

General weak duality Let $L: X \times Y \rightarrow \mathbb{R}$ be an arbitrary function. Define $f: X \rightarrow \mathbb{R} \cup \{\infty\}$ and $g: Y \rightarrow \mathbb{R} \cup \{-\infty\}$ as

$$f(\mathbf{x}) = \sup_{y \in Y} L(\mathbf{x}, y) \quad g(\mathbf{y}) = \inf_{x \in X} L(x, \mathbf{y})$$

We call

$$\underset{\mathbf{x} \in X}{\text{minimize}} \quad f(\mathbf{x}) \quad (\text{P})$$

the primal problem with optimal value $p_* \in [-\infty, \infty]$

$$\underset{\mathbf{y} \in Y}{\text{maximize}} \quad g(\mathbf{y}) \quad (\text{D})$$

the dual problem with optimal value $d_* \in [-\infty, \infty]$.

Theorem 1 (General weak duality). *For the primal and dual optimization problems defined above, we have*

$$d_* = \sup_{y \in Y} g(y) \leq \inf_{x \in X} f(x) = p_*.$$

Proof. Immediate consequence of the maximin-minimax inequality. □

Primal-dual pair via Lagrangian L

$$\begin{array}{ccc} f(\mathbf{x}) = \sup_{y \in Y} L(\mathbf{x}, y) & \xleftrightarrow{\text{dual}} & g(\mathbf{y}) = \inf_{x \in X} L(x, \mathbf{y}) \\ \underset{\mathbf{x} \in X}{\text{minimize}} \quad f(\mathbf{x}) & & \underset{\mathbf{y} \in Y}{\text{maximize}} \quad g(\mathbf{y}) \end{array}$$

We call L a *Lagrangian*. (Terminology comes from method of Lagrange multipliers.) Pick any L , and we get a primal-dual pair of problems. If we pick L such that the primal problem becomes our problem of interest, then we have a useful corresponding dual problem.

Strong duality. States $d^* = p^*$, holds often but not always in convex optimization. Regularity conditions that ensure strong duality are sometimes called constraint qualifications.

Sion's Minimax Theorem Sion's minimax theorem is a powerful theorem with a wide range of applications. Although it cannot be used to establish strong duality in our context (due to the lack of compactness), it gives us a sense of why strong duality is “morally” the right thing to expect.

Theorem 2 (Sion, 1958). *Let X be a convex subset of a linear topological space, and let Y be a convex subset of a linear topological space. Assume X or Y (or both) is compact. Let $F: X \times Y \rightarrow \mathbb{R}$ satisfy:*

- For every fixed $y \in Y$, the function $x \mapsto F(x, y)$ is convex in x
- For every fixed $x \in X$, the function $y \mapsto F(x, y)$ is concave in y .

Then the minimax identity holds:

$$\inf_{x \in X} \sup_{y \in Y} F(x, y) = \sup_{y \in Y} \inf_{x \in X} F(x, y).$$

The actual Sion's theorem generalizes the convex-concavity condition slightly. However, the compactness condition is crucial.

Total duality. States that a primal solution exists, a dual solution exists, and strong duality holds. Total duality holds if and only if \mathbf{L} has a saddle point. Solving the primal and dual optimization problems is equivalent to finding a saddle point of the saddle function generating the primal and dual problems, provided that total duality holds.

Let us prove the equivalence. Assume \mathbf{L} has a saddle point (x^*, u^*) . Then

$$\begin{aligned} \mathbf{L}(x^*, u^*) &= \inf_x \mathbf{L}(x, u^*) \\ &\leq \sup_u \inf_x \mathbf{L}(x, u) = d^* \\ &\leq \inf_x \sup_u \mathbf{L}(x, u) = p^* \\ &\leq \sup_u \mathbf{L}(x^*, u) = \mathbf{L}(x^*, u^*), \end{aligned}$$

and equality holds throughout. Since $\inf_x \sup_u \mathbf{L}(x, u) = \sup_u \mathbf{L}(x^*, u)$, x^* is a primal solution. Since $\inf_x \mathbf{L}(x, u^*) = \sup_u \inf_x \mathbf{L}(x, u)$, u^* is a dual solution. Since $d^* = \sup_u \inf_x \mathbf{L}(x, u) = \inf_x \sup_u \mathbf{L}(x, u) = p^*$, strong duality holds.

On the other hand, assume total duality holds and x^* and u^* are primal and dual solutions. Then

$$\begin{aligned} \inf_x \mathbf{L}(x, u^*) &= \sup_u \inf_x \mathbf{L}(x, u) = d^* \\ &= \inf_x \sup_u \mathbf{L}(x, u) = p^* \\ &= \sup_u \mathbf{L}(x^*, u). \end{aligned}$$

Since

$$\mathbf{L}(x^*, u^*) \leq \sup_u \mathbf{L}(x^*, u) = \inf_x \mathbf{L}(x, u^*) \leq \mathbf{L}(x^*, u^*),$$

equality holds throughout and we conclude

$$\sup_u \mathbf{L}(x^*, u) = \mathbf{L}(x^*, u^*) = \inf_x \mathbf{L}(x, u^*),$$

i.e., (x^*, u^*) is a saddle point.

2 ADMM

Let f and g be convex, $A \in \mathbb{R}^{n \times p}$, $B \in \mathbb{R}^{n \times q}$, and $c \in \mathbb{R}^n$. Consider the primal

$$\begin{aligned} & \underset{x \in \mathbb{R}^p, y \in \mathbb{R}^q}{\text{minimize}} \quad f(x) + g(y) \\ & \text{subject to} \quad Ax + By = c \end{aligned}$$

and the dual problem

$$\underset{u \in \mathbb{R}^n}{\text{maximize}} \quad -f^*(-A^\top u) - g^*(-B^\top u) - c^\top u$$

generated by the Lagrangian

$$\mathbf{L}(x, y, u) = f(x) + g(y) + \langle u, Ax + By - c \rangle.$$

We will use the augmented Lagrangian:

$$\mathbf{L}_\rho(x, y, u) = f(x) + g(y) + \langle u, Ax + By - c \rangle + \frac{\rho}{2} \|Ax + By - c\|^2.$$

The algorithm alternating direction method of multipliers (ADMM) is

$$\begin{aligned} x_{k+1} & \in \underset{x}{\text{argmin}} \mathbf{L}_\rho(x, z_k, y_k) \\ z_{k+1} & \in \underset{z}{\text{argmin}} \mathbf{L}_\rho(x_k, z, y_k) \\ y_{k+1} & = y_k + \rho(Ax_{k+1} + Bz_{k+1} - c) \end{aligned}$$

ADMM Convergence via the Summability Lemma

$$\begin{aligned} x_{k+1} & \in \underset{x}{\text{argmin}} \left\{ f(x) + g(z_k) + \langle y_k, Ax + Bz_k - c \rangle + \frac{\rho}{2} \|Ax + Bz_k - c\|^2 \right\} \\ z_{k+1} & \in \underset{z}{\text{argmin}} \left\{ f(x_{k+1}) + g(z) + \langle y_k, Ax_{k+1} + Bz - c \rangle + \frac{\rho}{2} \|Ax_{k+1} + Bz - c\|^2 \right\} \\ y_{k+1} & = y_k + \rho(Ax_{k+1} + Bz_{k+1} - c) \end{aligned}$$

Theorem 3. *Assume total duality holds, i.e., assume the unaugmented Lagrangian L_0 has a saddle point (x^*, z^*, y^*) . Assume the iterates $\{x_k\}_k$ and $\{z_k\}_k$ are well defined (exists, but need not unique). Then,*

$$Ax_k + Bz_k - c \rightarrow 0, \quad f(x_k) + g(z_k) \rightarrow p_*$$

(It is also true that $y_k \rightarrow y_*$, where y_* is a dual solution, but we will not prove this.)

Proof. Introduce the nonnegative Lyapunov function

$$V_k = \frac{1}{2\rho} \|y_k - y^*\|_2^2 + \frac{\rho}{2} \|B(z_k - z^*)\|_2^2.$$

Define the primal residual

$$r_{k+1} := Ax_{k+1} + Bz_{k+1} - c,$$

We will show that

$$V_{k+1} \stackrel{(iii)}{\leq} V_k - \rho \|r_{k+1}\|_2^2 - \rho \|B(z_{k+1} - z_k)\|_2^2.$$

This immediately implies that $r_k \rightarrow 0$ by the summability argument. This also implies $B(z_{k+1} - z_k) \rightarrow 0$.

Next, let

$$p_k = f(x_k) + g(z_k).$$

Then we have

$$-\langle y_*, r_{k+1} \rangle \stackrel{(i)}{\leq} p_{k+1} - p_* \stackrel{(ii)}{\leq} -\langle y_{k+1}, r_{k+1} \rangle - \rho \langle B(z_{k+1} - z_k), B(z_{k+1} - z_*) - r_{k+1} \rangle.$$

This shows that $p_k \rightarrow p_*$. It remains to show inequalities (i), (ii), and (iii).

Inequality (i).

$$\begin{aligned} p_* &= f(x_*) + g(z_*) + \langle y_*, \underbrace{Ax_* + Bz_* - c}_{=0} \rangle = L_0(x_*, z_*, y_*) \\ &\leq L_0(x_{k+1}, z_{k+1}, y_*) = f(x_{k+1}) + g(z_{k+1}) + \langle y_*, \underbrace{Ax_{k+1} + Bz_{k+1} - c}_{=r_{k+1}} \rangle = p_{k+1} + \langle y_*, r_{k+1} \rangle \end{aligned}$$

Inequality (ii).

Lemma 2. *Let $h: \mathbb{R}^n \rightarrow \mathbb{R} \cup \{\infty\}$ be convex and $M \in \mathbb{R}^{m \times n}$. If*

$$x_* \in \operatorname{argmin}_x \left\{ h(x) + \frac{1}{2} \|M(x - x_*)\|^2 \right\}$$

then,

$$x_* \in \operatorname{argmin}_x \{h(x)\}$$

Proof. For simplicity, assume h is differentiable at x_* . Then, the first condition implies that

$$0 = \nabla_x \left\{ h(x) + \frac{1}{2} \|M(x - x_*)\|^2 \right\} \Big|_{x=x_*} = h(x_*).$$

By convexity of h , stationarity of h at x_* implies optimality of h at x_* . The general proof can be done using subgradients. \square

We can show that

$$\begin{aligned} x_{k+1} &= \operatorname{argmin}_x \{f(x) + \langle y_k, Ax \rangle + \frac{\rho}{2} \|Ax + Bz_k - c\|^2\} \\ &= \operatorname{argmin}_x \{f(x) + \langle y_{k+1} - \rho B(y_{k+1} - y_k), Ax \rangle + \frac{\rho}{2} \|A(x - x_{k+1})\|^2\} \end{aligned}$$

By the lemma, this implies

$$f(x_{k+1}) + \langle y_{k+1} - \rho B(y_{k+1} - y_k), Ax_{k+1} \rangle \leq f(x_*) + \langle y_{k+1} - \rho B(y_{k+1} - y_k), Ax_* \rangle \quad (10)$$

We can also show that

$$z_{k+1} = \operatorname{argmin}_z \left\{ g(z) + \langle y_{k+1}, Bz \rangle + \frac{\rho}{2} \|B(z - z_{k+1})\|^2 \right\}$$

By the lemma, this implies

$$g(z_{k+1}) + \langle y_{k+1}, Bz_{k+1} \rangle \leq g(z_*) + \langle y_{k+1}, Bz_* \rangle \quad (11)$$

Adding (10) and (11), we get

$$\begin{aligned} f(x_{k+1}) + g(z_{k+1}) + \langle y_{k+1} - \rho B(y_{k+1} - y_k), Ax_{k+1} \rangle + \langle y_{k+1}, Bz_{k+1} \rangle \\ \leq f(x_*) + \langle y_{k+1} - \rho B(y_{k+1} - y_k), Ax_* \rangle + g(z_*) + \langle y_{k+1}, Bz_* \rangle \end{aligned}$$

reorganizing, we get

$$\begin{aligned} p_{k+1} - p_* &\leq -\langle y_{k+1} - \rho B(y_{k+1} - y_k), Ax_{k+1} - Ax_* \rangle - \langle y_{k+1}, Bz_{k+1} - Bz_* \rangle \\ &= -\langle y_{k+1}, Ax_{k+1} - Ax_* + Bz_{k+1} - Bz_* \rangle + \langle \rho B(y_{k+1} - y_k), Ax_{k+1} - Ax_* \rangle \\ &= -\langle y_{k+1}, \underbrace{Ax_{k+1} + Bz_{k+1} - c}_{=r_{k+1}} \rangle - \rho \langle B(y_{k+1} - y_k), B(z_{k+1} - z_*) - r_{k+1} \rangle \end{aligned}$$

where in the last step we substitute $Ax_* + Bz_* = c$, $Ax_{k+1} = r_{k+1} - Bz_{k+1} + c$, and $Ax_* = -Bz_* + c$. We now have inequality (ii).

Inequality (iii). Consider

$$2 \cdot (\text{Ineq (i)} + \text{Ineq (ii)})$$

which gives us

$$-2\langle y_*, r_{k+1} \rangle \leq -2\langle y_{k+1}, r_{k+1} \rangle - 2\rho \langle B(z_{k+1} - z_k), B(z_{k+1} - z_*) - r_{k+1} \rangle$$

which can be reorganized to

$$2\langle y_{k+1} - y_*, r_{k+1} \rangle + 2\rho \langle B(z_{k+1} - z_k), B(z_{k+1} - z_*) \rangle - 2\rho \langle B(z_{k+1} - z_k), r_{k+1} \rangle \leq 0$$

Using $y_{k+1} = y_k + \rho r_{k+1}$, we can show

$$2\langle y_{k+1} - y_*, r_{k+1} \rangle = \frac{1}{\rho} (\|y_{k+1} - y_*\|^2 - \|y_k - y_*\|^2) + \rho \|r_{k+1}\|^2.$$

Then, we can show

$$\begin{aligned} & \rho \|r_{k+1}\|^2 + 2\rho \langle B(z_{k+1} - z_k), B(z_{k+1} - z_\star) \rangle - 2\rho \langle B(z_{k+1} - z_k), r_{k+1} \rangle \\ &= \rho \|r_{k+1} - B(z_{k+1} - z_k)\|^2 + \rho (\|B(z_{k+1} - z_\star)\|^2 - \|B(z_k - z_\star)\|^2) \end{aligned}$$

Therefore,

$$\begin{aligned} & \frac{1}{\rho} (\|y_{k+1} - y_\star\|^2 - \|y_k - y_\star\|^2) + \rho (\|B(z_{k+1} - z_\star)\|^2 - \|B(z_k - z_\star)\|^2) \\ &+ \rho \|r_{k+1} - B(z_{k+1} - z_k)\|^2 \leq 0, \end{aligned}$$

i.e.,

$$V_{k+1} \leq V_k - \rho \|r_{k+1} - B(z_{k+1} - z_k)\|^2 \stackrel{(*)}{\leq} V_k - \rho \|r_{k+1}\|_2^2 - \rho \|B(z_{k+1} - z_k)\|_2^2.$$

It remains to show the final inequality (*), i.e., whether

$$\begin{aligned} & -\rho \|r_{k+1} - B(z_{k+1} - z_k)\|^2 + \rho \|r_{k+1}\|_2^2 + \rho \|B(z_{k+1} - z_k)\|_2^2 \\ &= 2\rho \langle r_{k+1}, B(z_{k+1} - z_k) \rangle = 2\langle y_{k+1} - y_k, B(z_{k+1} - z_k) \rangle \stackrel{(*)}{\leq} 0. \end{aligned}$$

Recall,

$$z_{k+1} = \operatorname{argmin}_z \left\{ g(z) + \langle y_{k+1}, Bz \rangle + \frac{\rho}{2} \|B(z - z_{k+1})\|^2 \right\}$$

So, by the lemma, we have

$$g(z_{k+1}) + \langle y_{k+1}, Bz_{k+1} \rangle \leq g(z_k) + \langle y_{k+1}, Bz_k \rangle$$

Likewise,

$$z_k = \operatorname{argmin}_z \left\{ g(z) + \langle y_k, Bz \rangle + \frac{\rho}{2} \|B(z - z_k)\|^2 \right\}$$

So, by the lemma, we have

$$g(z_k) + \langle y_k, Bz_k \rangle \leq g(z_{k+1}) + \langle y_k, Bz_{k+1} \rangle$$

Adding the two inequalities gives us

$$\langle y_{k+1}, Bz_{k+1} \rangle + \langle y_k, Bz_k \rangle - \langle y_{k+1}, Bz_k \rangle - \langle y_k, Bz_{k+1} \rangle \leq 0$$

which can be reorganized to

$$\langle y_{k+1} - y_k, B(z_{k+1} - z_k) \rangle \leq 0$$

This proves (*) and completes the proof. \square