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1 Optimization duality

Maximin-minimax inequality In many introductory texts of convex op-
timization, one starts with a primal optimization problem and finds a corre-
sponding dual problem. Here, we take a slightly different viewpoint. We view
the primal and dual problems as the two halves of a larger saddle point problem.

Let L: R™ x R™ — R. We say L(x,y) is convex-concave if L is convex in x
when y is fixed and concave in y when z is fixed. We say (z*,y*) is a saddle
point of L if

L(z",y) <L(z",y") <L(z,y") VzeR", yeR™

We call

minimize su m Lz
nin Pyerm L(z,y)

the primal problem generated by L and write p* = inf, sup, L(z,y) for the
primal optimal value. We call

maximize inf,crn L(x,y)
yeR™

the dual problem generated by L and write d* = sup, inf, L(z,y) for the dual
optimal value. In most engineering settings, one starts with an optimization
problem, not a convex-concave saddle function. With this view of duality, the
trick is to find a convex-concave saddle function that generates the primal prob-
lem of interest.

Example. Let f be a CCP function on R™, A € R™*" and b € R™. Consider
the Lagrangian
L(z,y) = f(z) + (y, Az — b), (1)
which generates the primal problem
minimize flx)

subject to Az =b



and dual problem

imize —f*(—ATy) — bTy.
meximize [r(=ATy) = bTy (3)

The dual variable y is also called the Lagrange multipliers.

Example. Consider the Lagrangian

L(z,y) = f(2) + (y, Az) — g"(y), (4)

which generates the primal problem

minimize f(z) + g7 (Ax) (5)
and dual problem
. ekl AT
m%}&g}llze [*(=ATy) — g*(y). (6)

This primal-dual problem pair is sometimes called the Fenchel-Rockafellar dual.
An augmented Lagrangian is a saddle function that has additional terms
while sharing the same saddle points as its unaugmented counterpart.

Example. Consider the Lagrangian
L(z,u) = f(z) + (u, Az — b)
with the associated primal problem
minimize f(z)
subject to Az =b.

We will often use the augmented Lagrangian
Ly (w,u) = f(2) + (u, Az — b) + £|| Az — b| (7)

with p > 0. It is straightforward to show that (x,u) is a saddle point of L if
and only if it is a saddle point of L, for any p > 0.

Example: Dual of the LASSO Problem Consider the optimization prob-
lem

o1 2
min oAz = bz + Azl (8)

with A € R™*™ b e R™, and A > 0. We derive its Fenchel dual.
Step 1. Write the objective in the form

f(Az) + g(x),

where 1
fz)=3llz~ b2, g(x) = Az



The Fenchel-Rockafellar dual is

max {—f*(y) = g"(=A"y)} -

Step 2. Conjugate the quadratic term For f(z) = |z — b||?, one computes

. 1 1
) =suw (372 = 3lle = 017) =57+ 5l

Step 3. Conjugate the ¢1-term. Since the conjugate of A||z||; is the indicator
of the £,-ball of radius A,

9" (s) = 0g sl <ry (5),

we obtain
o 1ATyle <A
g (=Ay) =
400, otherwise.

Step 4. Substituting the conjugates into the dual expression gives
T Lo T
max { =y b—ofyll” ) st 147yl < A

Equivalently, completing the square,

1 1
- b2 *b2
max_ (=340 + 310lR).

AT ylloo <A

where the constant term 3 ||b||> may be omitted.

1
Dual: ——lyl*=b"
ua max 5 1Yl y

(9)

subject to | AT yllee < A.

Weak duality States d* < p*, always holds. To prove this, note that for any
x,u we have
inf L(z,u) < L(z,u)
supinf L(z, u) < sup L(z, u)

d* = supinf L(z, u) < inf sup L(z,u) = p*.
Lemma 1 (Maximin-minimax inequality). Let L: X x Y — R be an arbitrary

function. Then,

inf L < inf sup L .
;gg;gx (x’y)—£?x§2$ (z,y)



Proof. This follows from

L(xz,y) < sup L(z,y), VieX,yeY

yey
inf L(z,y) < inf sup L(z,y), WyeY
nf Lz y)_;gxigg (z,9) y

sup inf L(x,y) < inf sup L(z,y).
yegzex ( y)*xexyeg ( y)

O

General weak duality Let L: X xY — R be an arbitrary function. Define
f: X —>RU{oc}and g: Y - RU{—00} as

f(z) = sup L(z,y)  g(y) = inf L(z,y)

We call o
minimize f(x) (P)

the primal problem with optimal value p, € [—00, 00|
maximize  g(y) (D)

the dual problem with optimal value d, € [—o00, x].

Theorem 1 (General weak duality). For the primal and dual optimization
problems defined above, we have

dy = sup g(y) < inf f(z) = ps.
yey rzeX
Proof. Immediate consequence of the maximin-minimax inequality. O

Primal-dual pair via Lagrangian L

f(z) = sup L(z,y) g9(y) = inf L(z,y)
yey dual zeX
inimi maximize 1
minimize f(x) e 9(y)

We call L a Lagrangian. (Terminology comes from method of Lagrange
multipliers.) Pick any L, and we get a primal-dual pair of problems. If we pick
L such that the primal problem becomes our problem of interest, then we have
a useful corresponding dual problem.

Strong duality. States d* = p*, holds often but not always in convex opti-
mization. Regularity conditions that ensure strong duality are sometimes called
constraint qualifications.



Sion’s Minimax Theorem Sion’s minimax theorem is a powerful theorem
with a wide range of applications. Although it cannot be used to establish
strong duality in our context (due to the lack of compactness), it gives us a
sense of why strong duality is “morally” the right thing to expect.

Theorem 2 (Sion, 1958). Let X be a convex subset of a linear topological space,
and let Y be a convex subset of a linear topological space. Assume X orY (or
both) is compact. Let F: X xY — R satisfy:

o For every fized y € Y, the function x — F(x,y) is convex in x
e For every fired x € X, the function y — F(x,y) is concave in y.

Then the minimax identity holds:

inf sup F(x,y) = sup inf F(x,y).
X swp (z,9) sup lnf (z,y)
The actual Sion’s theorem generalizes the convex-concavity condition slightly.
However, the compactness condition is crucial.

Total duality. States that a primal solution exists, a dual solution exists, and
strong duality holds. Total duality holds if and only if L has a saddle point.
Solving the primal and dual optimization problems is equivalent to finding a
saddle point of the saddle function generating the primal and dual problems,
provided that total duality holds.

Let us prove the equivalence. Assume L has a saddle point (z*,u*). Then

L(z*,u*) = inf L(z, u")

< supinfL(z,u) = d*
*

<infsupL(z,u) =p

< supL(s*,u) = L(",u),
and equality holds throughout. Since inf, sup, L(z,u) = sup, L(a*,u), z* is a
primal solution. Since inf, L(z,u*) = sup,, inf, L(z,u), v* is a dual solution.
Since d* = sup,, inf, L(z, u) = inf, sup, L(z,u) = p*, strong duality holds.
On the other hand, assume total duality holds and z* and u* are primal and
dual solutions. Then
inf L(x,u”) = supinf L(z,u) = d*
= infsup L(z, u) = p*

Ty

= sup L(z*, u).

Since
L(z*,u*) <supL(z*,u) = inf L(z,u*) < L(z*,u"),

T



equality holds throughout and we conclude

supL(z*,u) = L(z*,u*) = inf L(z, u*),

m T

ie., (z*,u*) is a saddle point.

2 ADMM
Let f and g be convex, A € R"*P, B € R"*4 and ¢ € R™. Consider the primal

minimize f(z)+9(y)

subject to Az + By =c
and the dual problem

maximize —f*(—ATu) — g*(—BTu) — cTu
uER™

generated by the Lagrangian
L(z,y,u) = f(z) + g(y) + (u, Az + By — ¢).
We will use the augmented Lagrangian:
Ly (2, 9,u) = [(2) + 9(y) + {u, Az + By — ¢) + 2| Az + By — "
The algorithm alternating direction method of multipliers (ADMM) is
Tpy1 € argmin L, (x, 2, Yi)
Zy1 € argmin L, (2, 2, Yr)

Yr+1 = Yu + p(ATpyp1 + B2pg1 — ©)

ADMM Convergence via the Summability Lemma

Tpy1 € argmin {f(x) +9(zk) + (yx, Az + Bz, — ¢) + gHA:z: 4+ Bz, — CH2}

Zp+1 € argmin {f(x;Hl) +9(2) + (yr, Axpy1 + Bz —¢) + §||Amk+1 + Bz — c||2}
Ykt+1 = Yk + p(ATpy1 + Bzpy1 — ©)

Theorem 3. Assume total duality holds, i.e., assume the unaugmented La-
grangian Lo has a saddle point (xz*,z*,y*). Assume the iterates {xy}r and
{zi }x are well defined (exists, but need not unique). Then,

Axp + Bz —c— 0, f(xk)‘f'g(zk) 7 Px-



(It is also true that yr — ys, where y, is a dual solution, but we will not
prove this.)

Proof. Introduce the nonnegative Lyapunov function
1 P
Vi = %Hyk =913+ 511Blak = 25
Define the primal residual

Ter1 = Axgyr1 + Bzia1 — ¢,

We will show that

(iid)
Vier < Vi = plresall3 = ol B(zrgr — 20) 13-

This immediately implies that 7, — 0 by the summability argument. This also
implies B(zk4+1 — 2x) — 0.
Next, let
pr = f(xk) + 9(2k).
Then we have

(%) (41)
(Y k1) < Prp1—Px < —(Ur1, Thr1) — (B (2py1—2k), B(2hy1 —24) = Thy1)-

This shows that py — ps. It remains to show inequalities (i), (ii), and (iii).
Inequality (i).
Px = f(@x) + 9(2x) + (yn, A2s + B2, — ¢) = Lo(, 24, Ys)
—_———
=0
< Lo(Tr+1, 241, Ys) = f(@r41) + 9(2k41) + (Y, ATg1 + Bzpgr — €) = Prt1 + (Yo, Tht1)

=Tk41

Inequality (ii).
Lemma 2. Let h: R" — RU {oc} be conver and M € R™*". If

1
T, € argmin {h(x) + §||M(m - xo)||2}

then,
T, € argmin {h(a:)}
xr

Proof. For simplicity, assume h is differentiable at h,. Then, the first condition
implies that

0=V,{h(z)+ %HM(.% - xo)||2}‘m:% = h(z,).

By convexity of h, stationarity of h at z, implies optimality of h at x,. The
general proof can be done using subgradients. O



We can show that
Tyl = arg;nin{f(x) + (yg, Azx) + gHAx + Bz, — c||*}
= argflin{f(x) + (Yr+1 — pPB(Yr+1 — k), Ax) + gHA(x — x|}
By the lemma, this implies

f(@ra1) + Wer1r — pBWrr1 —Yr), Arpgr) < f(20) + Wkt — pPBYrt1 —yn), Axy)

(10)
We can also show that
2o = argmin {g(2) + (g1, B2) + 5Bz — m)P
By the lemma, this implies
9(2kt1) + (W1, Bzry1) < 9(24) + (Yrr1, B2i) (11)

Adding (10) and (11), we get

J(@rg1) + 9(zr41) + Wrr1 — PBWr1 — Ur)s ATrr1) + Wrs1, Bary)
< f(@w) + W1 — pPB(Wt1 — Y), Azy) + 9(2) + (Yrt1, Bzy)

reorganizing, we get

Pit1 — P < —(Wks1 — pPBYrkt1 — Yk), A1 — Axy) — (Yrs1, Bz — Bzy)
= —(Yk+1, ATp 1 — Azy + Bai1 — Bzi) + (pB(Yk+1 — Yx), A1 — Azy)
= —(Wk+1, ATr 11 + Bzgrr — ¢) — p(B(Yk+1 — Ur)s B(zet1 — 24) — Try1)

=Tk+1

where in the last step we substitute Az, + Bz, = ¢, Azp41 = Ti+1 — Bzgy1 + ¢,
and Az, = —Bz, + ¢. We now have inequality (ii).
Inequality (iii). Consider

2 - (Ineq (i) + Ineq (ii))
which gives us
=2(Yses h41) < =2(Unt1, Tot1) — 20(B(2h+1 — 2k), B(2h41 — 24) — Thp1)
which can be reorganized to
2(Yk+1 = Yu k1) +20(B (k41 — 21), B(2h41 — 24)) = 20(B(2k41 — 21), Tht1) < 0

Using yx+1 = Yk + pre+1, we can show

2041 — Yoo hr1) = — (W1 — vel? = N1y — vall?) + pllrea ||

1
p



Then, we can show

pllrisl® + 2p(B(zk41 — 21), B(zh41 — 20)) — 20(B(2k41 — 2k)s Tht1)
= pllres1 — B(zesr — 26)|* + p(I1B(zkr1 — 201> = 1Bz — 20)%)

Therefore,

1
;(||yk+1 = yll” = e = vl?) + p([|1B(zrs1 — 217 = 1Bz — 2.)1?)
+ plresr — B(zre1 — zi)[|* <0,

ie.,

Ve < Ve = pliries — Blener — 2012 < Vi — plrenl3 - pl Bl — )3
It remains to show the final inequality (*), i.e., whether
= pllriss = B(zigr — z0)II° + pllresa 13 + ol B(zrer — 21)ll5
= 2p(rr41, B(zrt1 — 21)) = 2(Ur+1 — Y, B(2e41 — 21)) (;) 0.

Recall,
2 = argmin {9(2) + (yisr, B2) + FIB — z1)|}
So, by the lemma, we have
9(2e+1) + (Wrt1, Baes1) < 9(zk) + (Yrt1, Baw)
Likewise,

z, = argmin {g(z) + (yx, Bz) + gHB(z — zk)HQ}

z

So, by the lemma, we have
9(zk) + (i, Bai) < 9(2k41) + (Yr, Bary1)
Adding the two inequalities gives us
(Ykt1, Baigr) + (Y, Bzi) — (Y1, Bzk) — (Y, Bzgg1) <0
which can be reorganized to
(Yr+1 — Yrs B(zry1 — 2)) <0

This proves (*) and completes the proof. O



