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Goals

robust methods for

▶ arbitrary-scale optimization

– machine learning/statistics with huge data-sets
– dynamic optimization on large-scale network
– computer vision

▶ decentralized optimization

– devices/processors/agents coordinate to solve large problem, by
passing relatively small messages
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Dual problem

▶ convex equality constrained optimization problem

minimize f(x)
subject to Ax = b

▶ Lagrangian: L(x, y) = f(x) + yT (Ax− b)

▶ dual function: g(y) = infx L(x, y)

▶ dual problem: maximize g(y)

▶ recover x⋆ = argminx L(x, y
⋆)
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Dual ascent

▶ gradient method for dual problem: yk+1 = yk + αk∇g(yk)

▶ ∇g(yk) = Ax̃− b, where x̃ = argminx L(x, y
k)

▶ dual ascent method is

xk+1 := argminx L(x, y
k) // x-minimization

yk+1 := yk + αk(Axk+1 − b) // dual update

▶ works, with lots of strong assumptions
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Dual decomposition

▶ suppose f is separable:

f(x) = f1(x1) + · · ·+ fN (xN ), x = (x1, . . . , xN )

▶ then L is separable in x:
L(x, y) = L1(x1, y) + · · ·+ LN (xN , y)− yT b,

Li(xi, y) = fi(xi) + yTAixi

▶ x-minimization in dual ascent splits into N separate minimizations

xk+1
i := argmin

xi

Li(xi, y
k)

which can be carried out in parallel
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Dual decomposition

▶ dual decomposition (Everett, Dantzig, Wolfe, Benders 1960–65)

xk+1
i := argminxi

Li(xi, y
k), i = 1, . . . , N

yk+1 := yk + αk(
∑N

i=1 Aix
k+1
i − b)

▶ scatter yk; update xi in parallel; gather Aix
k+1
i

▶ solve a large problem

– by iteratively solving subproblems (in parallel)
– dual variable update provides coordination

▶ works, with lots of assumptions; often slow
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Method of multipliers

▶ a method to robustify dual ascent

▶ use augmented Lagrangian (Hestenes, Powell 1969), ρ > 0

Lρ(x, y) = f(x) + yT (Ax− b) + (ρ/2)∥Ax− b∥22

▶ method of multipliers (Hestenes, Powell; analysis in Bertsekas 1982)

xk+1 := argmin
x

Lρ(x, y
k)

yk+1 := yk + ρ(Axk+1 − b)

(note specific dual update step length ρ)
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Method of multipliers dual update step

▶ optimality conditions (for differentiable f):

Ax⋆ − b = 0, ∇f(x⋆) +AT y⋆ = 0

(primal and dual feasibility)

▶ since xk+1 minimizes Lρ(x, y
k)

0 = ∇xLρ(x
k+1, yk)

= ∇xf(x
k+1) +AT

(
yk + ρ(Axk+1 − b)

)
= ∇xf(x

k+1) +AT yk+1

▶ dual update yk+1 = yk + ρ(xk+1 − b) makes (xk+1, yk+1) dual
feasible

▶ primal feasibility achieved in limit: Axk+1 − b → 0

Method of multipliers 11



Method of multipliers

(compared to dual decomposition)

▶ good news: converges under much more relaxed conditions
(f can be nondifferentiable, take on value +∞, . . . )

▶ bad news: quadratic penalty destroys splitting of the x-update, so
can’t do decomposition
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Alternating direction method of multipliers

▶ a method

– with good robustness of method of multipliers
– which can support decomposition

▶ “robust dual decomposition” or “decomposable method of
multipliers”

▶ proposed by Gabay, Mercier, Glowinski, Marrocco in 1976
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Alternating direction method of multipliers

▶ ADMM problem form (with f , g convex)

minimize f(x) + g(z)
subject to Ax+Bz = c

– two sets of variables, with separable objective

▶ Lρ(x, z, y) = f(x)+g(z)+yT (Ax+Bz− c)+(ρ/2)∥Ax+Bz− c∥22

▶ ADMM:

xk+1 := argminx Lρ(x, z
k, yk) // x-minimization

zk+1 := argminz Lρ(x
k+1, z, yk) // z-minimization

yk+1 := yk + ρ(Axk+1 +Bzk+1 − c) // dual update
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Alternating direction method of multipliers

▶ if we minimized over x and z jointly, reduces to method of
multipliers

▶ instead, we do one pass of a Gauss-Seidel method

▶ we get splitting since we minimize over x with z fixed, and vice versa
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ADMM and optimality conditions

▶ optimality conditions (for differentiable case):

– primal feasibility: Ax+Bz − c = 0
– dual feasibility: ∇f(x) +AT y = 0, ∇g(z) +BT y = 0

▶ since zk+1 minimizes Lρ(x
k+1, z, yk) we have

0 = ∇g(zk+1) +BT yk + ρBT (Axk+1 +Bzk+1 − c)

= ∇g(zk+1) +BT yk+1

▶ so with ADMM dual variable update, (xk+1, zk+1, yk+1) satisfies
second dual feasibility condition

▶ primal and first dual feasibility are achieved as k → ∞
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ADMM with scaled dual variables

▶ combine linear and quadratic terms in augmented Lagrangian

Lρ(x, z, y) = f(x) + g(z) + yT (Ax+Bz − c) + (ρ/2)∥Ax+Bz − c∥22
= f(x) + g(z) + (ρ/2)∥Ax+Bz − c+ u∥22 + const.

with uk = (1/ρ)yk

▶ ADMM (scaled dual form):

xk+1 := argmin
x

(
f(x) + (ρ/2)∥Ax+Bzk − c+ uk∥22

)
zk+1 := argmin

z

(
g(z) + (ρ/2)∥Axk+1 +Bz − c+ uk∥22

)
uk+1 := uk + (Axk+1 +Bzk+1 − c)
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Convergence

▶ assume (very little!)

– f , g convex, closed, proper
– L0 has a saddle point

▶ then ADMM converges:

– iterates approach feasibility: Axk +Bzk − c → 0
– objective approaches optimal value: f(xk) + g(zk) → p⋆
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Related algorithms

▶ operator splitting methods
(Douglas, Peaceman, Rachford, Lions, Mercier, . . . 1950s, 1979)

▶ Dykstra’s alternating projections algorithm (1983)

▶ Spingarn’s method of partial inverses (1985)

▶ Rockafellar-Wets progressive hedging (1991)

▶ proximal methods (Rockafellar, many others, 1976–)

▶ saddle-point proximal methods (Chambolle, Pock 2005–)

▶ Bregman iterative methods (2008–)

▶ most of these are special cases of the proximal point algorithm
(Rockafellar 1976)
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Common patterns

▶ x-update step requires minimizing f(x) + (ρ/2)∥Ax− v∥22
(with v = Bzk − c+ uk, which is constant during x-update)

▶ similar for z-update

▶ several special cases come up often

▶ can simplify update by exploiting structure in these cases
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Decomposition

▶ suppose f is block-separable,

f(x) = f1(x1) + · · ·+ fN (xN ), x = (x1, . . . , xN )

▶ A is conformably block separable: ATA is block diagonal

▶ then x-update splits into N parallel updates of xi
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Proximal operator

▶ consider x-update when A = I

x+ = argmin
x

(
f(x) + (ρ/2)∥x− v∥22

)
= proxf,ρ(v)

▶ some special cases:

f = IC (indicator fct. of set C) x+ := ΠC(v) (projection onto C)

f = λ∥ · ∥1 (ℓ1 norm) x+
i := Sλ/ρ(vi) (soft thresholding)

(Sa(v) = (v − a)+ − (−v − a)+)
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Quadratic objective

▶ f(x) = (1/2)xTPx+ qTx+ r

▶ x+ := (P + ρATA)−1(ρAT v − q)

▶ use matrix inversion lemma when computationally advantageous

(P + ρATA)−1 = P−1 − ρP−1AT (I + ρAP−1AT )−1AP−1

▶ (direct method) cache factorization of P + ρATA (or
I + ρAP−1AT )

▶ (iterative method) warm start, early stopping, reducing tolerances
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Smooth objective

▶ f smooth

▶ can use standard methods for smooth minimization

– gradient, Newton, or quasi-Newton
– preconditionned CG, limited-memory BFGS (scale to very large

problems)

▶ can exploit

– warm start
– early stopping, with tolerances decreasing as ADMM proceeds
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Constrained convex optimization

▶ consider ADMM for generic problem

minimize f(x)
subject to x ∈ C

▶ ADMM form: take g to be indicator of C

minimize f(x) + g(z)
subject to x− z = 0

▶ algorithm:

xk+1 := argmin
x

(
f(x) + (ρ/2)∥x− zk + uk∥22

)
zk+1 := ΠC(x

k+1 + uk)

uk+1 := uk + xk+1 − zk+1
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Lasso

▶ lasso problem:

minimize (1/2)∥Ax− b∥22 + λ∥x∥1

▶ ADMM form:

minimize (1/2)∥Ax− b∥22 + λ∥z∥1
subject to x− z = 0

▶ ADMM:

xk+1 := (ATA+ ρI)−1(AT b+ ρzk − yk)

zk+1 := Sλ/ρ(x
k+1 + yk/ρ)

yk+1 := yk + ρ(xk+1 − zk+1)
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Lasso example

▶ example with dense A ∈ R1500×5000

(1500 measurements; 5000 regressors)

▶ computation times

factorization (same as ridge regression) 1.3s

subsequent ADMM iterations 0.03s

lasso solve (about 50 ADMM iterations) 2.9s

full regularization path (30 λ’s) 4.4s

▶ not bad for a very short Matlab script
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Summary and conclusions

ADMM

▶ is the same as, or closely related to, many methods with other names

▶ has been around since the 1970s

▶ gives simple single-processor algorithms that can be competitive
with state-of-the-art

▶ can be used to coordinate many processors, each solving a
substantial problem, to solve a very large problem
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