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Goals

robust methods for
» arbitrary-scale optimization
— machine learning/statistics with huge data-sets
— dynamic optimization on large-scale network
— computer vision
» decentralized optimization

— devices/processors/agents coordinate to solve large problem, by
passing relatively small messages
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Dual problem

» convex equality constrained optimization problem

minimize  f(z)
subject to Ax =b

» Lagrangian: L(z,y) = f(z) + y* (Az — b)
» dual function: g(y) = inf, L(x,y)
» dual problem:  maximize g(y)

» recover x* = argmin, L(z, y*)

Dual decomposition



Dual ascent

» gradient method for dual problem: 3*+1 = y* + a*Vg(y*)
> Vg(y*) = AZ — b, where & = argmin, L(z, y¥)

» dual ascent method is
ot = argmin, L(z,y") // x-minimization
Pl =k 4 aF(Axk Y —b) /) dual update

» works, with lots of strong assumptions

Dual decomposition



Dual decomposition

» suppose f is separable:
fx)=fi(z1) +--+ [n(zy), 2= (21,...,2N)

» then L is separable in x:
L(z,y) = Li(z1,y) + -+ Ln(zn,y) — y"b,
Li(zi,y) = filzi) +y" Aiz;
» z-minimization in dual ascent splits into /N separate minimizations

k+1 3 k
x; = argmin L;(x;, y")

T

which can be carried out in parallel

Dual decomposition



Dual decomposition

» dual decomposition (Everett, Dantzig, Wolfe, Benders 1960-65)

k+1
Ty

N
Y= gF ef (DL AT - b)

= argminziLi(mi,yk), i=1,...,N

k+1

%

» scatter yk; update z; in parallel; gather A;z
» solve a large problem
— by iteratively solving subproblems (in parallel)

— dual variable update provides coordination

» works, with lots of assumptions; often slow

Dual decomposition
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Method of multipliers

» a method to robustify dual ascent
> use augmented Lagrangian (Hestenes, Powell 1969), p > 0
Ly(z,y) = f(z) +y" (Az — b) + (p/2)[| Az — b||3
» method of multipliers (Hestenes, Powell; analysis in Bertsekas 1982)
"t = argmin L,(z,y")

Y=y p(AxtT = b)

(note specific dual update step length p)
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Method of multipliers dual update step

> optimality conditions (for differentiable f):
Ax* —b=0, Vi) + ATy* =0

(primal and dual feasibility)

k+1

; P k
» since """ minimizes L,(z,y")

0 = VwLp(ka,yk)
VL) AT (g 4 p(Ar )
= V.f(zFtl) 4 ATyk+1

» dual update y**! = y* + p(2F*+1 — b) makes (z**1,y*+1) dual
feasible

» primal feasibility achieved in limit: Az**! —b — 0

Method of multipliers



Method of multipliers

(compared to dual decomposition)

» good news: converges under much more relaxed conditions
(f can be nondifferentiable, take on value +o0, ...)

» bad news: quadratic penalty destroys splitting of the z-update, so
can’'t do decomposition

Method of multipliers
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Alternating direction method of multipliers

» a method
— with good robustness of method of multipliers
— which can support decomposition

» “robust dual decomposition” or “decomposable method of
multipliers”

» proposed by Gabay, Mercier, Glowinski, Marrocco in 1976

Alternating direction method of multipliers
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Alternating direction method of multipliers

» ADMM problem form (with f, g convex)

minimize  f(x) + g(z)

subject to Ax+ Bz=c¢

— two sets of variables, with separable objective

> L,(z,2,y) = f(x)+9(2) +yT (Az+ Bz —c) +

> ADMM:
oFl = argming L,(z, 2%, y*)
AL = argmin, L, (2%, 2, y%)
YL = gk 4 p(Azh 4 BR )

Alternating direction method of multipliers

(p/2)| Az + Bz —c|3

// x-minimization
// z-minimization

// dual update
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Alternating direction method of multipliers

» if we minimized over x and z jointly, reduces to method of
multipliers

» instead, we do one pass of a Gauss-Seidel method

> we get splitting since we minimize over x with z fixed, and vice versa

Alternating direction method of multipliers 16



ADMM and optimality conditions

> optimality conditions (for differentiable case):
— primal feasibility: Ax+ Bz —c=0
- dual feasibility: Vf(z) + ATy =0, Vg(z)+BTy=0

k+1

> since 2" ! minimizes L,(z""!, z, y*) we have

0 = Vg(zF™) + BTy" 4+ pBT (A2"! 4 BF — ¢)
= Vg(z"?h) + BTyr+!

» so with ADMM dual variable update, (z*+1, 2F+1 y#+1) satisfies
second dual feasibility condition

» primal and first dual feasibility are achieved as &k — oo

Alternating direction method of multipliers
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ADMM with scaled dual variables

» combine linear and quadratic terms in augmented Lagrangian

Ly(z,z,y) = [f(z)+9(2)+y" (Az + Bz —¢) + (p/2)|| Az + Bz — c||3
f(@) +g(2) + (p/2)|| Az + Bz — ¢+ ul|3 + const.

with u* = (1/p)y*

» ADMM (scaled dual form):

"= argmin (f(z) + (p/2)|| Az + B2" — ¢+ u¥|3)
1= argmin (g(2) + (p/2)[|Az" + Bz — ¢+ u¥||3)
uF = b 4 (AT 4 BRTL ¢
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Convergence

> assume (very little!)

— f, g convex, closed, proper
— Lo has a saddle point

» then ADMM converges:

— iterates approach feasibility: Az® + Bz¥ —¢c— 0
— objective approaches optimal value: f(z*) + g(2*) = p

Alternating direction method of multipliers

*
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Related algorithms

» operator splitting methods
(Douglas, Peaceman, Rachford, Lions, Mercier, ...1950s, 1979)

» Dykstra's alternating projections algorithm (1983)

> Spingarn’s method of partial inverses (1985)

> Rockafellar-Wets progressive hedging (1991)

» proximal methods (Rockafellar, many others, 1976-)

» saddle-point proximal methods (Chambolle, Pock 2005-)
» Bregman iterative methods (2008-)

» most of these are special cases of the proximal point algorithm
(Rockafellar 1976)

Alternating direction method of multipliers
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Common patterns

> 2-update step requires minimizing f(z) + (p/2)||Ax — v||3
(with v = Bz*F — ¢ + u*, which is constant during z-update)

» similar for z-update

v

several special cases come up often

» can simplify update by exploiting structure in these cases
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Decomposition

» suppose f is block-separable,

f(x) = fi(z1) + -+ fn(oN), z=(x1,...,2N)

» A is conformably block separable: AT A is block diagonal
» then z-update splits into N parallel updates of x;

Common patterns

23



Proximal operator

» consider z-update when A =1
o = avgmin (£(a) + (p/2)}o = o[) = proxy,, (v

» some special cases:

f = Ic (indicator fct. of set C) zT := I (v) (projection onto C)
f=Xl"li (¢4 norm) z} == 5,,(v;) (soft thresholding)

(Sa(v) = (v—a)y = (v —a)y)
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Quadratic objective

> f(z) = (1/2)a"Px+qTx +r

> ot = (P + pATA)"1(pATv — q)

» use matrix inversion lemma when computationally advantageous
(P+pATA) = P~ — pP7YAT(I + pAP 1 AT) 1 AP!

» (direct method) cache factorization of P + pAT A (or
I+ pAP~1AT)

> (iterative method) warm start, early stopping, reducing tolerances

Common patterns
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Smooth objective

» f smooth

» can use standard methods for smooth minimization
— gradient, Newton, or quasi-Newton

— preconditionned CG, limited-memory BFGS (scale to very large
problems)

» can exploit
— warm start
— early stopping, with tolerances decreasing as ADMM proceeds

Common patterns
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Constrained convex optimization

» consider ADMM for generic problem

minimize  f(z)
subjectto z €C

> ADMM form: take g to be indicator of C

» algorithm:

l‘k+1

Zk+1
uk+1

Examples

minimize  f(x) + g(z)
subjectto x—2=0

argmin (f(@) + (p/2) ||z — 2" + u"|]3)

Hc($k+1 _|_uk)
uk + :Ek-H o Zk+1
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Lasso

» lasso problem:

minimize (1/2)| Az — b||3 + M|z|1

> ADMM form:
minimize  (1/2)| Az — b||2 + ||z|)1
subjectto x—2=0
» ADMM:
"= (ATA+ pl) Y AT + p2F —ob)
Zchrl _ S)\/p(l‘kJrl + yk/p)
gl = gk g p(akt - kT

Examples



Lasso example

> example with dense A € R1500%5000
(1500 measurements; 5000 regressors)
» computation times

factorization (same as ridge regression)  1.3s
subsequent ADMM iterations 0.03s
lasso solve (about 50 ADMM iterations) 2.9s
full regularization path (30 \'s) 4.4s

» not bad for a very short Matlab script
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Summary and conclusions

ADMM
P is the same as, or closely related to, many methods with other names
» has been around since the 1970s

» gives simple single-processor algorithms that can be competitive
with state-of-the-art

» can be used to coordinate many processors, each solving a
substantial problem, to solve a very large problem

Conclusions 32
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