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Line segment

Given x ∈ Rn and y ∈ Rn,

θx+ (1− θ)y

is a point in between x and y if θ ∈ [0, 1].

The set of all points between a given x ∈ Rn and y ∈ Rn

{θx+ (1− θ)y | θ ∈ [0, 1]}
is called the line segment between x and y

Update figure
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Convex combinations

Given x1, . . . , xk ∈ Rn,

θ1x1 + · · ·+ θkxk

is called a convex combination or a weighted average of x1, . . . , xk if
θ1, . . . , θk ≥ 0 and θ1 + · · ·+ θk = 1.

Given x1, . . . , xk ∈ Rn, the set of all convex combinations

conv({x1, . . . , xk}) = {θ1x1+· · ·+θkxk | θ1, . . . , θk ≥ 0, θ1+· · ·+θk = 1}

is called the convex hull of x1, . . . , xk.

x1

x2x3

= conv({x1, x2, x3})
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Convex sets

We say a set C ⊆ Rn is convex if

θx+ (1− θ)y ∈ C, ∀x, y ∈ C, θ ∈ (0, 1).

In other words, C is convex if x, y ∈ C implies the line segment
connecting x and y is wholly contained in C.
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Convex functions

We say a function f : Rn → R is convex if

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y), ∀x, y ∈ Rn, θ ∈ [0, 1].

I.e., f is convex if the chord (line segment) connecting (x, f(x)) and
(y, f(y)) lies above the graph of f .

We say f : Rn → R is concave if −f is convex.
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Strictly convex functions

Recall that f : Rn → R is convex if

f(θx+(1−θ)y) ≤ θf(x)+(1−θ)f(y), ∀x, y ∈ C, x ̸= y, θ ∈ (0, 1).

(Our prior definition of convexity is equivalent to this.)

We say f : Rn → R is strictly convex if

f(θx+(1−θ)y) < θf(x)+(1−θ)f(y), ∀x, y ∈ C, x ̸= y, θ ∈ (0, 1).

I.e., f is strictly convex if the chord connecting (x, f(x)) and (y, f(y))
lies strictly above the graph of f (excluding the endpoints).
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No bad local minima for cvx. functions

Theorem.
Let f be convex. Then any local minimizer is a global minimizer.

Thus, when we minimize convex functions, we never get stuck at bad
local minima because there aren’t any bad local minima.

Illustration of proof. Let x⋆ be a local minimizer. Assume for
contradiction that x⋆ is not a global minimum.

Draw a contradiction because the chord is below the graph for θ ≈ 0.
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No bad local minima for cvx. functions

Proof. Let x⋆ ∈ Rn be a local minimizer of f . Assume for contradiction
that there is y ∈ Rn such that f(y) < f(x⋆), i.e., assume for
contradiction that x⋆ is not a global minimizer. By convexity,

f((1− θ)x⋆ + θy) ≤ (1− θ)f(x⋆) + θf(y) < f(x⋆)

for any θ ∈ (0, 1), even for θ very close to 0. However, x⋆ is a local
minimizer, so f((1− θ)x⋆ + θy) ≥ f(x⋆) for θ sufficiently close to 0, and
we have a contradiction. Thus we conclude that such y cannot exist, i.e.,
x⋆ is a global minimizer.

8



Gradient provides global lower bound for cvx. functions

Theorem.
Let f : Rn → R be convex. Assume f is differentiable at x ∈ Rn. Then,

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩, ∀ y ∈ Rn.
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Gradient provides global lower bound for cvx. functions

Theorem.
Let f : Rn → R be convex. Assume f is differentiable at x ∈ Rn. Then,

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩, ∀ y ∈ Rn.

Illustration of proof.
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Gradient provides global lower bound for cvx. functions

Theorem.
Let f : Rn → R be convex. Assume f is differentiable at x. Then,

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩, ∀ y ∈ Rn.

Proof. By convexity,

f(x+ θ(y − x)) ≤ (1− θ)f(x) + θf(y), ∀ θ ∈ (0, 1).

Reorganizing, we get

f(y) ≥ f(x) +
f(x+ θ(y − x))− f(x)

θ
, ∀ θ ∈ (0, 1).

By taking θ → 0, we get the directional derivative of f at x in direction
(y − x) and arrive at the desired inequality.

11



Gradient provides global lower bound for cvx. functions

The inequality
f(y) ≥ f(x) + ⟨∇f(x), y − x⟩

is called the convexity inequality.

In fact, the convexity inequality can be thought of as a defining property
of convexity, rather than a consequence of convexity. In particular, a
differentiable f : Rn → R is convex if and only if it satisfies the convexity
inequality everywhere.
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No bad stationary point for cvx. functions

Corollary.
Let f : Rn → R be convex. If f is differentiable at x and ∇f(x) = 0,
then x ∈ argmin f .

Proof. By the convexity inequality, f(y) ≥ f(x) for all y ∈ Rn.
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Basic calculus of convex sets and functions

Theorem.
The intersection of convex sets is convex.

Theorem.
A nonnegative combination of convex functions is convex.

Theorem.
A sublevel set of a convex function is convex.
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Basic calculus of convex sets and functions

Theorem.
The intersection of convex sets is convex.

So if A ⊆ Rn and B ⊆ Rn are convex sets, then A ∩B is convex.

▶ The intersection can be arbitrary, i.e., the intersection can be over
countably or uncountably infinite convex sets.

▶ To clarify, an empty set is defined to be a convex set, and the
intersection of convex sets can be empty.
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Basic calculus of convex sets and functions

Theorem.
A nonnegative combination of convex functions is convex.

I.e., if α1, . . . , αk are nonnegative scalars and f1, . . . , fk are convex
functions, then α1f1 + · · ·+ αkfk is convex.

▶ If f is convex, then αf is convex and −αf is concave if α ≥ 0.

▶ Often, one shows that an f is convex by arguing that f = g + h and
showing that g and h are convex.
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Basic calculus of convex sets and functions

Theorem.
A sublevel set of a convex function is convex.

For any f : Rn → R and α ∈ R, the α-sublevel set of f is defined as

{x | f(x) ≤ α} ⊆ Rn,

which is the set of x attaining function value better than α.

▶ In particular, this implies that the set of minimizers of a convex
function is convex, i.e., if f is convex, then argmin f is convex.

▶ Often, one shows that a set is convex by showing that it is a sublevel
set of a convex function.
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Convexity via monotonicity

For differentiable f , convexity is monotonicity of f ′.

Theorem.
A differentiable univariate function f : R → R is convex if and only if f ′

is non-decreasing.

(To clarify, convex functions need not be differentiable.)
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Convexity via monotonicity

For differentiable f , convexity is monotonicity of f ′.

Theorem.
A differentiable univariate function f : R → R is convex if and only if f ′

is non-decreasing.

Proof. (⇒) Assume f is convex. Then, by the convexity inequality,

f(y) ≥ f(x) + f ′(x)(y − x)

f(x) ≥ f(y) + f ′(y)(x− y)

for all x, y ∈ R. Adding the two, we get

(f ′(x)− f ′(y))(x− y) ≥ 0,

which implies f ′(x) ≥ f ′(y) if x > y, i.e. f ′ is non-decreasing.
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Convexity via monotonicity

(⇐) Assume f ′ : R → R is non-decreasing. Let x ≤ y and
z = θx+ (1− θ)y with θ ∈ [0, 1]. So, x ≤ z ≤ y. Then, we can show the
convexity inequalities about z:

f(y)− f(z) =

∫ y

z

f ′(t) dt ≥
∫ y

z

f ′(z) dt = f ′(z)(y − z)

= f ′(z)θ(y − x)

f(x)− f(z) = −
∫ z

x

f ′(t) dt ≥ −
∫ z

x

f ′(z) dt = f ′(z)(x− z)

= f ′(z)(1− θ)(x− y).

Now we can combine these convexity inequalities to obtain the definition
of convexity: Multiplying the first inequality by (1− θ) and the second
my θ and adding them gives us

θf(x) + (1− θ)f(y)− f(z) ≥ 0.
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Convexity via curvature

For twice-differentiable f , convexity is positive (nonnegative) curvature.

Theorem.
A twice-differentiable univariate function f : R → R is convex if and only
if f ′′(x) ≥ 0 for all x ∈ R.

Proof. From the previous theorem, f is convex if and only if f ′ is
non-decreasing. Since f ′ is assumed to be differentiable, this holds if and
only if f ′′ ≥ 0.
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Positive semidefinite matrices

We say a matrix A ∈ Rn×n is symmetric positive semidefinite and write

A ⪰ 0

if A is symmetric and all eigenvalues of A are nonnegative, i.e., if
A = A⊺ and λmin(A) ≥ 0.

Lemma.
Let A ∈ Rn×n and A = A⊺. Then, A ⪰ 0 if and only if

v⊺Av ≥ 0, ∀ v ∈ Rn.

Proof follows from the spectral theorem.
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Convexity on lines

Lemma.
Let f : Rn → R be convex and x, v ∈ Rn. Then, g(t) = f(x+ tv) is
convex for any v ∈ Rn.

Lemma.
Let f : Rn → R. If g(t) = f(x+ tv) is convex ∀x, v ∈ Rn, then f is cvx.

In other words, to certify that f is convex, it is enough to check the
convexity of f restricted to lines.

Proofs are straightforward from the definition of convexity.
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Convexity via curvature

For multivariate convex functions, the curvature condition is given by the
eigenvalues of the Hessian.

Theorem.
A twice continuously differentiable multivariate function f : Rn → R is
convex if and only if ∇2f(x) ⪰ 0 for all x ∈ Rn.

Proof. (By Schwartz’s theorem, ∇2f(x) ∈ Rn×n is symmetric.)

Assume f is convex. For any x, v ∈ Rn, let g(t) = f(x+ tv). By the
chain rule, and since g : R → R is convex and twice-differentiable,

g′′(0) = v⊺∇2f(x)v ≥ 0.

Since this holds for all v ∈ Rn, we conclude ∇2f(x) ⪰ 0.

Conversely, assume ∇2f(x) ⪰ 0 for all x ∈ Rn. For any x, v ∈ Rn, let
g(t) = f(x+ tv). By the chain rule and ∇2f(·) ⪰ 0,

g′′(t) = v⊺∇2f(x+ tv)v ≥ 0.

Then, g′′ ≥ 0 implies g is convex, which, in turn, implies f is convex.
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Affine functions are convex

A function f : Rn → R is affine

f(x) = ⟨a, x⟩+ b

for some a ∈ Rn and b ∈ R.

Strictly speaking, a function is linear if it is affine with b = 0.

Theorem.
An affine function is convex.

Proof 1. An affine function has 0 curvature, which is nonnegative.

Proof 2. If f is affine,

f(θx+ (1− θ)y) = ⟨a, θx+ (1− θ)y⟩+ b

= θ⟨a, x⟩+ θb+ (1− θ)⟨a, y⟩+ (1− θ)b

= θf(x) + (1− θ)f(y).
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Cocoercivity inequality for smooth convex functions

Lemma.
Let f : Rn → R be L-smooth. For any x⋆ ∈ argmin f ,

f(y)− 1

2L
∥∇f(y)∥2 ≥ f(x⋆), ∀ y ∈ Rn.

Illustration of proof.

y

y − 1
L∇f(y)

x⋆

f(y)

f(y)− 1
2L∥∇f(y)∥2

f(y − 1
L∇f(y))

f(x⋆)
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Cocoercivity inequality for smooth convex functions

Lemma.
Let f : Rn → R be L-smooth. For any x⋆ ∈ argmin f ,

f(y)− 1

2L
∥∇f(y)∥2 ≥ f(x⋆), ∀ y ∈ Rn.

Proof. By x⋆ ∈ argmin f and the L-smoothness lemma,

f(x⋆) ≤ f(y + δ) ≤ f(y) + ⟨∇f(y), δ⟩+ L

2
∥δ∥2, ∀δ ∈ Rn.

Let δ = − 1
L∇f(y) (which minimizes the RHS) to get

f(x⋆) ≤ f(y − 1
L∇f(y)) ≤ f(y)− 1

2L
∥∇f(y)∥2.
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Cocoercivity inequality for smooth convex functions

Lemma.
Let f : Rn → R be L-smooth. For any x⋆ ∈ argmin f ,

f(y)− 1

2L
∥∇f(y)∥2 ≥ f(x⋆), ∀ y ∈ Rn.

Interpretation 1: This strengthens the simple inequality f(y) ≥ f(x⋆).

Interpretation 2: The suboptimality of y, measured by f(y)− f(x⋆), is
larger than 1

2L∥∇f(y)∥2.

▶ If ∥∇f(y)∥2 is large, then the suboptimality is necessarily large.

▶ If ∥∇f(y)∥2 is small, are we assured that the suboptimality is small?

Interpretation 3: 1
2L∥∇f(y)∥2 is the guaranteed progress (descent) to be

made by taking a gradient descent step y 7→ y − 1
L∇f(y).
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Cocoercivity inequality for smooth convex functions

Theorem.
Let f : Rn → R be convex and L-smooth. Then,

f(y) ≥ f(x) + ⟨∇f(x), y− x⟩+ 1

2L
∥∇f(y)−∇f(x)∥2, ∀x, y ∈ Rn.

Proof. Let
g(y) = f(y)− ⟨∇f(x), y⟩.

Note that g is convex, g is L-smooth, ∇g(y) = ∇f(y)−∇f(x), and
x ∈ argmin g. (The argument x ∈ argmin g uses convexity.) Finally,
apply the previous lemma to g.
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Cocoercivity inequality for smooth convex functions

This inequality

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ 1

2L
∥∇f(y)−∇f(x)∥2

is called the cocoercivity inequality for smooth convex functions.

Note that this is stronger than the convexity inequality

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩,

which holds for differentiable convex functions.

The cocoercivity inequality is fundamental when analyzing smooth
convex functions.

In fact, it can be shown that the cocoercivity inequality implies the
L-smoothness inequality. Therefore,

[L-smooth & convexity inequalities] ⇔ [cocoercivity inequality]
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Strong convexity

A function f : Rn → R is µ-strongly convex is f(x)− µ
2 ∥x∥

2 is convex.
(Strongly convex functions need not be differentiable.)

Lemma.
Strong convexity implies convexity.

Proof. If f is strongly convex, then(
f(x)− µ

2 ∥x∥
2
)
+ µ

2 ∥x∥
2 = f(x)

is convex, since a sum of convex functions is convex.

Lemma.
Let x0 ∈ Rn. Then, f : Rn → R is strongly convex if and only if
f(x)− µ

2 ∥x− x0∥2 is convex.

Proof. Note

f(x)− µ
2 ∥x− x0∥2 = f(x)− µ

2 ∥x∥
2 − µ⟨x, x0⟩+ µ

2 ∥x0∥2︸ ︷︷ ︸
affine

.

Adding or subtracting an affine function does not affect convexity. 31



Strong convexity: First-order characterization

Theorem.
Let f : Rn → R be µ-strongly convex and differentiable. Then,

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ µ

2
∥x− y∥2, ∀x, y ∈ Rn.

This is called the strong convexity inequality.

Proof. Let g(y) = f(y)− µ
2 ∥y − x∥2. The convexity inequality on g is

g(y) ≥ g(x) + ⟨∇g(x), y − x⟩,

which is
f(y)− µ

2 ∥y − x∥2 ≥ f(x) + ⟨∇f(x), y − x⟩.
Reorganizing, we conclude the result.

(The converse is also true: If f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ µ
2 ∥x− y∥2

holds for all x, y ∈ Rn, then f is µ-strongly convex.)
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Strong convexity: Second-order characterization

Theorem.
Let f : Rn → R twice continuously differentiable. Then, f is µ-strongly
convex if and only if ∇2f(x) ⪰ µI for all x ∈ Rn.

Proof. f is µ-strongly convex if and only if g(x) = f(x)− µ
2 ∥x∥

2 is
convex, which in turn holds if and only if

∇2g(x) ⪰ 0.

Conclude with ∇2g(x) = ∇2f(x)− µI.
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Polyak–  Lojasiewicz inequality

Lemma.
Let f : Rn → R be µ-strongly convex, differentiable, and x⋆ ∈ argmin f .
Then,

f(y)− 1

2µ
∥∇f(y)∥2 ≤ f(x⋆), ∀x ∈ Rn.

Proof. By µ-strong convexity,

f(x) ≥ f(y) + ⟨∇f(y), x− y⟩+ µ

2
∥x− y∥2

≥ inf
x∈Rn

{
f(y) + ⟨∇f(y), x− y⟩+ µ

2
∥x− y∥2

}
= f(y)− 1

2µ
∥∇f(y)∥2.

(Infimum is attained at x = y − 1
µ∇f(y).) Plugging x = x⋆ into the

LHS, we arrive at the conclusion.

This is called the Polyak–  Lojasiewicz (PL) inequality. Strong convexity
implies PL. However, the converse is not true.
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Polyak–  Lojasiewicz inequality

Lemma.
Let f : Rn → R be µ-strongly convex, differentiable, and x⋆ ∈ argmin f .
Then,

f(y)− 1

2µ
∥∇f(y)∥2 ≤ f(x⋆), ∀x ∈ Rn.

Interpretation: The suboptimality of y, measured by f(y)− f(x⋆), is
smaller than 1

2µ∥∇f(y)∥2.

▶ If ∥∇f(y)∥2 is large, are we assured that the suboptimality is large?

▶ If ∥∇f(y)∥2 is small, then the suboptimality is necessarily small.
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Strong convexity and smoothness

Informally speaking, µ-strongly convex functions have upward curvature
of at least µ, and L-smooth convex functions have upward curvature of
no more than L. We can think of nondifferentiable points as points with
infinite curvature.

Strongly convex but not smooth Smooth but not strongly convex.

(In fact, strong convexity and smoothness are dual properties:
[f is µ-strongly convex] ⇔ [f∗ is (1/µ)-smooth].)
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Strictly convex functions

We say a function f : Rn → R is strictly convex if

f(θx+(1−θ)y) < θf(x)+(1−θ)f(y), ∀x, y ∈ Rn, x ̸= y, θ ∈ (0, 1).

I.e., f is convex if the chord connecting (x, f(x)) and (y, f(y)) lies
strictly above the graph of f except at the endpoints.

XXX Figure example XXX
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Strictly convex functions

Lemma.
Strong convexity implies strict convexity.

Proof. Homework.

Lemma.
Let f : Rn → R be strictly convex and C ⊆ Rn nonempty convex. Then,

minimize
x∈Rn

f(x)

subject to x ∈ C

has at most one solution.

Proof. Assume for contradiction that x⋆ and y⋆ are distinct solutions.
Then,

f(θx⋆ + (1− θ)y⋆︸ ︷︷ ︸
∈C by convexity

) < θf(x⋆) + (1− θ)f(y⋆) = inf f, ∀ θ ∈ (0, 1),

which is a contradiction. 38



Minimizers of strongly convex functions

Lemma.
Let f : Rn → R be strongly convex. Then f has exactly one minimizer.
(Minimizer exists and is unique).

Illustration of proof.

39



Minimizers of strongly convex functions

Lemma.
Let f : Rn → R be strongly convex. Then f has exactly one minimizer.
(Minimizer exists and is unique).

Proof. Uniqueness follows from strict convexity. Remains to show
existence. Assume f is diff. and let x0 ∈ Rn. Then,

f(x) ≥ f(x0) + ⟨∇f(x0), x− x0⟩+
µ

2
∥x− x0∥2

= f(x0) +
µ

2

∥∥x− (x0 − ∇f(x0)
µ )

∥∥2 − µ
2

∥∥∇f(x0)
µ

∥∥2
for all x ∈ Rn. Therefore,

{x | f(x) ≤ f(x0)}︸ ︷︷ ︸
closed (pre-image of cont. fn.)

⊂ B
(
x0 − ∇f(x0)

µ ,
∥∥∇f(x0)

µ

∥∥)︸ ︷︷ ︸
ball, boundedand

argmin
x∈Rn

f(x) = argmin
x:f(x)≤f(x0)

f(x).

Since the RHS is a minimization of a continuous function over a compact
set, the minimum is attained, i.e., a minimizer exists.

When f is non-differentiable, the same argument works with a
subgradient. Continuity of the convex function f will be shown later.
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Smooth strongly convex functions

Lemma.
Let f : Rn → R be µ-strongly convex and L-smooth. Then µ ≤ L.

Proof. Let x ̸= y. By µ-strong convexity,

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ µ
2 ∥x− y∥2

f(x) ≥ f(y) + ⟨∇f(y), x− y⟩+ µ
2 ∥x− y∥2

and adding jthese two we have

⟨∇f(x)−∇f(y), x− y⟩ ≥ µ∥x− y∥2.
By Cauchy–Schwartz,

µ∥x− y∥2 ≤ ⟨∇f(x)−∇f(y), x− y⟩ ≤ ∥∇f(x)−∇f(y)∥∥x− y∥
and

µ∥x− y∥ ≤ ∥∇f(x)−∇f(y)∥.
By L-smoothness,

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥,
so µ ≤ L. 41



Projection onto convex sets

Projection1 of p ∈ Rn onto C is the point within C that is closest to p.
Is this notion well-defined?

Theorem.
Let C ⊆ Rn be a nonempty closed convex set and let p ∈ Rn. Then

ΠC(p) = argmin
x∈C

∥x− p∥,

where ∥ · ∥ is the standard Euclidean norm, uniquely exists.

Illustration when C is nonempty closed convex. (Setting of the theorem)

1In linear algebra, our notion of projection corresponds to orthogonal projections
but not oblique projections.
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Projection onto convex sets

Illustration when C is open. The projection is not attained.

Illustration when C is not convex. Projection may not be unique.
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Projection onto convex sets

Proof. Clearly,

ΠC(p) = argmin
x∈C

∥x− p∥ = argmin
x∈C

∥x− p∥2.

Since ∥x− p∥2 is a strictly convex function of f , a minimizer, if exists,
must be unique. (So, there are 0 or 1 minimizers.)

Let {xk}k be a sequence such that

∥xk − p∥ → inf
x∈C

∥x− p∥.

Since {xk}k is bounded, it has a convergent subsequence xkj
→ x∞ ∈ C

by the Bolzano–Weierstrass theorem and closedness of C. By continuity
of ∥x− p∥2 as a function of x, we conclude

∥x∞ − p∥2 = inf
x∈C

∥x− p∥2,

i.e., x∞ is a minimizer. (So, there are more than 0 minimizers.)
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Projection theorem

Theorem.
Let C ⊆ Rn be a nonempty closed convex set. Then, x+ = ΠC(x)
if and only if

⟨y − x+, x− x+⟩ ≤ 0, ∀ y ∈ C.

(Also called the Bourbaki–Cheney–Goldstein inequality.)
Illustration of proof.
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Projection theorem

Theorem.
Let C ⊆ Rn be a nonempty closed convex set. Then, x+ = ΠC(x)
if and only if x+ ∈ C and

⟨y − x+, x− x+⟩ ≤ 0, ∀ y ∈ C.

Proof. (⇒) Assume x+ = argminz∈C ∥z − x∥2 and let y ∈ C. Then,

∥y − x∥2 ≥ ∥x+ − x∥2, ∀ y ∈ C.

Since x+ + θ(y − x+) ∈ C for θ ∈ (0, 1] by convexity of C,

∥x+ + θ(y − x+)︸ ︷︷ ︸
from x+ move towards y

−x∥2 ≥ ∥x+ − x∥2.

Reorganizing the terms, we get

θ2∥y − x+∥2 + 2θ⟨y − x+, x+ − x⟩ ≥ 0.

Dividing by θ and letting θ → 0, we conclude

⟨y − x+, x+ − x⟩ ≥ 0 ⇒ ⟨y − x+, x− x+⟩ ≤ 0.
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Projection theorem

Theorem.
Let C ⊆ Rn be a nonempty closed convex set. Then, x+ = ΠC(x)
if and only if x+ ∈ C and

⟨y − x+, x− x+⟩ ≤ 0, ∀ y ∈ C.

Proof. (¬ ⇒ ¬) Assume x+ ̸= ΠC(x), which means either (i) x+ is not
even in C or (ii) x+ ∈ C but isn’t the closest to x. In case (i), we are
done. In case (ii), x+ ∈ C and there is a y ∈ C such that

∥y − x∥2 < ∥x+ − x∥2.
By convexity of ∥ · −x∥2,

∥x+ + θ(y − x+)︸ ︷︷ ︸
from x+ move towards y

−x∥2 ≤ (1− θ)∥x+ − x∥2 + θ∥y − x∥2 < ∥x+ − x∥2

for θ ∈ (0, 1). (I.e., x+ + θ(y − x+) is closer to x.) Reorganizing terms,

θ2∥y − x+∥2 + 2θ⟨y − x+, x+ − x⟩ < 0.

Dividing by θ and letting θ → 0, we conclude

⟨y − x+, x+ − x⟩ < 0 ⇒ ⟨y − x+, x− x+⟩ > 0.
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Projection is nonexpansive

Theorem.
Let C ⊆ Rn be a nonempty closed convex set. Then ΠC : Rn → Rn is a
nonexpansive operator.

In other words, if x+ = ΠC(x) and y+ = ΠC(y), then

∥x+ − y+∥ ≤ ∥x− y∥.
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Projection is nonexpansive

Theorem.
Let C ⊆ Rn be a nonempty closed convex set. Then ΠC : Rn → Rn is a
nonexpansive operator.

Proof. Let x, y ∈ Rn, x+ = ΠC(x), and y+ = ΠC(y). By the projection
theorem,

⟨y+ − x+, x− x+⟩ ≤ 0

⟨x+ − y+, y − y+⟩ ≤ 0.

Summing these two inequalities, we get

⟨x+ − y+, x+ − y+⟩ ≤ ⟨x+ − y+, x− y⟩.

Using Cauchy–Schwartz, we get

∥x+ − y+∥2 ≤ ⟨x+ − y+, x− y⟩ ≤ ∥x+ − y+∥∥x− y∥.

Dividing by ∥x+ − y+∥ (when nonzero), we conclude the statement.
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Separating hyperplane theorem

Theorem.
Let C ⊂ Rn be a nonempty closed convex set, and let z ∈ Rn. If z /∈ C,
then there is a (y, β) ∈ Rn × R such that y ̸= 0 and

⟨y, x⟩ ≤ β, ∀x ∈ C

⟨y, z⟩ = β.
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Separating hyperplane theorem

Theorem.
Let C ⊂ Rn be a nonempty closed convex set, and let z ∈ Rn. If z /∈ C,
then there is a (y, β) ∈ Rn × R such that y ̸= 0 and

⟨y, x⟩ ≤ β, ∀x ∈ C

⟨y, z⟩ = β.

Illustration of proof.
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Separating hyperplane theorem

Theorem.
Let C ⊂ Rn be a nonempty closed convex set, and let z ∈ Rn. If z /∈ C,
then there is a (y, β) ∈ Rn × R such that y ̸= 0 and

⟨y, x⟩ ≤ β, ∀x ∈ C

⟨y, z⟩ = β.

Proof. Let y = z −ΠC(z). Note, y ̸= 0, since z /∈ C. By the projection
theorem,

⟨x−ΠC(z), y⟩ ≤ 0, ∀x ∈ C.

If we let β = ⟨ΠC(z), y⟩, then

⟨y, x⟩β, ∀x ∈ C.
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Strict separating hyperplane theorem

The result can be strengthened such that the separation is strict.

Theorem.
Let C ⊂ Rn be a nonempty closed convex set, and let z ∈ Rn. If z /∈ C,
then there is a (y, β) ∈ Rn × R such that y ̸= 0 and

⟨y, x⟩ < β, ∀x ∈ C

⟨y, z⟩ > β.
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Supporting hyperplane theorem

Theorem.
Let C ⊂ Rn be a nonempty closed convex set and let z ∈ ∂C. (∂C is the
boundary of C.) Then, there is a (y, β) ∈ Rn × R such that y ̸= 0 and

⟨y, x⟩ ≤ β, ∀x ∈ C

⟨y, z⟩ = β.
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Supporting hyperplane theorem

Sometimes, it is convenient to eliminate β.

Theorem.
Let C ⊂ Rn be a nonempty closed convex set and let z ∈ ∂C. (∂C is the
boundary of C.) Then, there is a non-zero y ∈ Rn such that

⟨y, x⟩ ≤ ⟨y, z⟩︸ ︷︷ ︸
=β

, ∀x ∈ C.

Also, the supporting hyperplane may not be unique if z is at a “corner
point” of C.
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Supporting hyperplane theorem

Write ∂C to denote the boundary of C, i.e., ∂C is the set of points in
the closure of C not belonging to the interior of C.

Theorem.
Let C ⊂ Rn be a nonempty closed convex set and let z ∈ ∂C. Then,
there is a non-zero y ∈ Rn such that

⟨y, x⟩ ≤ ⟨y, z⟩, ∀x ∈ C.

Illustration of proof.
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Supporting hyperplane theorem

Theorem.
Let C ⊂ Rn be a nonempty closed convex set and let z ∈ ∂C. (∂C is the
boundary of C.) Then, there is a non-zero y ∈ Rn such that

⟨y, x⟩ ≤ ⟨y, z⟩, ∀x ∈ C.

Proof. For any ε > 0, it must be that B(z, ε) ̸⊂ C, since z ∈ ∂C.
Choose zn ∈ B(z, 1/2n)\C for n ∈ N, so zn → z. Let

yn =
zn −ΠC(zn)

∥zn −ΠC(zn)∥
,

where we note ΠC(zn) ̸= zn since zn ̸= C. Since {yn}n∈N is a sequence
on the unit ball in Rn (which is compact), it has a convergent
subsequence with a limit, which we denote ynj

→ y∞.
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By the projection theorem,

⟨x−ΠC(zn), zn −ΠC(zn)⟩ ≤ 0, ∀x ∈ C,

so 〈
x−ΠC(zn),

zn −ΠC(zn)

∥zn −ΠC(zn)∥︸ ︷︷ ︸
=yn

〉
≤ 0, ∀x ∈ C.

Therefore,
⟨yn, x⟩ ≤ ⟨yn,ΠC(zn)⟩, ∀x ∈ C.

Taking the limit on ynj
→ y∞,

⟨y∞, x⟩ ≤ ⟨y∞, lim
n→∞

ΠC(zn)⟩
(i)
= ⟨y∞,ΠC(z)⟩

(ii)
= ⟨y∞, z⟩, ∀x ∈ C,

where (i) follows from fact that ΠC is nonexpansive (that is, 1-Lipschitz
continuous) and hence continuous, and (ii) follows from the fact that
z ∈ C, so ΠC(z) = z.
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Supporting hyperplane theorem II

Theorem.
Let C ⊂ Rn be a nonempty convex set (not necessarily closed) and let
z ∈ ∂C. Then, there is a non-zero y ∈ Rn such that

⟨y, x⟩ ≤ ⟨y, z⟩, ∀x ∈ C.

Proof. The supporting hyperplane theorem with the nonempty closed
convex set C guarantees a non-zero y ∈ Rn such that

⟨y, x⟩ ≤ ⟨y, z⟩, ∀x ∈ C.

This requirement is also satisfied with C in place of C.

59



Subgradient

Let f : Rn → R be convex (but not necessarily differentiable). We say
g ∈ Rn is a subgradient of convex f at x if

f(y) ≥ f(x) + ⟨g, y − x⟩ ∀ y ∈ Rn.

The subdifferential of convex f at x is

∂f(x) = {g ∈ Rn | f(y) ≥ f(x) + ⟨g, y − x⟩, ∀ y ∈ Rn},

i.e., ∂f(x) = {subgradients of f at x}.

We have already established that ∇f(x) ∈ ∂f(x) if f is differentiable at
x (convexity inequality), but convex functions can be non-differentiable.
Nevertheless, a subgradient always exists.
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Subdifferential example

The absolute value function is differentiable everywhere except at 0.

f(x) = |x| ∂f(x)

∂f(x) =

 {−1} for x < 0
[−1, 1] for x = 0
{+1} for x > 0
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Subdifferential example

At x1, f is differentiable and ∂f(x1) = {∇f(x1)}.
At x2, f is not differentiable and has many subgradients.

x1 x2

f(x1) + ⟨∇f(x1), x− x1⟩

f(x2) + ⟨g1, x − x2⟩,
g1 ∈ ∂f(x2)

f(x2) + ⟨g2, x − x2⟩,
g2 ∈ ∂f(x2)
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Existence of a subgradient

Theorem.
Let f : Rn → R be convex. For any x ∈ Rn, then exists a subgradient of
f at x, i.e., ∂f(x) ̸= ∅.

Proof.
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Existence of a subgradient

Theorem.
Let f : Rn → R be convex. For any x ∈ Rn, then exists a subgradient of
f at x, i.e., ∂f(x) ̸= ∅.

Proof.
A = {(x, t) | f(x) ≤ t, x ∈ Rn, t ∈ R} ⊂ Rn+1.

By construction, (x, f(x)) ∈ ∂A. By the supporting hyperplane theorem,
there is a v = (g̃, τ) ∈ Rn+1 such that v ̸= 0 and

⟨v, u⟩ = g̃⊺y + τs ≤ g̃⊺x+ τf(x) = ⟨v, (x, f(x))⟩, ∀u = (y, s) ∈ A.

We argue that τ < 0. Indeed, if τ > 0, we can take s → ∞ and draw a
contradiction. If τ = 0, then g̃⊺y ≤ g̃⊺x. Since g̃ ̸= 0 (since v ̸= 0), we
draw a contradiction with y = αg̃ and α → ∞.
If τ < 0, let g = g̃/τ to get

−g⊺y + s ≥ −g⊺x+ f(x), ∀ (y, s) ∈ A.

Plugging in s = f(y), we conclude

f(y) ≥ f(x) + g⊺(y − x), ∀ y ∈ Rn.
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Uniqueness of subgradient ⇔ differentiability

Theorem.
Let f : Rn → R be convex. Then ∂f(x) = {g} if and only if f is
differentiable at x and g = ∇f(x).

We shall come back to this proof later.
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Minimizers as zeros of subdifferentials

Lemma.
Let f : Rn → R be convex. Then,

x⋆ ∈ argmin f ⇔ 0 ∈ ∂f(x⋆).

Proof. x⋆ minimizes f if and only if

f(y) ≥ f(x⋆) + ⟨0, y − x⋆⟩︸ ︷︷ ︸
=0

, ∀ y ∈ Rn.

By definition of subgradients, this holds if and only if 0 ∈ ∂f(x⋆).
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Subdifferential sum rule

Lemma.
Let f : Rn → R be convex. Let

f̃(x) = f(x) + ⟨u, x⟩+ b

for u ∈ Rn and b ∈ R. Then,

∂f̃(x) = ∂f(x) + u = {g + u | g ∈ ∂f(x)}.

Proof. Exercise.

67



Tilting subdifferentials

Lemma.
Let f : Rn → R be convex. Let

f̃(y) = f(y)− ⟨g, x0⟩+ b

for some g ∈ ∂f(x0) and b ∈ R. Then, x0 ∈ argmin f̃ .

Proof.
∂f̃(x0) ∋ g︸︷︷︸

∈∂f(x0)

−g = 0.
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Continuity of univariate convex functions

Theorem.
Let f : R → R be convex. Then, f is continuous.

Proof. W.L.O.G. consider continuity at x = 0, since continuity of f and
f̃(x) = f(x− y) are equivalent. W.L.O.G. assume f is minimized at
x = 0 with f(0) = 0, since otherwise we can consider

f̃(x) = f(x)− f(0)− gx,

where g ∈ ∂f(0).

Illustration of the remaining argument:
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Continuity of univariate convex functions

Theorem.
Let f : R → R be convex. Then, f is continuous.

Proof. W.L.O.G. consider continuity at x = 0, since continuity of f and
f̃(x) = f(x− y) are equivalent. W.L.O.G. assume f is minimized at
x = 0 with f(0) = 0, since otherwise we can consider

f̃(x) = f(x)− f(0)− gx, f ∈ ∂f(x).

For any ε ∈ [0, 1],
0

(i)

≤ f(ε)
(ii)

≤ εf(1)

where (i) follows from 0 being a global minimizer and (ii) follows from
the convexity inequality between input points 0 and 1. Therefore,

0 ≤ lim inf
x→0

f(x) ≤ lim sup
x→0

f(x) ≤ εmax{f(+1), f(−1)}

for any ε > 0. By the squeeze theorem, we conclude limx→0 f(x) = 0,
i.e., continuity.
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Lemma: Convex fn. are maximized at extreme points

For any ε > 0, let

Kε = {(±ε, . . . ,±ε) ∈ Rn}, (So |K| = 2n)

Cε = {x ∈ Rn | ∥x∥∞ ≤ ε}.

Lemma.
Let f : Rn → R be convex. Then,

sup
x∈Cε

f(x) = max
x∈Kε

f(x).

I.e., maximizers are attained on Kε. (If a point in Cε\Kε is a maximizer,
there is another maximizer in Kε attaining the same function value.)
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Lemma: Convex fn. are maximized at extreme points

Proof. First, we prove the claim for univariate functions. Let f : R → R
and assume there is an x◦ ∈ (−ε,+ε) such that

f(x◦) > max
x=±ε

f(x)

Then, there is a subgradient g ∈ ∂f(x◦) such that

f(x) ≥ f(x◦) + g(x− x◦).
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Lemma: Convex fn. are maximized at extreme points

Proof. First, we prove the claim for univariate functions. Let f : R → R
and assume there is an x◦ ∈ (−ε,+ε) such that

f(x◦) > max
x=±ε

f(x)

Then, there is a subgradient g ∈ ∂f(x◦) such that

f(x) ≥ f(x◦) + g(x− x◦).

If g ≥ 0, then x = +ε maximizes the RHS and if g < 0 then x = −ε
maximizes the RHS. Therefore, LHS and RHS over x = ±ε, we get

max
x=±ε

f(x) ≥ max
x=±ε

{
f(x) ≥ f(x◦) + g(x− x◦)

}
≥ f(x◦)

?
> max

x=±ε
f(x).

So we have a contradiction, and we are forced to conclude that such an
x◦ does not exist, i.e., the maximum of f over [−ε,+ε] is always
attained on the endpoints ±ε.

(Although the maximizer of f may not be unique and may contain points
in (−ε,+ε), an endpoint,−ε or +ε, will still be a maximizer.) 73



Lemma: Convex fn. are maximized at extreme points

Next, consider the general case in Rn. Assume for contradiction that
there is a x◦ ∈ Cε such that

f(x◦) > max
x∈Kε

f(x).

So x◦ /∈ Kε, and there must be a coordinate i ∈ {1, . . . , n} such that
(x◦)i ∈ (−ε,+ε). Then, the univariate function

f
(
(x◦)1, . . . , (x◦)i−1, δ, (x◦)i+1, . . . , (x◦)n

)
attains a maximizer at δ = ±ε. By modifying the i-th coordinate of x◦
to ±ε, we can only improve (increase) the function value.

Repeating this process at most n times, we get a point in Kε with
function value not smaller than the original f(x◦). This contradicts the
assumption f(x◦) > maxx∈Kε f(x), and we are forced to conclude

sup
x∈Cε

f(x) = max
x∈Kε

f(x).



Continuity of multivariate convex functions

Theorem.
Let f : Rn → R be convex. Then, f is continuous.

Proof. W.L.O.G. consider continuity at x = 0, and assume 0 ∈ argmin f
and 0 = min f .



Continuity of multivariate convex functions

Theorem.
Let f : Rn → R be convex. Then, f is continuous.

Proof. W.L.O.G. consider continuity at x = 0, and assume 0 ∈ argmin f
and 0 = min f . Consider Kε and Cε as previously defined.

Let {x(1), . . . x(2n)} = Kε. Then,

0 = f(0) ≤ f(x) ≤ max
j=1,...,2n

f(x(j)), ∀x ∈ Cε.

Since univariate convex functions are continuous,

lim
ε→0

max
j=1,...,2n

f(x(j)) = max
j=1,...,2n

lim
ε→0

f(x(j)) = f(0) = 0.

Therefore,

0 ≤ inf
x∈Cε

f(x) ≤ sup
x∈Cε

f(x) = max
x∈Kε

f(x) → 0

as ε → 0, and we conclude continuity.



Jensen’s inequality

Theorem.
Let X ∈ Rn be a random variable such that E[X] ∈ Rn is well defined,
and let φ : Rn → R be convex. Then,

φ
(
E[X]

)
≤ E[φ(X)].

Proof. Let g ∈ ∂φ(E[X]). Then,

φ(X) ≥ φ(E[X]) + ⟨g,X − E[X]⟩.

Taking expectations on both sides completes the proof.
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Lipschitz continuity ⇔ bounded subgradients

We say f : Rn → R is G-Lipschitz if

|f(y)− f(x)| ≤ G∥y − x∥ ∀x, y ∈ Rn.

Theorem.
Let f : Rn → R be convex. Then f is G-Lipschitz if and only if

∥g∥ ≤ G ∀ g ∈ ∂f(x), x ∈ Rn.

Proof. (⇒) Let x ∈ Rn and g ∈ ∂f(x). For any u ∈ Rn,

f(x) + ⟨g, u⟩ ≤ f(x+ u) ≤ f(x) +G∥u∥

by the subgradient inequality and G-Lipschitz continuity.Therefore,

⟨g, u⟩ ≤ G∥u∥ ∀u ∈ Rn.

Taking the supremum over all unit vectors u (i.e., ∥u∥ = 1) yields

∥g∥ = sup
∥u∥=1

⟨g, u⟩ ≤ G.
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Lipschitz continuity ⇔ bounded subgradients

Theorem.
Let f : Rn → R be convex. Then f is G-Lipschitz if and only if

∥g∥ ≤ G ∀ g ∈ ∂f(x), x ∈ Rn.

(⇐) Let x, y ∈ Rn, gx ∈ ∂f(x), and gy ∈ ∂f(y). The subgradient and
Cauchy–Schwartz inequalities yield

f(y) ≥ f(x) + ⟨gx, y − x⟩ ≥ f(x)− ∥gx∥ ∥y − x∥ ≥ f(x)−G∥y − x∥

and

f(x) ≥ f(y) + ⟨gy, x− y⟩ ≥ f(y)− ∥gy∥ ∥x− y∥ ≥ f(y)−G∥x− y∥.

Combined, we get

−G∥y − x∥ ≤ f(y)− f(x) ≤ G∥y − x∥.
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Closed graph theorem for ∂f

Theorem.
Let f : Rn → R be convex. If xk → x, gk ∈ ∂f(xk), and gk → g, then
g ∈ ∂f(x).

Proof. For all k ∈ N and y ∈ Rn,

f(y) ≥ f(xk) + ⟨gk, y − xk⟩.

Taking k → ∞ and using continuity of f ,

f(y) ≥ f(x) + ⟨g, y − x⟩.

Since this holds for all y ∈ Rn, we conclude g ∈ ∂f(x).

This is equivalent to saying that

{(x, g) |x ∈ Rn, g ∈ ∂f(x)} ⊂ Rn × Rn,

which is referred to as the graph of ∂f , is a closed set.
80



Boundedness of subgradients on compact sets

Lemma.
Let f : Rn → R be convex and let K ⊂ Rn be compact. Then,⋃

x∈K

∂f(x) = {g | g ∈ ∂f(x), x ∈ K}

is bounded.

Proof. Let B = {u ∈ Rn : ∥u∥ ≤ 1}. By continuity of f and
compactness of K ×B, the quantity

M = max
(x,u)∈K×B

(
f(x+ u)− f(x)

)
< ∞.

For any x ∈ K, g ∈ ∂f(x), and u ∈ B, the subgradient inequality gives

f(x+ u)− f(x) ≥ ⟨g, u⟩.

Taking the supremum over u ∈ B yields

M ≥ sup
∥u∥≤1

⟨g, u⟩ = ∥g∥.
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Local Lipschitz continuity and differentiability a.e.

We say f : Rn → R is locally Lipschitz if for every compact K ⊂ Rn,
there is an LK < ∞ such that

|f(y)− f(x)| ≤ LK∥y − x∥ ∀x, y ∈ K.

Theorem.
If f : Rn → R is convex, then it is locally Lipschitz.

Proof. By the previous lemma, there is an LK such that

M = sup{∥g∥ | g ∈ ∂f(x), x ∈ K} < ∞.

Then, the boundedness of subgradients in K implies
|f(y)− f(x)| ≤ M∥y − x∥ by the same argument as before.

Corollary.
If f : Rn → R is convex, it is differentiable almost everywhere.

Proof. Follows from local Lipschitz and Rademacher’s theorem.
82



Uniqueness of subgradient ⇔ differentiability

Theorem.
Let f : Rn → R be convex. Then ∂f(x) = {g} if and only if f is
differentiable at x and g = ∇f(x).

Proof. (⇒) Assume ∂f(x) = {g}. For any y ∈ Rn choose gy ∈ ∂f(y).
The subgradient inequalities at x and at y give the sandwich

⟨g, y − x⟩ ≤ f(y)− f(x) ≤ ⟨gy, y − x⟩.

By local boundedness of subgradients, any sequence yk → x has a
subsequence ykj

→ x such that gykj
→ g̃. The closed graph theorem

then implies g̃ ∈ ∂f(x) = {g}. So every cluster point equals g, i.e.
gy → g as y → x.

From the sandwich inequality and Cauchy–Schwartz, we have

0 ≤ f(y)− f(x)− ⟨g, y − x⟩ ≤ ∥gy − g∥︸ ︷︷ ︸
→0

∥y − x∥ = o(∥y − x∥)

as y → x, so f is (Fréchet) differentiable at x with ∇f(x) = g.
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Uniqueness of subgradient ⇔ differentiability

Theorem.
Let f : Rn → R be convex. Then ∂f(x) = {g} if and only if f is
differentiable at x and g = ∇f(x).

(⇐) Assume f is differentiable at x. Then, the convexity inequality gives
∇f(x) ∈ ∂f(x). If h ∈ ∂f(x) as well, then for any unit v and ε > 0,

f(x) + ε⟨∇f(x), v⟩+ o(ε) = f(x+ εv) ≥ f(x) + ε⟨h, v⟩

Divide by ε and let ε → 0+ to get ⟨h, v⟩ ≤ ⟨∇f(x), v⟩. Repeating the
same argument with −v yields ⟨h, v⟩ ≥ ⟨∇f(x), v⟩, so
⟨h, v⟩ = ⟨∇f(x), v⟩ for all v ∈ Rn. Hence h = ∇f(x) and
∂f(x) = {∇f(x)}.
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