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Line segment

Given z € R™ and y € R",
Or+ (1 —0)y
is a point in between x and y if 6 € [0, 1].

The set of all points between a given z € R™ and y € R”
{0z +(1—0)y|0€[0,1]}

is called the line segment between x and y
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Convex combinations
Given z1,...,xr € R",
011 + -+ Oy
is called a convex combination or a weighted average of x4, .

01,...,0,>0and 0y +---+ 0, = 1.

Given x1,...,x € R", the set of all convex combinations

conv({z1,...,zk}) = {6121+ - +0pxy |01, ...,0, >0, 01+

is called the convex hull of x1, ..., xk.
T3 T2

= conv({z1,x2,x3})
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Convex sets

We say a set C' C R" is convex if
bz + (1—-0)y e C, Va,ye C,0e€(0,1).

In other words, C'is convex if z,y € C' implies the line segment
connecting x and y is wholly contained in C.
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Convex functions

We say a function f: R™ — R is convex if
f0x+ (1 —=0)y) <O0f(x)+(1—-0)f(y), Va,yeR", 0]0,1]

l.e., f is convex if the chord (line segment) connecting (z, f(x)) and
(y, f(y)) lies above the graph of f.
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We say f: R™ — R is concave if —f is convex.



Strictly convex functions

Recall that f: R™ — R is convex if
f0z+(1=0)y) <Of(x)+(1-0)f(y), Va,yeC azsy 0€(0,1).

(Our prior definition of convexity is equivalent to this.)

We say f: R™ — R is strictly convex if

l.e., f is strictly convex if the chord connecting (z, f(z)) and (y, f(y))
lies strictly above the graph of f (excluding the endpoints).
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No bad local minima for cvx. functions

Theorem.
Let f be convex. Then any local minimizer is a global minimizer.

Thus, when we minimize convex functions, we never get stuck at bad
local minima because there aren’t any bad local minima.

lllustration of proof. Let x, be a local minimizer. Assume for
contradiction that x, is not a global minimum.

x' (1-6)X*+6 4

7

Draw a contradiction because the chord is below the graph for 8 ~ 0.



No bad local minima for cvx. functions

Proof. Let z, € R" be a local minimizer of f. Assume for contradiction
that there is y € R™ such that f(y) < f(x,), i.e., assume for
contradiction that x, is not a global minimizer. By convexity,

F(1=0)z, +0y) < (1= 0)f () +0f(y) < flxs)

for any 6 € (0,1), even for 0 very close to 0. However, z, is a local

minimizer, so f((1 — 0)z, + 0y) > f(x,) for 0 sufficiently close to 0, and
we have a contradiction. Thus we conclude that such y cannot exist, i.e.,
T, is a global minimizer. O



Gradient provides global lower bound for cvx. functions

Theorem.
Let f: R™ — R be convex. Assume f is differentiable at x € R™. Then,

fly) > f(@) +(Vf(z),y—z), VyeR™

Livit-order Taylor exponsion of £ about X
isa plobal lower bound oF .



Gradient provides global lower bound for cvx. functions

Theorem.
Let f: R™ — R be convex. Assume f is differentiable at x € R™. Then,

fy) > fx) +(Vf(z),y—=x), VyeR"

lllustration of proof.

: i ' “L( x) ;
v ’ S :(]~h)?l+h7' d

Coveen line i the limit ofblue line a5 L—o.

* By converity, ® <8,
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Gradient provides global lower bound for cvx. functions

Theorem.
Let f: R™ — R be convex. Assume f is differentiable at x. Then,

fy) = f(z) +(Vf(x),y —x), VyeR"
Proof. By convexity,
fla+0(y—=) <(1-0)f(x)+0f(y), VOe(0,1).

Reorganizing, we get

fle+0(y —x) - fx)

0 1).
7 , V0 e(0,1)

fy) = f(=) +

By taking 8 — 0, we get the directional derivative of f at x in direction
(y — x) and arrive at the desired inequality. O
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Gradient provides global lower bound for cvx. functions

The inequality
fy) =z f(@) +(Vf(x),y —z)

is called the convexity inequality.

In fact, the convexity inequality can be thought of as a defining property
of convexity, rather than a consequence of convexity. In particular, a
differentiable f: R™ — R is convex if and only if it satisfies the convexity
inequality everywhere.
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No bad stationary point for cvx. functions

Corollary.

Let f: R™ — R be convex. If f is differentiable at x and V f(z) =0,
then x € argmin f.

Proof. By the convexity inequality, f(y) > f(x) for all y € R™.
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Basic calculus of convex sets and functions

Theorem.
The intersection of convex sets is convex.

Theorem.
A nonnegative combination of convex functions is convex.

Theorem.
A sublevel set of a convex function is convex.
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Basic calculus of convex sets and functions

Theorem.
The intersection of convex sets is convex.

Soif A CR™ and B C R™ are convex sets, then A N B is convex.

» The intersection can be arbitrary, i.e., the intersection can be over
countably or uncountably infinite convex sets.

» To clarify, an empty set is defined to be a convex set, and the
intersection of convex sets can be empty.
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Basic calculus of convex sets and functions

Theorem.
A nonnegative combination of convex functions is convex.

l.e., if aq,...,ap are nonnegative scalars and f1,..., fi are convex
functions, then oy f1 + - -+ + ay fr is convex.

» If f is convex, then af is convex and —a.f is concave if a > 0.

» Often, one shows that an f is convex by arguing that f = g + h and
showing that g and h are convex.
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Basic calculus of convex sets and functions

Theorem.
A sublevel set of a convex function is convex.

For any f: R™ — R and « € R, the a-sublevel set of f is defined as
{z|f(z) <a} CR,

which is the set of x attaining function value better than a.

» In particular, this implies that the set of minimizers of a convex
function is convex, i.e., if f is convex, then argmin f is convex.

» Often, one shows that a set is convex by showing that it is a sublevel
set of a convex function.
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Convexity via monotonicity

For differentiable f, convexity is monotonicity of f’.

Theorem.
A differentiable univariate function f: R — R is convex if and only if f’
is non-decreasing.

(To clarify, convex functions need not be differentiable.)
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Convexity via monotonicity

For differentiable f, convexity is monotonicity of f’.

Theorem.
A differentiable univariate function f: R — R is convex if and only if f’
is non-decreasing.

Proof. (=) Assume f is convex. Then, by the convexity inequality,

fy) > f(@) + f'(2)(y —2)
f(@) > fly) + fy)(z—y)

for all z,y € R. Adding the two, we get

(f'(z) = ()& —y) 20,
which implies f'(z) > f'(y) if x > y, i.e. f’is non-decreasing.

19



Convexity via monotonicity

(<) Assume f': R — R is non-decreasing. Let z <y and
z=0x+ (1 —0)y with § € [0,1]. So, x < z <y. Then, we can show the
convexity inequalities about z:

/f dt>/ f() dt = £(2)y - 2)

(2)0(y — =)
f(x) /f ) dt > — /f ) dt = f'(2)(x — 2)
—0)(z —y).

Now we can combine these convexity inequalities to obtain the definition
of convexity: Multiplying the first inequality by (1 — #) and the second
my 6 and adding them gives us

0f(z) +(1—-0)f(y) — f(2) 2 0.
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Convexity via curvature

For twice-differentiable f, convexity is positive (nonnegative) curvature.

Theorem.
A twice-differentiable univariate function f: R — R is convex if and only

if f(x) >0 for all z € R.

Proof. From the previous theorem, f is convex if and only if f’ is
non-decreasing. Since f’ is assumed to be differentiable, this holds if and
only if f” > 0. O
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Positive semidefinite matrices

We say a matrix A € R™*™ is symmetric positive semidefinite and write
Ax0

if A is symmetric and all eigenvalues of A are nonnegative, i.e., if

A= AT and Apin(A) > 0.

Lemma.

Let A e R"*™ and A = AT. Then, A = 0 if and only if

vT Av > 0, Vv e R™

Proof follows from the spectral theorem.
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Convexity on lines

Lemma.
Let f: R™ — R be convex and x,v € R"™. Then, g(t) = f(z +tv) is
convex for any v € R".

Lemma.

Let f: R™ = R. Ifg(t) = f(x + tv) is convex ¥V z,v € R™, then f is cvx.

In other words, to certify that f is convex, it is enough to check the
convexity of f restricted to lines.

Proofs are straightforward from the definition of convexity.
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Convexity via curvature
For multivariate convex functions, the curvature condition is given by the
eigenvalues of the Hessian.

Theorem.
A twice continuously differentiable multivariate function f: R™ — R is
convex if and only if V2 f(z) = 0 for all z € R™.

Proof. (By Schwartz's theorem, V2 f(z) € R"*" is symmetric.)

Assume f is convex. For any z,v € R", let ¢g(t) = f(x + tv). By the
chain rule, and since g: R — R is convex and twice-differentiable,

g’ (0) = vTV2f(z)v > 0.
Since this holds for all v € R™, we conclude V2 f(x) = 0.

Conversely, assume V2f(x) = 0 for all x € R™. For any z,v € R", let
g(t) = f(z + tv). By the chain rule and V2f(:) = 0,

g"'(t) =vTV2f(z + tv)v > 0.

Then, g"” > 0 implies g is convex, which, in turn, implies f is convex. [
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Affine functions are convex

A function f: R™ — R is affine

f(z) = (a,z) +b
for some a € R™ and b € R.

Strictly speaking, a function is linear if it is affine with b = 0.

Theorem.
An affine function is convex.

Proof 1. An affine function has 0 curvature, which is nonnegative.

Proof 2. If f is affine,
f0z+ (1 —0)y) ={a,0x+ (1—0)y)+b
=0(a,z) +0b+ (1 —0){a,y) + (1 —0)b
=0f(z) +(1—-0)f(y).
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Cocoercivity inequality for smooth convex functions

Lemma.
Let f: R™ — R be L-smooth. For any z, € argmin f,

fly) = ||Vf WI* > f(z.),  VyeR™

lllustration of proof.

/1Y)

g\\ifwy—ﬁMVﬂ>P
N - £V

Y- 1Viy) 2



Cocoercivity inequality for smooth convex functions

Lemma.
Let f: R™ — R be L-smooth. For any z, € argmin f,

1 n
FW) =57 IVFWI* = flwe),  VyeR™
Proof. By z, € argmin f and the L-smoothness lemma,

f@2) < S +0) < J) + (VW0 +5 107, weR

Let § = =1V f(y) (which minimizes the RHS) to get

Fle) < Fly— 2VIW) < F) ~ 5= IV 7).
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Cocoercivity inequality for smooth convex functions

Lemma.
Let f: R™ — R be L-smooth. For any x, € argmin f,

W)~ g IVIWIP 2 f), Yy eR™

Interpretation 1: This strengthens the simple inequality f(y) > f(z4).

Interpretation 2: The suboptimality of y, measured by f(y) — f(x,), is
larger than 5+ [|V f(y) 2.

> If |V f(y)||? is large, then the suboptimality is necessarily large.
> If |V f(y)||? is small, are we assured that the suboptimality is small?

Interpretation 3: 5|V f(y)||? is the guaranteed progress (descent) to be
made by taking a gradient descent step y — y — %Vf(y).

28



Cocoercivity inequality for smooth convex functions

Theorem.
Let f: R™ — R be convex and L-smooth. Then,

FW) 2 £@) + (V@)= )+ 5 IV - V@I Yoy eR

Proof. Let
9(y) = f(y) = (Vf(z),y).

Note that g is convex, g is L-smooth, Vg(y) = Vf(y) — Vf(z), and
x € argmin g. (The argument € argmin g uses convexity.) Finally,
apply the previous lemma to g. O
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Cocoercivity inequality for smooth convex functions
This inequality

Fl) 2 J@) + (T ()oy — ) + 5V )~ V)P

is called the cocoercivity inequality for smooth convex functions.

Note that this is stronger than the convexity inequality

fy) = f(2) +{Vf(2),y — ),

which holds for differentiable convex functions.

The cocoercivity inequality is fundamental when analyzing smooth
convex functions.

In fact, it can be shown that the cocoercivity inequality implies the
L-smoothness inequality. Therefore,

[L-smooth & convexity inequalities] < [cocoercivity inequality]
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Strong convexity

A function f: R™ — R is p-strongly convex is f(z) — &||z[? is convex.
(Strongly convex functions need not be differentiable.)

Lemma.
Strong convexity implies convexity.

Proof. If f is strongly convex, then

(f (@) = §llzl*) + §llzll* = f(x)

is convex, since a sum of convex functions is convex. O

Lemma.

Let xg € R™. Then, f: R™ — R is strongly convex if and only if
f(@) = &llz — a0]|? is convex.

Proof. Note

f@) = §llz = zo]|* = f(x) = §llall* — pdw, z0) + §llzol® -

affine

Adding or subtracting an affine function does not affect convexity. mEE



Strong convexity: First-order characterization

Theorem.
Let f: R™ — R be p-strongly convex and differentiable. Then,

f0) 2 f@) + (V@) =)+ Slle —yl?,  VayeR".

This is called the strong convexity inequality.

Proof. Let g(y) = f(y) — 4lly — ||*>. The convexity inequality on g is

9(y) = g(x) +(Vy(z),y — ),
which is
Fy) = §lly —z)* > f(z) +(Vf(2),y — ).
Reorganizing, we conclude the result. O

(The converse is also true: If f(y) > f(z) + (Vf(z),y —z) + §llo —y|?
holds for all z,y € R™, then f is pu-strongly convex.)
32



Strong convexity: Second-order characterization

Theorem.
Let f: R™ — R twice continuously differentiable. Then, f is u-strongly
convex if and only if V2 f(x) = ul for all z € R™.

Proof. f is yi-strongly convex if and only if g(z) = f(z) — & ||| is
convex, which in turn holds if and only if

V2g(x) = 0.

Conclude with V2g(z) = V2f(z) — ul. O
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Polyak—tojasiewicz inequality

Lemma.
Let f: R™ — R be pu-strongly convex, differentiable, and z, € argmin f.
Then,

fy) - iuw(ynﬁ < f@), VzeR".

Proof. By p-strong convexity,
f(@) 2 fy) + (Vi),x =)+ Slla -yl
> inf {7)+(VF@)a =)+ Sla =3} = £0) - 319 F )"

TER™

(Infimum is attained at z =y — 7Vf( ).) Plugging « = x, into the
LHS, we arrive at the conclusion. O

This is called the Polyak—tojasiewicz (PL) inequality. Strong convexity
implies PL. However, the converse is not true.
34



Polyak—tojasiewicz inequality

Lemma.
Let f: R™ — R be u-strongly convex, differentiable, and x, € argmin f.
Then,

fw) - i\\w(y)n? < f@), VaeR"

Interpretation: The suboptimality of y, measured by f(y) — f(z4), is
smaller than iHVf(y)H2

> If |V f(y)||? is large, are we assured that the suboptimality is large?
> If |V f(y)||? is small, then the suboptimality is necessarily small.
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Strong convexity and smoothness

Informally speaking, p-strongly convex functions have upward curvature
of at least y, and L-smooth convex functions have upward curvature of
no more than L. We can think of nondifferentiable points as points with
infinite curvature.

Strongly convex but not smooth  Smooth but not strongly convex.

(In fact, strong convexity and smoothness are dual properties:
[f is p-strongly convex] < [f* is (1/p)-smooth].)
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Strictly convex functions

We say a function f: R™ — R is strictly convex if

l.e., f is convex if the chord connecting (z, f(x)) and (y, f(y)) lies
strictly above the graph of f except at the endpoints.

XXX Figure example XXX
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Strictly convex functions

Lemma.
Strong convexity implies strict convexity.

Proof. Homework. O

Lemma.
Let f: R™ — R be strictly convex and C C R™ nonempty convex. Then,

minimize flx)

subject to = € C
has at most one solution.

Proof. Assume for contradiction that x, and y, are distinct solutions.
Then,

fll0z,e + (1 —0)ys) < O0f(xs) + (1 —6)f(ys) = inf f, Vo e (0,1),
—_——

€C' by convexity

which is a contradiction. 38



Minimizers of strongly convex functions

Lemma.
Let f: R™ — R be strongly convex. Then f has exactly one minimizer.

(Minimizer exists and is unique).
lllustration of proof.

7uao/m1‘[c lowe lfauua/

?

|
N
' . ro}w(’r better than 2,

! ' og predited by the lower bound

Xo poiuts actally better than 1.

L)+ < VPR, 1Ay + 22 [l
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Minimizers of strongly convex functions

Lemma.
Let f: R™ — R be strongly convex. Then f has exactly one minimizer.
(Minimizer exists and is unique).

Proof. Uniqueness follows from strict convexity. Remains to show
existence. Assume f is diff. and let o € R™. Then,

f(x) > flzo) + (Vf(zo),x — z0) + %Hﬂ? — zol?
= flao) + Gl = (oo = S - g <Ll

for all z € R™. Therefore,

Vf(z Vf(x
{z|f(z) < f(z0)} C B(xo - ¥7 |¥H)
and closed (pre-image of cont. fn.) ball, bounded
argmin f(z) = argmin f(z).

zER™ z:f(z)<f(wo)
Since the RHS is a minimization of a continuous function over a compact
set, the minimum is attained, i.e., a minimizer exists.

When f is non-differentiable, the same argument works with a 20
subgradient. Continuity of the convex function f will be shown later. [



Smooth strongly convex functions

Lemma.
Let f: R™ — R be p-strongly convex and L-smooth. Then y < L.

Proof. Let x # y. By p-strong convexity,
fy) = f(z) +(Vf(@)y —z) + §lle -yl
f@) = fly) + (V). z —y) + Gllz —y)?
and adding jthese two we have
(Vf(x)=Viy),z—y) > ple—yl*
By Cauchy-Schwartz,
plle = yl* < (V@) = Vi), e —y) < V@)= Ville -yl
and
pllz =yl < V() = Vi)l
By L-smoothness,
IVf(z) =Vl < Lz -y,
sop < L. 041



Projection onto convex sets

Projection! of p € R™ onto C' is the point within C that is closest to p.
Is this notion well-defined?

Theorem.
Let C C R"™ be a nonempty closed convex set and let p € R™. Then

lc(p) = argmin [z — p|,
zeC
where || - || is the standard Euclidean norm, uniquely exists.

“ ¢
Te Cp)
P

lllustration when C'is nonempty closed convex. (Setting of the theorem)

Ln linear algebra, our notion of projection corresponds to orthogonal projections
but not oblique projections.
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Projection onto convex sets

[llustration when C' is open. The projection is not attained.

c

P

[llustration when C' is not convex. Projection may not be unique.
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Projection onto convex sets
Proof. Clearly,
IIo(p) = argmin ||z — p|| = argmin ||z —pHQ.
zeC zeC

Since ||z — p||? is a strictly convex function of f, a minimizer, if exists,
must be unique. (So, there are 0 or 1 minimizers.)

Let {x}r be a sequence such that
—p| — inf ||z —p]|.
i~ pl — inf 1z gl

Since {xy } is bounded, it has a convergent subsequence Tp; = Too € C
by the Bolzano—\Weierstrass theorem and closedness of C'. By continuity
of ||z — p||? as a function of =, we conclude

2 : 2
— — inf llz —
lwoe = oI = inf [l — p|

i.e., Zoo is @ minimizer. (So, there are more than 0 minimizers.) O
44



Projection theorem

Theorem.
Let C C R™ be a nonempty closed convex set. Then, x; = Il¢o(x)
if and only if

(y—zy,x—24) <0, Vy e C.

(Also called the Bourbaki-Cheney—Goldstein inequality.)
lllustration of proof.

Te(x)=x, o directions poivt  Te(x)%x,

29p° qway from eachother

miviy tovsadk y wil
redue distante to x
while remaining in C.

L+ is the closest tox

QAmouny ,miuﬁ m C. X 45



Projection theorem

Theorem.
Let C C R™ be a nonempty closed convex set. Then, x; = Ilo(x)
if and only if x4 € C' and

(y—zs,0—2) <0, VyeC.

Proof. (=) Assume x; = argmin, . ||z — z||? and let y € C. Then,

ly—2l* > oy -2, Vyel
Since 4 +6(y — xz4) € C for 6 € (0,1] by convexity of C,

24 +0(y — 24) —2|® > l|loy — .

—_— ——

from x4 move towards y
Reorganizing the terms, we get

lly — x4 ||* +20(y — x4, 24 — ) > 0.

Dividing by 6 and letting # — 0, we conclude

<y—x+,x+—x>20 = <y—x+,x—x+>§0.
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Projection theorem

Theorem.
Let C C R™ be a nonempty closed convex set. Then, x; = Ilo(x)
if and only if x4 € C' and

(y—apx—24) <0,  Vyel.

Proof. (— = —) Assume x; # IIo(z), which means either (i) x4 is not
even in C or (ii) x4 € C but isn't the closest to x. In case (i), we are
done. In case (ii), z4+ € C and there is a y € C' such that

ly = =* < flay — 2.
By convexity of || - —x||?,
lzs +0(y — ) —a|® < (1= O)[los — 2)* +0lly — 2|* < [lz4 — =]
from @4 move towards y
for @ € (0,1). (l.e.,, zy + 0(y — z4) is closer to x.) Reorganizing terms,
lly — x4 ||* +20(y — x4, 24 —x) <0.
Dividing by 8 and letting # — 0, we conclude

(y—zp o4 —2) <0 = (y—z4,0—34)>0. O

47



Projection is nonexpansive

Theorem.

Let C C R"™ be a nonempty closed convex set. Then Ilo: R™ — R”™ is a
nonexpansive operator.

In other words, if x4 = ¢ (z) and y4+ = He(y), then

4 =yl <l =yl

L C 5 nam-omvex
e may net be nonexpansive

distame gets
smaller after projection
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Projection is nonexpansive

Theorem.
Let C C R™ be a nonempty closed convex set. Then Ilo: R™ — R” is a
nonexpansive operator.

Proof. Let z,y € R", ;. = ¢(z), and y+ = He(y). By the projection
theorem,

(y+ —zq, v —24) <
<

0
(T4 —y4,y —yg) <0

Summing these two inequalities, we get
(T4 =y 24 —y4) S (T4 — Y4,z —Y).
Using Cauchy-Schwartz, we get

o4 =y l? < (o =y 2 = y) < oy = yallllz =yl

Dividing by ||z+ — y+| (when nonzero), we conclude the statement. [
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Separating hyperplane theorem

Theorem.
Let C C R™ be a nonempty closed convex set, and let z € R™. If z ¢ C,
then there is a (y, 3) € R™ x R such that y # 0 and

(y,z) < B, Vzel
(y,z) = B.
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Separating hyperplane theorem

Theorem.

Let C C R™ be a nonempty closed convex set, and let z € R™. If z ¢ C,
then there is a (y, 3) € R™ x R such that y # 0 and

(y,z) < B, Veel
(y,2) = B.

lllustration of proof.

f"/<%’f>: =92y
= e JZ
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Separating hyperplane theorem

Theorem.
Let C C R™ be a nonempty closed convex set, and let z € R™. If z ¢ C,
then there is a (y, 3) € R™ x R such that y # 0 and

(y,z) < B, Veel

(y,2) = B.

Proof. Let y = z — IIc(2). Note, y # 0, since z ¢ C. By the projection
theorem,
(x —Ie(2),y) <0, Vo el

If we let 8 = (Ilc(2),y), then

(y, )8, Vo eC.
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Strict separating hyperplane theorem

The result can be strengthened such that the separation is strict.

Theorem.

Let C C R™ be a nonempty closed convex set, and let z € R™. If z ¢ C,
then there is a (y, ) € R™ x R such that y # 0 and

(y,z)y<pB, Vzel
(y,z) > B.
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Supporting hyperplane theorem

Theorem.
Let C C R™ be a nonempty closed convex set and let z € 9C. (0C is the
boundary of C.) Then, there is a (y,3) € R™ x R such that y # 0 and

(y,z) < B, Vzel
(y,2) = B.

ix <?;/">=F=<i,2>}

54



Supporting hyperplane theorem

Sometimes, it is convenient to eliminate .
Theorem.
Let C C R™ be a nonempty closed convex set and let z € 9C. (OC' is the
boundary of C.) Then, there is a non-zero y € R™ such that
(7)< (y,2), VoeC,
=5

Also, the supporting hyperplane may not be unique if z is at a “corner
point” of C.
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Supporting hyperplane theorem

Write OC to denote the boundary of C, i.e., 9C is the set of points in
the closure of C' not belonging to the interior of C.
Theorem.

Let C C R™ be a nonempty closed convex set and let z € OC. Then,
there is a non-zero y € R™ such that

(y,z) < (y,2), VreC.

lllustration of proof.

.'Z. =2 Com outside of C

+ %.0C 2,-Th(22)
e lIyali=)
I, e
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Supporting hyperplane theorem

Theorem.
Let C' C R™ be a nonempty closed convex set and let z € 9C. (OC' is the
boundary of C.) Then, there is a non-zero y € R™ such that

(y,z) < (y,2), VreC.

Proof. For any € > 0, it must be that B(z,¢) ¢ C, since z € 9C.
Choose z, € B(z,1/2")\C for n € N, so z, — z. Let

Yn = Zn _HC(Zn)

" ”Zn_HC(Zn)H’

where we note Il (z,,) # 2, since z, # C. Since {yn nen is a sequence
on the unit ball in R™ (which is compact), it has a convergent
subsequence with a limit, which we denote y,,;, — Yoo-
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By the projection theorem,

(x —He(zn), 2n — Oeo(z)) <0, Ve,

so
Zn — HC(Z’I'L)
r—1lc(z,), —————— ) <0, VzeC.
(= = Teen): i)
=Yn
Therefore,

<yn,x> < <ynaHC(zn)>a VxeC.

Taking the limit on ¥, — Yoo,

(oor 7) < (goos Tim To(20)) 2 (oo, To () € (o, 2),

VxeC,

where (i) follows from fact that Il is nonexpansive (that is, 1-Lipschitz
continuous) and hence continuous, and (ii) follows from the fact that

z€C,s0lg(z) = 2.

O
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Supporting hyperplane theorem ||

Theorem.
Let C C R™ be a nonempty convex set (not necessarily closed) and let
z € OC. Then, there is a non-zero y € R™ such that

(y,z) < (y,z), vV eC.

Proof. The supporting hyperplane theorem with the nonempty closed
convex set C' guarantees a non-zero y € R™ such that

(y,z) < (y,z), Vo eC.

This requirement is also satisfied with C'in place of C. OJ
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Subgradient

Let f: R™ — R be convex (but not necessarily differentiable). We say
g € R™ is a subgradient of convex f at x if

fy) = fla) +{g,y—x) VyeR™
The subdifferential of convex f at x is
of(x) ={g eR"|f(y) = f(z) + (9, y —x), Vy R},

i.e., Of (x) = {subgradients of f at x}.

We have already established that V f(x) € 0f(z) if f is differentiable at
x (convexity inequality), but convex functions can be non-differentiable.
Nevertheless, a subgradient always exists.
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Subdifferential example

The absolute value function is differentiable everywhere except at 0.

f(x) = |z| Of (x)

{-1} forz<0
8f(x):{ [-1,1] forz=0
{+1} forz>0
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Subdifferential example

At z1, f is differentiable and df(z1) = {V f(z1)}.
At o, f is not differentiable and has many subgradients.

f(x2) + (g1, — x2),
g1 € Of(x2)

L) + (gort — 3),
g2 € Of(x2)

1 o
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Existence of a subgradient

Theorem.
Let f: R™ — R be convex. For any x € R", then exists a subgradient of

fatz, ie, Of(z) #0.
Proof.

* T 50 means v points up X
v=(3,7) * Y =0 wmeans hypeplane is vertia/ x
» <o, then 9= 3/167{(:7_ v’

63



Existence of a subgradient

Theorem.
Let f: R™ — R be convex. For any x € R", then exists a subgradient of

fatz, ie, Of(z) #0.
Proof.
A={(z,t)| f(x) <t,x € R", t € R} C R"H

By construction, (z, f(x)) € OA. By the supporting hyperplane theorem,
there is a v = (§,7) € R"*! such that v # 0 and

(vu) =gTy +7s < glo+7f(x) = (v, (z, f(2)), Vu=(y,5) €A
We argue that 7 < 0. Indeed, if 7 > 0, we can take s — oo and draw a
contradiction. If 7 =0, then gTy < gTzx. Since § # 0 (since v # 0), we
draw a contradiction with y = g and a — oo.

If 7 <0, let g=g/7 to get
—9Ty+s=>—gla+ f(x), V(ys)eA
Plugging in s = f(y), we conclude

fly) = fl@)+9"(y—x),  VyeR"™ O 6a



Uniqueness of subgradient < differentiability

Theorem.

Let f: R™ — R be convex. Then 0f(xz) = {g} if and only if f is
differentiable at x and g = V f(z).

We shall come back to this proof later.
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Minimizers as zeros of subdifferentials

Lemma.
Let f: R™ — R be convex. Then,

x, €argmin f < 0€ 9f(xy).

Proof. x, minimizes f if and only if

fy) > fze) + 0,y —z.), Vy e R".
=0

By definition of subgradients, this holds if and only if 0 € 0f(z,). O
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Subdifferential sum rule

Lemma.
Let f: R™ — R be convex. Let

foru € R™ and b € R. Then,

Of(x) = 0f(x) +u={g+ulg€df(z)}

Proof. Exercise.
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Tilting subdifferentials

Lemma.
Let f: R™ — R be convex. Let

fy) = Fy) = (g,m0) +b
for some g € df (z9) and b € R. Then, xo € argmin f.

Proof.

68



Continuity of univariate convex functions

Theorem.
Let f: R — R be convex. Then, f is continuous.

Proof. W.L.O.G. consider continuity at x = 0, since continuity of f and
f(z) = f(x —y) are equivalent. W.L.O.G. assume f is minimized at
x =0 with f(0) = 0, since otherwise we can consider

f(z) = f(a) = (0) - gu,
where g € 9f(0).
[llustration of the remaining argument:

o0 wirt lp within

-1 0 +]
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Continuity of univariate convex functions

Theorem.
Let f: R — R be convex. Then, f is continuous.

Proof. W.L.O.G. consider continuity at = = 0, since continuity of f and
f(x) = f(x —y) are equivalent. W.L.O.G. assume f is minimized at
x =0 with f(0) =0, since otherwise we can consider

fx) = f(x) = f(0) =gz,  fe€f()
For any ¢ € [0, 1], 0 (i)
0<fle) <ef(l)
where (i) follows from 0 being a global minimizer and (ii) follows from
the convexity inequality between input points 0 and 1. Therefore,

0< 1imiglff(x) <limsup f(z) < emax{f(+1), f(-1)}
z— z—0

for any € > 0. By the squeeze theorem, we conclude lim, ¢ f(z) =0,
i.e., continuity. O



Lemma: Convex fn. are maximized at extreme points

For any ¢ > 0, let
K*® ={(ze,...,+te) e R"}, (So |K|=2")
Cf ={z e R"||z]|eo <€}

K e ¢ corvers
£¢

/
RN

=¢

Lemma.
Let f: R™ — R be convex. Then,

sup f(@) = max f(z).

l.e., maximizers are attained on K¢. (If a point in C¢\ K¢ is a maximizer,
there is another maximizer in K¢ attaining the same function value.)



Lemma: Convex fn. are maximized at extreme points

Proof. First, we prove the claim for univariate functions. Let f: R - R

and assume there is an z, € (—¢, +¢) such that
f(z0) > max f(z)
r=%¢

Then, there is a subgradient g € Jf(z,) such that
f(@) 2 f(zo) + g(z — o).

-F(.f) M“{an'l/
larger than {tx)

feo
) +<9,1-2,5



Lemma: Convex fn. are maximized at extreme points

Proof. First, we prove the claim for univariate functions. Let f: R - R
and assume there is an z, € (—¢, +¢) such that

F(r2) > max f(x)
r=%¢
Then, there is a subgradient g € Jf(z,) such that

fx) = f(wo) + g(x — o).

If g >0, then x = +& maximizes the RHS and if g < 0 then x = —¢
maximizes the RHS. Therefore, LHS and RHS over x = +¢, we get

max f(z) > max {f(z) > f(xo) + g(z — z0)}

> f(wo) > max f(z).

So we have a contradiction, and we are forced to conclude that such an
Zo does not exist, i.e., the maximum of f over [—¢, +¢] is always
attained on the endpoints +e.

(Although the maximizer of f may not be unique and may contain points
in (—e,+¢), an endpoint,—¢ or +e&, will still be a maximizer.) 73



Lemma: Convex fn. are maximized at extreme points

Next, consider the general case in R™. Assume for contradiction that
there is a 2, € C° such that

f(zo) > max f(x).

reKe

So z, ¢ K¢, and there must be a coordinate ¢ € {1,...,n} such that
(z0)i € (—&,+€). Then, the univariate function

f((xo)lv R (mo)ifl’é’? (xo)H”l’ T (xo)")

attains a maximizer at § = £e. By modifying the i-th coordinate of z,
to £e, we can only improve (increase) the function value.

Repeating this process at most n times, we get a point in K¢ with
function value not smaller than the original f(z,). This contradicts the
assumption f(z,) > maxyek- f(z), and we are forced to conclude

sup f(z) = max f().



Continuity of multivariate convex functions

Theorem.
Let f: R™ — R be convex. Then, f is continuous.

Proof. W.L.O.G. consider continuity at = 0, and assume 0 € argmin f
and 0 = min f.

+6 K¢ Squeez Theorewn
r
W/// CG 0={0) < ‘[[(:c) SZ‘,’(H(L)
B 1/ +¢ for ze (€ \__\_fa—/
* f //N o5 €0



Continuity of multivariate convex functions

Theorem.
Let f: R™ — R be convex. Then, f is continuous.

Proof. W.L.O.G. consider continuity at = 0, and assume 0 € argmin f
and 0 = min f. Consider K¢ and C*¢ as previously defined.

Let {z(),... 22"} = K= Then,

0= f(0) < f(x) < _max f(z9), Ve C°.

=1,...,

Since univariate convex functions are continuous,

lim max f(zY)= max lim f(z)) = f(0) = 0.

e—0j=1,....2n j=1,....2m e—0
Therefore,

< inf < =
0< mf f(z) < Sup f(z) = max f(z) =0

as € — 0, and we conclude continuity. O



Jensen’s inequality

Theorem.
Let X € R™ be a random variable such that E[X] € R™ is well defined,
and let ¢: R™ — R be convex. Then,

¢(E[X]) < E[p(X)].

Proof. Let g € Op(E[X]). Then,
P(X) = p(E[X]) + (9, X — E[X]).

Taking expectations on both sides completes the proof. O
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Lipschitz continuity < bounded subgradients
We say f: R™ — R is G-Lipschitz if
lf(y) = f@) <Glly -zl  Va,y eR™

Theorem.
Let f: R™ — R be convex. Then f is G-Lipschitz if and only if

lgl <G Vgedf(z), zeRm™

Proof. (=) Let z € R™ and g € 0f(x). For any u € R",
f(@) +{g,u) < fz+u) < f() + Gllul|
by the subgradient inequality and G-Lipschitz continuity. Therefore,
(g,u) < G|lull VueR"

Taking the supremum over all unit vectors u (i.e., |

ul| = 1) yields

lgll = sup (g,u) < G.
l[ul|=1
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Lipschitz continuity < bounded subgradients
Theorem.
Let f: R™ — R be convex. Then f is G-Lipschitz if and only if

lgll <G Vgedf(zx), zeR".

(<) Let z,y € R", g, € Of(x), and g, € Of(y). The subgradient and
Cauchy-Schwartz inequalities yield

fW) = f(@) +(ge, y — ) = f(z) = [lgal ly — 2]l = flz) — Glly — ||
and
f(@) = f(y) + {9y, z —y) = f(y) = lgyll llz = yll = f(y) = Gllz —y].

Combined, we get

—Glly —zll < f(y) = f(2) < Glly — =],
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Closed graph theorem for 0f

Theorem.
Let f: R™ — R be convex. If vy, — x, gx € Of(xx), and gr — g, then

g € 0f(x).
Proof. For all k € N and y € R™,

F) = flar) + {9k y — z).
Taking £k — oo and using continuity of f,

fy) = f(@) + (g, y — x).
Since this holds for all y € R™, we conclude g € f(x). O

This is equivalent to saying that
{(z,9)|z €eR", g€ df(x)} CR" xR",

which is referred to as the graph of Of, is a closed set.
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Boundedness of subgradients on compact sets

Lemma.
Let f: R™ — R be convex and let K C R™ be compact. Then,

U 0f(@) ={glg € 9f (), » € K}
is bounded. e

Proof. Let B = {u € R™: ||u|| < 1}. By continuity of f and
compactness of K x B, the quantity

M= L (f(z+u) - f(z)) < oo.

For any x € K, g € 9f(x), and u € B, the subgradient inequality gives
fla+u) = f(z) = (g, u).
Taking the supremum over u € B yields

M > sup (g,u) = |gl|-
lull <1 O
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Local Lipschitz continuity and differentiability a.e.

We say f: R™ — R is locally Lipschitz if for every compact K C R™,
there is an L < oo such that

|f(y) — f(z)] < Lrlly — 2| Vr,ye K.

Theorem.
If f: R™ — R is convex, then it is locally Lipschitz.

Proof. By the previous lemma, there is an Lx such that
M =sup{||g|l|g € 0f(x), z € K} < 0.

Then, the boundedness of subgradients in K implies
|f(y) — f(x)| < M|ly — z|| by the same argument as before.

Corollary.
If f: R™ — R is convex, it is differentiable almost everywhere.
Proof. Follows from local Lipschitz and Rademacher’s theorem.



Uniqueness of subgradient < differentiability

Theorem.
Let f: R™ — R be convex. Then df(x) = {g} if and only if f is
differentiable at x and g = V f ().

Proof. (=) Assume Of(x) = {g}. For any y € R™ choose g, € 0f(y).
The subgradient inequalities at « and at y give the sandwich

(9, y—x) < fly)— f(@) < {9y, y— ).

By local boundedness of subgradients, any sequence y; — = has a
subsequence yi, — x such that Gy, = g. The closed graph theorem

then implies g € 9f(x) = {g}. So every cluster point equals g, i.e.
gy —> g asy — .

From the sandwich inequality and Cauchy-Schwartz, we have
0<fly) = fl@) = {9,y =) < llgy — gl lly — =]l = o(lly — =[])
——

—0

as y — x, so [ is (Fréchet) differentiable at = with Vf(x) = g.
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Uniqueness of subgradient < differentiability

Theorem.
Let f: R™ — R be convex. Then Of(xz) = {g} if and only if f is
differentiable at x and g = V f ().

(<) Assume f is differentiable at x. Then, the convexity inequality gives
Vf(x) € df(z). If h € 0f(x) as well, then for any unit v and € > 0,

f(@) +e(Vf(x),v) +ole) = flz+ev) 2 flz)+elhv)

Divide by ¢ and let e — 07 to get (h,v) < (Vf(z),v). Repeating the
same argument with —v yields (h,v) > (V f(z),v), so

(h,v) = (Vf(z),v) for all v € R™. Hence h = V f(x) and

of(w) = {V(x)}. O
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