
Optimization Theory, MATH 273A
E. K. Ryu
Fall 2025

Homework 1
Due on Friday, October 10, 2025.

Problem 1: Least-squares derivatives. Let X1, . . . , XN ∈ Rp and Y1, . . . , YN ∈ R. Define

X =

X⊺
1
...

X⊺
N

 ∈ RN×p, Y =

Y1
...

YN

 ∈ RN .

Let

L(θ) = 1

2
∥Xθ − Y ∥2.

Show that ∇θL(θ) = X⊺(Xθ − Y ).

Hint. Use the fact that

Mv =

N∑
i=1

M:,ivi ∈ Rp

for any M ∈ Rp×N , v ∈ RN , where M:,i is the ith column of M for i = 1, . . . , N .

Problem 2: Diverging univariate GD. Consider the univariate function f(x) = x2/2. Show that

xk+1 = xk − αf ′(xk)

with x0 ̸= 0 diverges if α > 2.

Problem 3: Diverging multivariate GD. LetX ∈ RN×p and Y ∈ RN , and consider the optimization
problem

minimize
θ∈Rp

f(θ)

with

f(θ) =
1

2
∥Xθ − Y ∥2.

Show
θk+1 = θk − α∇f(θk)

with α > 2/ρ(X⊺X) diverges for most starting points θ0 ∈ Rm. Here, ρ denotes the spectral
radius, i.e., ρ(X⊺X) is the largest eigenvalue of the symmetric matrix X⊺X. For simplicity, you
may assume X⊺X is invertible.

Hint. Let θ⋆ = (X⊺X)−1X⊺Y and show that

θk+1 − θ⋆ = Some function of (θk − θ⋆).

Remark. “Most starting points” can be formalized as “almost everywhere with respect to the
Lebesgue measure”. If you are unfamiliar with measure theory, you can understand the statement
as holding for all starting points except for a lower dimensional set.
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Problem 4: GD converging to wide local minima. Consider the optimization problem

minimize
x∈R

f(x)

with

f(x) =
10x2 + e3(x−3)((x− 10)2/2 + 50)

1 + e3(x−3)
.

Code for evaluating f and f ′ is implemented in the starter code wideMinima.py. We call the global
minimum near x = 0 the sharp minimum and the local minimum near x = 10 the wide minimum.
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Implement gradient descent and run it with random starting points within the range [−5, 20].
Experimentally demonstrate that gradient descent with step size α = 0.01 converges to either of
the two minima, with α = 0.3 converges to the wide minimum, and with α = 4 does not converge
for most starting points.

Remark. The moral of this problem is that the step size of GD (and SGD) determines the sharpness
of the minima the algorithm converges to. This has implications on the generalization performance
in machine learning.1

1Y. Jiang, B. Neyshabur, H. Mobahi, D. Krishnan, S. Bengio, Fantastic Generalization Measures and Where to
Find Them, ICLR, 2020.
P. Foret, A. Kleiner, H. Mobahi, B. Neyshabur, Sharpness-aware Minimization for Efficiently Improving Generaliza-
tion, ICLR, 2020.
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Problem 5: L-smoothness lemma. Let f : Rn → R be L-smooth. Show that

f(x) + ⟨∇f(x), δ⟩ − L

2
∥δ∥2 ≤ f(x+ δ), ∀x, δ ∈ Rn.

Problem 6: L-smoothness and Hessian. Let f : Rn → R be twice continuously differentiable. Show
that f is L-smooth if and only if

−L ≤ λmin(∇2f(x)) ≤ λmax(∇2f(x)) ≤ +L for all x ∈ Rn.

Hint. For (⇒), recall the directional derivative formula

∇2f(x)h = lim
h→0

∇f(x+ hδ)−∇f(x)

h
, for all x, v ∈ Rn.

For (⇐), let g(t) = ∇f(x+ t(y−x)), and note g(1)−g(0) =
∫ 1
0 g′(t) dt. Then, consider the spectral

norm (operator norm) of ∇2f(x).

Problem 7: If iterates of GD converge, the limit is a stationary point. Let L > 0, and let f : Rn →
R be L-smooth. Consider gradient descent with constant stepsize with α ∈ (0, 2/L):

xk+1 = xk − α∇f(xk)

for k = 0, 1, . . . . Show that if xk → x∞ ∈ Rn, then x∞ is a stationary point.

Clarification. Recall, x∞ is a stationary point if ∇f(x∞) = 0.

Hint. L-smoothness implies ∇f is continuous.

Problem 8: If iterates of GD with linesearch converge, the limit is a stationary point. Let f : Rn →
R be continuously differentiable. Consider gradient descent with exact line search:

gk = ∇f(xk)

αk ∈ argmin
α∈R

f(xk − αgk)

xk+1 = xk − αk∇f(xk)

for k = 0, 1, . . . , where we assume a minimizer αk exist for all k = 0, 1, . . . .

(a) Show that ⟨∇f(xk+1),∇f(xk)⟩ = 0 for k = 0, 1, . . . .

(b) Show that if xk → x∞ ∈ Rn, then x∞ is a stationary point.

Clarification. Recall, x∞ is a stationary point if ∇f(x∞) = 0.
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