
Optimization Theory, MATH 273A
E. K. Ryu
Fall 2025

Homework 2
Due on Wednesday, October 29, 2025.

Problem 1: Convexity and (asymmetric) positive semidefinite Hessians. Show that A twice dif-
ferentiable multivariate function f : Rn → R is convex if and only if

∇2f(x) +
(
∇2f(x)

)⊺ ⪰ 0, for all x ∈ Rn.

Problem 2: Convexity inequality is equivalent to convexity. Let f : Rn → R be differentiable.
Assume

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩, ∀x, y ∈ Rn.

Show that f is convex, i.e., show

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y), ∀x, y ∈ Rn, θ ∈ [0, 1].

Problem 3: Cocoercivity implies L-smoothness. Let f : Rn → R be differentiable and L > 0.
Assume the cociercivity inequality, i.e., assume

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ 1

2L
∥∇f(y)−∇f(x)∥2, ∀x, y ∈ Rn.

(a) Let a, b ∈ Rn and η > 0. Show that

⟨a, b⟩ = 1

2η
∥a∥2 + η

2
∥b∥2 − 1

2η
∥a− ηb∥2 ≤ 1

2η
∥a∥2 + η

2
∥b∥2

(b) Show that

f(x) ≤ f(y)+⟨∇f(y), x−y⟩+⟨∇f(x)−∇f(y), x−y⟩− 1

2L
∥∇f(y)−∇f(x)∥2, ∀x, y ∈ Rn.

(c) Show that

f(y)+⟨∇f(y), x−y⟩−L

2
∥x−y∥2 ≤ f(y)+⟨∇f(y), x−y⟩ ≤ f(x) ≤ f(y)+⟨∇f(y), x−y⟩+L

2
∥x−y∥2

for all x, y ∈ Rn.

Remark. The inequality of part (a) is called the Peter–Paul inequality or Young’s inequality.
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Problem 4: Show that strong convexity implies strict convexity.

Problem 5: Point convergence rate implies function-value rate. Let f : Rn → R be µ-strongly
convex and L-smooth. Let x⋆ = argmin f .

(a) Show that
µ
2∥x− x⋆∥2 ≤ f(x)− f(x⋆) ≤ L

2 ∥x− x⋆∥2, ∀x ∈ Rn.

(b) Assume {xk}k∈N is a sequence satisfying

∥xk − x⋆∥2 ≤
(
1− µ

L

)k∥x0 − x⋆∥2, for k = 0, 1, . . . .

Show that

f(xk)− f(x⋆) ≤ L
µ

(
1− µ

L

)k(
f(x0)− f(x⋆)

)
, for k = 0, 1, . . . .

Problem 6: Point convergence rate implies gradient-norm rate. Let f : Rn → R be µ-strongly
convex and L-smooth. Let x⋆ = argmin f .

(a) Show that
µ∥x− x⋆∥ ≤ ∥∇f(x)∥ ≤ L∥x− x⋆∥, ∀x ∈ Rn.

(b) Assume {xk}k∈N is a sequence satisfying

∥xk − x⋆∥2 ≤
(
1− µ

L

)k∥x0 − x⋆∥2, for k = 0, 1, . . . .

Show that
∥∇f(xk)∥ ≤ L

µ

(
1− µ

L

)k/2∥∇f(x0)∥, for k = 0, 1, . . . .

Problem 7: Epigraph of convex functions. Let f : Rn → R. Define the epigraph of f as

epi(f) = {(x, t) | f(x) ≤ t, x ∈ Rn, t ∈ R} ⊂ Rd+1.

Show that f is convex if and only if its epi(f) is convex.
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Problem 8: Strict separating hyperplane theorem. Let C ⊂ Rn be a nonempty closed convex set,
and let z ∈ Rn. Show that if z /∈ C, then there is a (y, β) ∈ Rn × R such that y ̸= 0

y⊺x < β, ∀x ∈ C

y⊺z > β.

Hint. Let β = 1
2⟨y, z⟩+

1
2⟨y,ΠC(z)⟩.

Problem 9: First-order (necessary) optimality condition for constrained optimization. Let C ⊂ Rn

be nonempty closed convex and f : Rn → R be differentiable. Do not assume f is convex.

(a) Show that if x⋆ ∈ argminx∈C f(x), then

⟨∇f(x⋆), x− x⋆⟩ ≥ 0, ∀x ∈ C.

(b) Assume z ∈ C satisfies
⟨∇f(z), x− z⟩ ≥ 0, ∀x ∈ C.

Why is this not sufficient to ensure z ∈ argminx∈C f(x)?
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