Optimization Theory, MATH 273A E. K. Ryu Fall 2025

$\begin{array}{c} {\rm Homework} \ 2 \\ {\rm Due \ on \ Wednesday, \ October \ 29, \ 2025.} \end{array}$

Problem 1: Convexity and (asymmetric) positive semidefinite Hessians. Show that A twice differentiable multivariate function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if and only if

$$\nabla^2 f(x) + (\nabla^2 f(x))^{\mathsf{T}} \succeq 0$$
, for all $x \in \mathbb{R}^n$.

Problem 2: Convexity inequality is equivalent to convexity. Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable. Assume

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle, \quad \forall x, y \in \mathbb{R}^n.$$

Show that f is convex, i.e., show

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y), \quad \forall x, y \in \mathbb{R}^n, \ \theta \in [0, 1].$$

Problem 3: Cocoercivity implies L-smoothness. Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable and L > 0. Assume the cociercivity inequality, i.e., assume

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2L} \|\nabla f(y) - \nabla f(x)\|^2, \quad \forall x, y \in \mathbb{R}^n.$$

(a) Let $a, b \in \mathbb{R}^n$ and $\eta > 0$. Show that

$$\langle a, b \rangle = \frac{1}{2\eta} \|a\|^2 + \frac{\eta}{2} \|b\|^2 - \frac{1}{2\eta} \|a - \eta b\|^2 \le \frac{1}{2\eta} \|a\|^2 + \frac{\eta}{2} \|b\|^2$$

(b) Show that

$$f(x) \leq f(y) + \langle \nabla f(y), x - y \rangle + \langle \nabla f(x) - \nabla f(y), x - y \rangle - \frac{1}{2L} \|\nabla f(y) - \nabla f(x)\|^2, \qquad \forall x, y \in \mathbb{R}^n.$$

(c) Show that

$$f(y) + \langle \nabla f(y), x - y \rangle - \frac{L}{2} \|x - y\|^2 \le f(y) + \langle \nabla f(y), x - y \rangle \le f(x) \le f(y) + \langle \nabla f(y), x - y \rangle + \frac{L}{2} \|x - y\|^2$$
 for all $x, y \in \mathbb{R}^n$.

Remark. The inequality of part (a) is called the Peter-Paul inequality or Young's inequality.

Problem 4: Show that strong convexity implies strict convexity.

Problem 5: Point convergence rate implies function-value rate. Let $f: \mathbb{R}^n \to \mathbb{R}$ be μ -strongly convex and L-smooth. Let $x_{\star} = \operatorname{argmin} f$.

(a) Show that

$$\frac{\mu}{2} ||x - x_{\star}||^2 \le f(x) - f(x_{\star}) \le \frac{L}{2} ||x - x_{\star}||^2, \quad \forall x \in \mathbb{R}^n.$$

(b) Assume $\{x_k\}_{k\in\mathbb{N}}$ is a sequence satisfying

$$||x_k - x_{\star}||^2 \le (1 - \frac{\mu}{L})^k ||x_0 - x_{\star}||^2, \quad \text{for } k = 0, 1, \dots$$

Show that

$$f(x_k) - f(x_*) \le \frac{L}{\mu} (1 - \frac{\mu}{L})^k (f(x_0) - f(x_*)),$$
 for $k = 0, 1, \dots$

Problem 6: Point convergence rate implies gradient-norm rate. Let $f: \mathbb{R}^n \to \mathbb{R}$ be μ -strongly convex and L-smooth. Let $x_* = \operatorname{argmin} f$.

(a) Show that

$$\mu \|x - x_{\star}\| \le \|\nabla f(x)\| \le L \|x - x_{\star}\|, \quad \forall x \in \mathbb{R}^{n}.$$

(b) Assume $\{x_k\}_{k\in\mathbb{N}}$ is a sequence satisfying

$$||x_k - x_{\star}||^2 \le (1 - \frac{\mu}{L})^k ||x_0 - x_{\star}||^2$$
, for $k = 0, 1, \dots$

Show that

$$\|\nabla f(x_k)\| \le \frac{L}{\mu} (1 - \frac{\mu}{L})^{k/2} \|\nabla f(x_0)\|, \quad \text{for } k = 0, 1, \dots$$

Problem 7: Epigraph of convex functions. Let $f: \mathbb{R}^n \to \mathbb{R}$. Define the epigraph of f as

$$\operatorname{epi}(f) = \{(x,t) \mid f(x) \le t, \ x \in \mathbb{R}^n, \ t \in \mathbb{R}\} \subset \mathbb{R}^{d+1}.$$

Show that f is convex if and only if its epi(f) is convex.

Problem 8: Strict separating hyperplane theorem. Let $C \subset \mathbb{R}^n$ be a nonempty closed convex set, and let $z \in \mathbb{R}^n$. Show that if $z \notin C$, then there is a $(y, \beta) \in \mathbb{R}^n \times \mathbb{R}$ such that $y \neq 0$

$$y^{\mathsf{T}}x < \beta, \qquad \forall \, x \in C$$

$$y^{\mathsf{T}}z > \beta.$$

Hint. Let $\beta = \frac{1}{2}\langle y, z \rangle + \frac{1}{2}\langle y, \Pi_C(z) \rangle$.

Problem 9: First-order (necessary) optimality condition for constrained optimization. Let $C \subset \mathbb{R}^n$ be nonempty closed convex and $f \colon \mathbb{R}^n \to \mathbb{R}$ be differentiable. Do not assume f is convex.

(a) Show that if $x_{\star} \in \operatorname{argmin}_{x \in C} f(x)$, then

$$\langle \nabla f(x_{\star}), x - x_{\star} \rangle \ge 0, \quad \forall x \in C.$$

(b) Assume $z \in C$ satisfies

$$\langle \nabla f(z), x - z \rangle \ge 0, \quad \forall x \in C.$$

Why is this not sufficient to ensure $z \in \operatorname{argmin}_{x \in C} f(x)$?