Homework 2

Due 5pm, Friday, April 1, 2022

Problem 1: Show that the quantitative approximation guarantee can be improved to

$$
\left\|f_{\theta}-f_{\star}\right\|_{L^{2}(B)}^{2} \leq \frac{4 Q^{2} B^{2}}{N}
$$

Hint. Start by slightly sharpening the Maurice lemma. (The proof of the Maurice lemma given in the recorded lecture had a minor error. Refer to the updated proof.)

Problem 2: Let $\Omega \subseteq \mathbb{R}^{d}$ be compact and $\sigma \in \mathcal{C}(\mathbb{R})$ non-polynomial. Show that the set of 3-layer neural networks of the form

$$
f_{\theta}(x)=A^{(3)} \sigma\left(A^{(2)} \sigma\left(A^{(1)} x+b^{(1)}\right)+b^{(2)}\right)+b^{(3)}
$$

where σ applies elementwise, $N_{1}, N_{2} \in \mathbb{N}, A^{(1)} \in \mathbb{R}^{N_{1} \times d}, b^{(1)} \in \mathbb{R}^{N_{1}}, A^{(2)} \in \mathbb{R}^{N_{2} \times N_{1}}, b^{(2)} \in \mathbb{R}^{N_{2}}$, $A^{(3)} \in \mathbb{R}^{1 \times N_{2}}$, and $b^{(3)} \in \mathbb{R}^{1}$ is dense in $\left(\mathcal{C}(\Omega),\|\cdot\|_{\infty}\right)$.

Problem 3: Let $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that there is a $R \in(0, \infty)$ such that

$$
\begin{array}{ll}
\sigma(r)=0, & \forall r \leq-R \\
\sigma(r)=1, & \forall r \geq R
\end{array}
$$

Let

$$
A=\left[\begin{array}{c}
a_{1}^{\top} \\
a_{2}^{\top} \\
\vdots \\
a_{m}^{\top}
\end{array}\right] \in \mathbb{R}^{m \times d}, \quad b=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right] \in \mathbb{R}^{m}
$$

and assume the polytope $P=\{x \mid A x \leq b\} \subset \mathbb{R}^{d}$ is compact. Show that 3-layer neural networks of the form

$$
f_{\theta}(x)=A^{(3)} \sigma\left(A^{(2)} \sigma\left(A^{(1)} x+b^{(1)}\right)+b^{(2)}\right)+b^{(3)}
$$

where σ applies elementwise, $N_{1}, N_{2} \in \mathbb{N}, A^{(1)} \in \mathbb{R}^{N_{1} \times d}, b^{(1)} \in \mathbb{R}^{N_{1}}, A^{(2)} \in \mathbb{R}^{N_{2} \times N_{1}}, b^{(2)} \in \mathbb{R}^{N_{2}}$, $A^{(3)} \in \mathbb{R}^{1 \times N_{2}}$, and $b^{(3)} \in \mathbb{R}^{1}$ can approximate $\mathbf{1}_{\{x \mid A x \leq b\}} \in L^{p}$ for all $p \in[1, \infty)$.

Clarification. We are considering the L^{p} space with respect to the Lebesgue measure.
Hint. Define

$$
d(x, P)= \begin{cases}0 & \text { if } A x \leq b \\ \max _{i=1, \ldots, m} a_{k}^{\top} x-b & \text { otherwise }\end{cases}
$$

Show that (i) $d(x, P)>0$ if and only if $x \notin P$ and (ii) there is an $M \in(0, \infty)$ such that $d(x, P) \geq 1$ if $\|x\| \geq M$.

Problem 4: Let $\mathcal{X}=(-1,1)$. Show that $K: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ defined as

$$
K\left(x, x^{\prime}\right)=\frac{1}{1-x x^{\prime}}
$$

is PDK.
Problem 5: Let \mathcal{Z} be some set and let

$$
\mathcal{X}=\{A \subseteq \mathcal{Z}| | A \mid<\infty\} .
$$

Show that $K: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ defined as

$$
K\left(A, A^{\prime}\right)=2^{\left|A \cap A^{\prime}\right|}
$$

is a PDK.
Clarification. $|A|$ denotes the cardinality of the set A.
Hint. Consider

$$
\sum_{S \in A \cup A^{\prime}} \mathbf{1}_{S \subseteq A}(A) \mathbf{1}_{S \subseteq A}\left(A^{\prime}\right) .
$$

Problem 6: Let \mathcal{Z} be a topological space, let μ be a nonnegative finite Borel measure on \mathcal{Z}, and let

$$
\mathcal{X}=\{A \subseteq \mathcal{Z} \mid A \text { is Borel measurable }\} .
$$

Show that $K: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ defined as

$$
K(A, B)=\mu(A \cap B)
$$

is a PDK.
Hint. Consider the feature map $\phi(A)=\mathbf{1}_{A} \in L^{2}(\mu)$.
Problem 7: Simple RKHS facts. Let \mathcal{H} be an RKHS of functions defined on \mathcal{X} with RK $K: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$. Show the following.
(i) $K(x, x) \geq 0$ for all $x \in \mathcal{X}$.
(ii) If $f_{k} \rightarrow f_{\infty}$ in \mathcal{H}, then $f_{k}(x) \rightarrow f_{\infty}(x)$ for all $x \in \mathcal{X}$.
(iii) Define $d_{K}: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ as

$$
d_{K}\left(x, x^{\prime}\right)=\left\|K(x, \cdot)-K\left(x^{\prime}, \cdot\right)\right\|_{\mathcal{H}} .
$$

Then d_{K} is a pseudometric on \mathcal{X}. If K further is strictly positive definite, then d_{K} is a metric on \mathcal{X}.
(iv) If $K(x, x)=0$, then $K\left(x, x^{\prime}\right)=0$ for all $x^{\prime} \in \mathcal{X}$.
(v) The normalized kernel $\tilde{K}: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ defined as

$$
\tilde{K}\left(x, x^{\prime}\right)= \begin{cases}\frac{K\left(x, x^{\prime}\right)}{\sqrt{K(x, x) K\left(x^{\prime}, x^{\prime}\right)}} & \text { if } K(x, x) K\left(x^{\prime}, x^{\prime}\right)>0 \\ 0 & \text { otherwise }\end{cases}
$$

is a PDK.

