Topics in Applied Mathematics: Infinitely Large Neural Networks, 3341.751 E. Ryu

Spring 2022

Problem 1: Show that the quantitative approximation guarantee can be improved to

$$||f_{\theta} - f_{\star}||^2_{L^2(B)} \le \frac{4Q^2B^2}{N}.$$

Hint. Start by slightly sharpening the Maurice lemma. (The proof of the Maurice lemma given in the recorded lecture had a minor error. Refer to the updated proof.)

Problem 2: Let $\Omega \subseteq \mathbb{R}^d$ be compact and $\sigma \in \mathcal{C}(\mathbb{R})$ non-polynomial. Show that the set of 3-layer neural networks of the form

$$f_{\theta}(x) = A^{(3)}\sigma(A^{(2)}\sigma(A^{(1)}x + b^{(1)}) + b^{(2)}) + b^{(3)}$$

where σ applies elementwise, $N_1, N_2 \in \mathbb{N}$, $A^{(1)} \in \mathbb{R}^{N_1 \times d}$, $b^{(1)} \in \mathbb{R}^{N_1}$, $A^{(2)} \in \mathbb{R}^{N_2 \times N_1}$, $b^{(2)} \in \mathbb{R}^{N_2}$, $A^{(3)} \in \mathbb{R}^{1 \times N_2}$, and $b^{(3)} \in \mathbb{R}^1$ is dense in $(\mathcal{C}(\Omega), \|\cdot\|_{\infty})$.

Problem 3: Let $\sigma \colon \mathbb{R} \to \mathbb{R}$ be a continuous function such that there is a $R \in (0, \infty)$ such that

$$\begin{aligned} \sigma(r) &= 0, \qquad \forall \, r \leq -R \\ \sigma(r) &= 1, \qquad \forall \, r \geq R. \end{aligned}$$

Let

$$A = \begin{bmatrix} a_1^{\mathsf{T}} \\ a_2^{\mathsf{T}} \\ \vdots \\ a_m^{\mathsf{T}} \end{bmatrix} \in \mathbb{R}^{m \times d}, \qquad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix} \in \mathbb{R}^m,$$

and assume the polytope $P = \{x \mid Ax \leq b\} \subset \mathbb{R}^d$ is compact. Show that 3-layer neural networks of the form

$$f_{\theta}(x) = A^{(3)}\sigma(A^{(2)}\sigma(A^{(1)}x + b^{(1)}) + b^{(2)}) + b^{(3)},$$

where σ applies elementwise, $N_1, N_2 \in \mathbb{N}$, $A^{(1)} \in \mathbb{R}^{N_1 \times d}$, $b^{(1)} \in \mathbb{R}^{N_1}$, $A^{(2)} \in \mathbb{R}^{N_2 \times N_1}$, $b^{(2)} \in \mathbb{R}^{N_2}$, $A^{(3)} \in \mathbb{R}^{1 \times N_2}$, and $b^{(3)} \in \mathbb{R}^1$ can approximate $\mathbf{1}_{\{x \mid Ax \leq b\}} \in L^p$ for all $p \in [1, \infty)$.

Clarification. We are considering the L^p space with respect to the Lebesgue measure. Hint. Define

$$d(x,P) = \begin{cases} 0 & \text{if } Ax \le b \\ \max_{i=1,\dots,m} a_k^{\mathsf{T}} x - b & \text{otherwise.} \end{cases}$$

Show that (i) d(x, P) > 0 if and only if $x \notin P$ and (ii) there is an $M \in (0, \infty)$ such that $d(x, P) \ge 1$ if $||x|| \ge M$.

Problem 4: Let $\mathcal{X} = (-1, 1)$. Show that $K \colon \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ defined as

$$K(x, x') = \frac{1}{1 - xx'}$$

is PDK.

Problem 5: Let \mathcal{Z} be some set and let

$$\mathcal{X} = \{ A \subseteq \mathcal{Z} \mid |A| < \infty \}.$$

Show that $K \colon \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ defined as

$$K(A, A') = 2^{|A \cap A'|}$$

is a PDK.

Clarification. |A| denotes the cardinality of the set A. Hint. Consider

$$\sum_{S \in A \cup A'} \mathbf{1}_{S \subseteq A}(A) \mathbf{1}_{S \subseteq A}(A').$$

Problem 6: Let \mathcal{Z} be a topological space, let μ be a nonnegative finite Borel measure on \mathcal{Z} , and let

 $\mathcal{X} = \{ A \subseteq \mathcal{Z} \mid A \text{ is Borel measurable} \}.$

Show that $K \colon \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ defined as

$$K(A,B) = \mu(A \cap B)$$

is a PDK.

Hint. Consider the feature map $\phi(A) = \mathbf{1}_A \in L^2(\mu)$.

Problem 7: Simple RKHS facts. Let \mathcal{H} be an RKHS of functions defined on \mathcal{X} with RK $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$. Show the following.

- (i) $K(x, x) \ge 0$ for all $x \in \mathcal{X}$.
- (ii) If $f_k \to f_\infty$ in \mathcal{H} , then $f_k(x) \to f_\infty(x)$ for all $x \in \mathcal{X}$.
- (iii) Define $d_K \colon \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ as

$$d_K(x, x') = ||K(x, \cdot) - K(x', \cdot)||_{\mathcal{H}}.$$

Then d_K is a pseudometric on \mathcal{X} . If K further is strictly positive definite, then d_K is a metric on \mathcal{X} .

- (iv) If K(x, x) = 0, then K(x, x') = 0 for all $x' \in \mathcal{X}$.
- (v) The normalized kernel $\tilde{K} \colon \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ defined as

$$\tilde{K}(x,x') = \begin{cases} \frac{K(x,x')}{\sqrt{K(x,x)K(x',x')}} & \text{if } K(x,x)K(x',x') > 0\\ 0 & \text{otherwise} \end{cases}$$

is a PDK.