Topics in Applied Mathematics: Infinitely Large Neural Networks, 3341.751 E. Ryu

Spring 2022

Homework 4 Due 5pm, Tuesday, April 26, 2022

Problem 1: Non-strict representer theorem. Let \mathcal{X} be a nonempty set, $K : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ a PDK, \mathcal{H} the corresponding RKHS, $X_1, \ldots, X_N \in \mathcal{X}$, and $Y_1, \ldots, Y_N \in \mathbb{R}$. Consider the optimization problem

$$\underset{f \in \mathcal{H}}{\text{minimize}} \quad L(\{(X_i, Y_i, f(X_i))\}_{i=1}^N) + Q(\|f\|_{\mathcal{H}})$$

where $Q \colon \mathbb{R}_+ \to \mathbb{R}$ is a non-decreasing function. Show that, if a minimizer exists, there is a minimizer in

$$\operatorname{span}(\{K(X_i,\cdot)\}_{i=1}^N).$$

Problem 2: All solutions of kernel ridge regression. Let \mathcal{X} be a nonempty set. Let $X_1, \ldots, X_N \in \mathcal{X}$, $Y_1, \ldots, Y_N \in \mathbb{R}$, $\lambda > 0$, $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a PDK, \mathcal{H} the corresponding RKHS, and $G \in \mathbb{R}^{N \times N}$ the kernel matrix defined as $G_{ij} = K(X_i, X_j)$ for $i, j \in \{1, \ldots, N\}$. Consider

$$\underset{f \in \mathcal{H}}{\text{minimize}} \quad \frac{1}{N} \sum_{i=1}^{N} (f(X_i) - Y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2.$$

Let

$$\varphi^{\star} = (G + \lambda NI)^{-1}Y.$$

Show that (i)

$$f_v^{\star}(\cdot) = \sum_{j=1}^N (\varphi_j^{\star} + v_j) K(\cdot, X_j).$$

for $v \in \mathcal{N}(G)$, is the set of all solutions and that (ii) $f_u^{\star} = f_v^{\star}$ for all $u, v \in \mathcal{N}(G)$.

Hint. For (ii), show that $||f_u^{\star} - f_v^{\star}||_{\mathcal{H}} = 0.$

Problem 3: Let $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}^{d \times d}$ and $k: (\mathcal{X} \times \{1, \ldots, d\}) \times (\mathcal{X} \times \{1, \ldots, d\}) \to \mathbb{R}$ such that

$$(K(x, x'))_{ij} = k((x, i), (x', j)).$$

Show that K is a mvPDK if and only if k is a (scalar-valued) PDK.

Problem 4: Let \mathcal{X} be a nonempty set. Let $K_1: \mathcal{X} \times \mathcal{X} \to \mathbb{R}^{d \times d}$ and $K_2: \mathcal{X} \times \mathcal{X} \to \mathbb{R}^{d \times d}$ be mvPDKs. Define $K_3: \mathcal{X} \times \mathcal{X} \to \mathbb{R}^{d \times d}$ as

$$K_3(x,x') = K_1(x,x') \odot K_2(x,x'), \qquad \forall x,x' \in \mathcal{X},$$

where \odot denotes the Hadamard product. Show that K_3 is an mvPDK.