Homework 4

Due 5pm, Tuesday, April 26, 2022

Problem 1: Non-strict representer theorem. Let \mathcal{X} be a nonempty set, $K: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ a PDK, \mathcal{H} the corresponding RKHS, $X_{1}, \ldots, X_{N} \in \mathcal{X}$, and $Y_{1}, \ldots, Y_{N} \in \mathbb{R}$. Consider the optimization problem

$$
\underset{f \in \mathcal{H}}{\operatorname{minimize}} L\left(\left\{\left(X_{i}, Y_{i}, f\left(X_{i}\right)\right)\right\}_{i=1}^{N}\right)+Q\left(\|f\|_{\mathcal{H}}\right)
$$

where $Q: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is a non-decreasing function. Show that, if a minimizer exists, there is a minimizer in

$$
\operatorname{span}\left(\left\{K\left(X_{i}, \cdot\right)\right\}_{i=1}^{N}\right)
$$

Problem 2: All solutions of kernel ridge regression. Let \mathcal{X} be a nonempty set. Let $X_{1}, \ldots, X_{N} \in$ $\mathcal{X}, Y_{1}, \ldots, Y_{N} \in \mathbb{R}, \lambda>0, K: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ be a PDK, \mathcal{H} the corresponding RKHS, and $G \in \mathbb{R}^{N \times N}$ the kernel matrix defined as $G_{i j}=K\left(X_{i}, X_{j}\right)$ for $i, j \in\{1, \ldots, N\}$. Consider

$$
\underset{f \in \mathcal{H}}{\operatorname{minimize}} \frac{1}{N} \sum_{i=1}^{N}\left(f\left(X_{i}\right)-Y_{i}\right)^{2}+\lambda\|f\|_{\mathcal{H}}^{2}
$$

Let

$$
\varphi^{\star}=(G+\lambda N I)^{-1} Y
$$

Show that (i)

$$
f_{v}^{\star}(\cdot)=\sum_{j=1}^{N}\left(\varphi_{j}^{\star}+v_{j}\right) K\left(\cdot, X_{j}\right)
$$

for $v \in \mathcal{N}(G)$, is the set of all solutions and that (ii) $f_{u}^{\star}=f_{v}^{\star}$ for all $u, v \in \mathcal{N}(G)$.

Hint. For (ii), show that $\left\|f_{u}^{\star}-f_{v}^{\star}\right\|_{\mathcal{H}}=0$.
Problem 3: Let $K: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}^{d \times d}$ and $k:(\mathcal{X} \times\{1, \ldots, d\}) \times(\mathcal{X} \times\{1, \ldots, d\}) \rightarrow \mathbb{R}$ such that

$$
\left(K\left(x, x^{\prime}\right)\right)_{i j}=k\left((x, i),\left(x^{\prime}, j\right)\right)
$$

Show that K is a mvPDK if and only if k is a (scalar-valued) PDK.

Problem 4: Let \mathcal{X} be a nonempty set. Let $K_{1}: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}^{d \times d}$ and $K_{2}: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}^{d \times d}$ be mvPDKs. Define $K_{3}: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}^{d \times d}$ as

$$
K_{3}\left(x, x^{\prime}\right)=K_{1}\left(x, x^{\prime}\right) \odot K_{2}\left(x, x^{\prime}\right), \quad \forall x, x^{\prime} \in \mathcal{X}
$$

where \odot denotes the Hadamard product. Show that K_{3} is an mvPDK.

