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Problem 1: Preconditioned gradient flow. Let £: RP — R be a differentiable convex function.
Assume a minimizer 0, exists. Let M € RP*P be symmetric (strictly) positive definite. Consider
the preconditioned gradient flow

O(t) = —MVLO(t),  6(0) = by.

Show that (i) %E(H(t)) <0 forallt >0 and (ii) L(0(t)) — L(0) as t — 0.

Remark. Applying a positive definite matrix to the gradient is referred to as “preconditioning”,
since the right choice of M can reduce the “condition number” and accelerate convergence. In
fact, M = (V2L£(#))~! corresponds to Newton’s method.

Problem 2: Variational formulation of gradient flow. Assume that £: RP — R is differentiable
and that VL: R? — RP is L-Lipschitz continuous and M-bounded. For « > 0, define the
sequence {9&)}%1\1 as

1
k+1 _ - _ ok 2
Oy = aggélgn {E(G) + 2a”9 O | } ,

with O?Q) = 0 € RP. Assume that the argmin uniquely exists. Let §(¢) be the gradient flow
starting from 6(0) = 6°. Show that for any T' < oo,

sup [|6(t) — 65" | = 0
te[0,7

as a — 0.

Remark. We say £: R? — R is A-semiconvex if £(0) + ()\/2)]|0]|? is a convex function. If £ is
A-semiconvex, then {eéﬂa)}keN is well defined for ao < 1/A.



Problem 3: Matriz-valued PDK from vector-valued features. Let ¢: X — R¥>M and write

¢(z) = [Yi(z) ta(z) - Yu(@)].

Assume o1, ...,y X — R are linearly independent as functions. Consider the mvPDK
K: X x X = R¥? defined as

K(z,2") = (¢(2))(o(2))T
or equivalently,

M
K=Y v @y
k=1

Let
H = span{wk}{yzl.
For

M M
F=Yowthn, 9= Bt
k=1 k=1

define the inner product

M
(f,9n = arp

k=1
Show that H is the vvRKHS corresponding to K.

Problem 4: Eigenfunctions of Lx with respect to a finitely-supported measure. Let X be a
nonempty set. Let RY denote the set of functions f: X — R. Let K: X x X — R be a strictly
positive definite kernel. Let X1,..., Xy € X be distinct. Consider the operator L : RY — RY
defined as

N
LK[f] = ZK( 7X2)f(X1)
i=1
Let G € RV*N be the kernel matrix defined as Gj; = K(X;, X;) for i,j € {1,...,N}. Let
Ui, ..., U, be the orthonormal eigenvectors of G with respective positive eigenvalues Ay, ..., An.
(i) Define
. N
fO=3"K(,Xj)(u);, fori=1,...N.
j=1

Show that f() is an eigenfunction of Ly with eigenvalue );, i.e., Lr[f] = X\ f®, for
i=1,...,N.

(ii) Show that

RX:{fERX]f(xi):Ofori:1,...,N}@span{f(1),...,f(N)},

=Wy

i.e., for any f € RY, we can find a unique decomposition

N
F=1O+Y af®,  fO ey,
1=1



(iii) Show that any f ©) € Vj is an eigenfunction of Ly with eigenvalue 0.

(iv) Define P: RY — RY as (P[f]); = f(X;) for i = 1,..., N. Show that if

N
F=r0+> aif® e,
=1
then
uw]GTP[f] = fori=1,...,N.

(v) Consider the ordinary differential equation

ft = —Lklfi]

with initial condition fy at ¢ = 0. Let

N
fo=f"+ Y ais®, 1 evg

=1

be the eigenfunction expansion of fy. Show that

N
Fr= 10+ e Y

i=1
solves the differential equation.
(vi) Show that
N
lim fi(a) = f" (x) = fo(w) —Z;Kmxj)(c:lp[fo])p Ve X,
j=

Hint. For (i), use P as defined in (iv) and PT: RN — RY defined as

ife=X,foranyt=1,...,N
otherwise.

e ={ o
Then Lxg = L PP, ie.,
Li[f] = L[PT(P[f])]
for all f € RY.

Remark. The solution to the ODE of (v) is often expressed via the “exponential map”

fi = e thE .



Problem 5:Let X C R? be nonempty and let P € P(X) be a probability measure. Let
R: L*(P;RF) — R be Fréchet differentiable everywhere with derivative OR|f,: X — R” for all
fo € L?>(P;RF). For notational simplicity, we often suppress the dependence on fy and write
OR = OR|y,. Define (OR);: X — R to be the ith coordinate of IR, i.e., (OR); € L*(P;R) and
(OR)i(x) = e]OR(z), where ¢; € R¥ is the ith unit vector, for i = 1,..., k.

(i) Show that
R[fo + 0 ® ei] = R[fo] + ((OR)ilfo. 0) r2(Pr) + o([|6] L2(PR))
for small § € L?(P;R).

(ii) Assume R has the decomposition

k

R[f] =) Rilf]

i=1
for any f = (f1,..., fx) € L>(P;R*). So fi1,..., fr € L*(P;R) and R;: L?>(P;R) — R for
i =1,...,k. Show that R; is Fréchet differentiable everywhere with derivative

O(R;) = (OR);,  fori=1,...,k.

Clarification. For all x € X,

(fo(@))i1
(fol@))i 4 6(x)
(fo(x))i+1

(fo+o®e)(z) =

(Jo(@)

Therefore, (0fR|y,)i is the derivative of R with respect the infinitestimal changes in the ith
output of the input function fy.

Problem 6: Let X C R¢ be nonempty, X1,..., Xy € X, and

1 N
P_N;(Sxi.

Let R: L?(P;R¥) — R be Fréchet differentiable everywhere with derivative OR|s,: X — R¥ for
all fo € L?(P;RF). Assume fy(x) is differentiable in @ for all . Show that

0 dfo
90y a6, " L2(PjR¥)

or, to be more precise, that

Ex) | - <§§9

73fR\f90>

_ =0

L2(P;RF)

Hint. Differentiability of fp(x) in 6 implies directional differentiability

dfo(x)
do;

f90+h€i(x) = f%(x) + h + O(h)



Problem 7: General NTK calculation for MLPs. Consider the depth-L MLP

fo(r) =y
YL = 2L o= A Aryr—1 + opbp € R
’ N - ’
A
yr—1 = o(zr—1), 21 = mAL—lyL—2 + opbr—1 € R,
Y2 = 0(22) z:U—AAy + opbe € R™
2 2)s 2 \/n—l 2Y1 b02 3
_ _ 94 n1
= 0(21), 21 = Az + opb; € R™,

N

where o4 >0, 0 > 0, z € R"™, Ap € R™*"™-1 and b, € R™. For £ =1,..., L, define

9\ = (A1,b1, A2, ba, ..., Ay, by)

o001 - (22 (2542)"

and

Show that

2
+ A Ap ding (0 (24(2))) 0O (2, 2') ding (o' (20(a"))) AL,
0
forall z,2/ e R and ¥ =1,...,L — 1.

Clarification. We do not assume ny = 1. We do not take any infinite-width limits in this
problem. We are not considering gradient flow or any process for updating the parameters in
this problem.



