Homework 5

Due 5pm, Friday, May 20, 2022

Problem 1: Preconditioned gradient flow. Let $\mathcal{L}: \mathbb{R}^{p} \rightarrow \mathbb{R}$ be a differentiable convex function. Assume a minimizer θ_{\star} exists. Let $M \in \mathbb{R}^{p \times p}$ be symmetric (strictly) positive definite. Consider the preconditioned gradient flow

$$
\dot{\theta}(t)=-M \nabla \mathcal{L}(\theta(t)), \quad \theta(0)=\theta_{0}
$$

Show that (i) $\frac{d}{d t} \mathcal{L}(\theta(t)) \leq 0$ for all $t>0$ and (ii) $\mathcal{L}(\theta(t)) \rightarrow \mathcal{L}\left(\theta_{\star}\right)$ as $t \rightarrow \infty$.

Remark. Applying a positive definite matrix to the gradient is referred to as "preconditioning", since the right choice of M can reduce the "condition number" and accelerate convergence. In fact, $M=\left(\nabla^{2} \mathcal{L}(\theta)\right)^{-1}$ corresponds to Newton's method.

Problem 2: Variational formulation of gradient flow. Assume that $\mathcal{L}: \mathbb{R}^{p} \rightarrow \mathbb{R}$ is differentiable and that $\nabla \mathcal{L}: \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$ is L-Lipschitz continuous and M-bounded. For $\alpha>0$, define the sequence $\left\{\theta_{(\alpha)}^{k}\right\}_{k \in \mathbb{N}}$ as

$$
\theta_{(\alpha)}^{k+1}=\underset{\theta \in \mathbb{R}^{p}}{\operatorname{argmin}}\left\{\mathcal{L}(\theta)+\frac{1}{2 \alpha}\left\|\theta-\theta_{(\alpha)}^{k}\right\|^{2}\right\}
$$

with $\theta_{(\alpha)}^{0}=\theta^{0} \in \mathbb{R}^{p}$. Assume that the argmin uniquely exists. Let $\theta(t)$ be the gradient flow starting from $\theta(0)=\theta^{0}$. Show that for any $T<\infty$,

$$
\sup _{t \in[0, T]}\left\|\theta(t)-\theta_{(\alpha)}^{\lfloor t / \alpha\rfloor}\right\| \rightarrow 0
$$

as $\alpha \rightarrow 0$.

Remark. We say $\mathcal{L}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is λ-semiconvex if $\mathcal{L}(\theta)+(\lambda / 2)\|\theta\|^{2}$ is a convex function. If \mathcal{L} is λ-semiconvex, then $\left\{\theta_{(\alpha)}^{k}\right\}_{k \in \mathbb{N}}$ is well defined for $\alpha<1 / \lambda$.

Problem 3: Matrix-valued PDK from vector-valued features. Let $\phi: \mathcal{X} \rightarrow \mathbb{R}^{d \times M}$ and write

$$
\phi(x)=\left[\begin{array}{llll}
\psi_{1}(x) & \psi_{2}(x) & \cdots & \psi_{M}(x)
\end{array}\right]
$$

Assume $\psi_{1}, \ldots, \psi_{M}: \mathcal{X} \rightarrow \mathbb{R}^{d}$ are linearly independent as functions. Consider the mvPDK $K: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}^{d \times d}$ defined as

$$
K\left(x, x^{\prime}\right)=(\phi(x))\left(\phi\left(x^{\prime}\right)\right)^{\top}
$$

or equivalently,

$$
K=\sum_{k=1}^{M} \psi_{k} \otimes \psi_{k}
$$

Let

$$
\mathcal{H}=\operatorname{span}\left\{\psi_{k}\right\}_{k=1}^{M}
$$

For

$$
f=\sum_{k=1}^{M} \alpha_{k} \psi_{k}, \quad g=\sum_{k=1}^{M} \beta_{k} \psi_{k}
$$

define the inner product

$$
\langle f, g\rangle_{\mathcal{H}}=\sum_{k=1}^{M} \alpha_{k} \beta_{k}
$$

Show that \mathcal{H} is the vvRKHS corresponding to K.

Problem 4: Eigenfunctions of L_{K} with respect to a finitely-supported measure. Let \mathcal{X} be a nonempty set. Let $\mathbb{R}^{\mathcal{X}}$ denote the set of functions $f: \mathcal{X} \rightarrow \mathbb{R}$. Let $K: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ be a strictly positive definite kernel. Let $X_{1}, \ldots, X_{N} \in \mathcal{X}$ be distinct. Consider the operator $L_{K}: \mathbb{R}^{\mathcal{X}} \rightarrow \mathbb{R}^{\mathcal{X}}$ defined as

$$
L_{K}[f]=\sum_{i=1}^{N} K\left(\cdot, X_{i}\right) f\left(X_{i}\right)
$$

Let $G \in \mathbb{R}^{N \times N}$ be the kernel matrix defined as $G_{i j}=K\left(X_{i}, X_{j}\right)$ for $i, j \in\{1, \ldots, N\}$. Let u_{1}, \ldots, u_{n} be the orthonormal eigenvectors of G with respective positive eigenvalues $\lambda_{1}, \ldots, \lambda_{N}$.
(i) Define

$$
f^{(i)}=\sum_{j=1}^{N} K\left(\cdot, X_{j}\right)\left(u_{i}\right)_{j}, \quad \text { for } i=1, \ldots, N
$$

Show that $f^{(i)}$ is an eigenfunction of L_{K} with eigenvalue λ_{i}, i.e., $L_{K}\left[f^{(i)}\right]=\lambda_{i} f^{(i)}$, for $i=1, \ldots, N$.
(ii) Show that

$$
\mathbb{R}^{\mathcal{X}}=\underbrace{\left\{f \in \mathbb{R}^{\mathcal{X}} \mid f\left(x_{i}\right)=0 \text { for } i=1, \ldots, N\right\}}_{:=V_{0}} \oplus \operatorname{span}\left\{f^{(1)}, \ldots, f^{(N)}\right\}
$$

i.e., for any $f \in \mathbb{R}^{\mathcal{X}}$, we can find a unique decomposition

$$
f=f^{(0)}+\sum_{i=1}^{N} \alpha_{i} f^{(i)}, \quad f^{(0)} \in V_{0}
$$

(iii) Show that any $f^{(0)} \in V_{0}$ is an eigenfunction of L_{K} with eigenvalue 0 .
(iv) Define $P: \mathbb{R}^{\mathcal{X}} \rightarrow \mathbb{R}^{N}$ as $(P[f])_{i}=f\left(X_{i}\right)$ for $i=1, \ldots, N$. Show that if

$$
f=f^{(0)}+\sum_{i=1}^{N} \alpha_{i} f^{(i)}, \quad f^{(0)} \in V_{0}
$$

then

$$
u_{i}^{\top} G^{-1} P[f]=\alpha_{i}, \quad \text { for } i=1, \ldots, N .
$$

(v) Consider the ordinary differential equation

$$
\dot{f_{t}}=-L_{K}\left[f_{t}\right]
$$

with initial condition f_{0} at $t=0$. Let

$$
f_{0}=f_{0}^{(0)}+\sum_{i=1}^{N} \alpha_{i} f^{(i)}, \quad f_{0}^{(0)} \in V_{0}
$$

be the eigenfunction expansion of f_{0}. Show that

$$
f_{t}=f_{0}^{(0)}+\sum_{i=1}^{N} \alpha_{i} e^{-t \lambda} f_{0}^{(i)}
$$

solves the differential equation.
(vi) Show that

$$
\lim _{t \rightarrow \infty} f_{t}(x)=f_{0}^{(0)}(x)=f_{0}(x)-\sum_{j=1}^{N} K\left(x, X_{j}\right)\left(G^{-1} P\left[f_{0}\right]\right)_{j}, \quad \forall x \in \mathcal{X}
$$

Hint. For (i), use P as defined in (iv) and $P^{\dagger}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{\mathcal{X}}$ defined as

$$
\left(P^{\dagger}(v)\right)(x)= \begin{cases}v_{i} & \text { if } x=X_{i} \text { for any } i=1, \ldots, N \\ 0 & \text { otherwise. }\end{cases}
$$

Then $L_{K}=L_{K} P^{\dagger} P$, i.e.,

$$
L_{K}[f]=L_{K}\left[P^{\dagger}(P[f])\right]
$$

for all $f \in \mathbb{R}^{\mathcal{X}}$.
Remark. The solution to the ODE of (v) is often expressed via the "exponential map"

$$
f_{t}=e^{-t L_{K}} f_{0}
$$

Problem 5: Let $\mathcal{X} \subseteq \mathbb{R}^{d}$ be nonempty and let $P \in \mathcal{P}(\mathcal{X})$ be a probability measure. Let $R: L^{2}\left(P ; \mathbb{R}^{k}\right) \rightarrow \mathbb{R}$ be Fréchet differentiable everywhere with derivative $\left.\partial R\right|_{f_{0}}: \mathcal{X} \rightarrow \mathbb{R}^{k}$ for all $f_{0} \in L^{2}\left(P ; \mathbb{R}^{k}\right)$. For notational simplicity, we often suppress the dependence on f_{0} and write $\partial R=\left.\partial R\right|_{f_{0}}$. Define $(\partial R)_{i}: \mathcal{X} \rightarrow \mathbb{R}$ to be the i th coordinate of ∂R, i.e., $(\partial R)_{i} \in L^{2}(P ; \mathbb{R})$ and $(\partial R)_{i}(x)=e_{i}^{\top} \partial R(x)$, where $e_{i} \in \mathbb{R}^{k}$ is the i th unit vector, for $i=1, \ldots, k$.
(i) Show that

$$
R\left[f_{0}+\delta \otimes e_{i}\right]=R\left[f_{0}\right]+\left\langle\left.(\partial R)_{i}\right|_{f_{0}}, \delta\right\rangle_{L^{2}(P ; \mathbb{R})}+o\left(\|\delta\|_{L^{2}(P ; \mathbb{R})}\right)
$$

for small $\delta \in L^{2}(P ; \mathbb{R})$.
(ii) Assume R has the decomposition

$$
R[f]=\sum_{i=1}^{k} R_{i}\left[f_{i}\right]
$$

for any $f=\left(f_{1}, \ldots, f_{k}\right) \in L^{2}\left(P ; \mathbb{R}^{k}\right)$. So $f_{1}, \ldots, f_{k} \in L^{2}(P ; \mathbb{R})$ and $R_{i}: L^{2}(P ; \mathbb{R}) \rightarrow \mathbb{R}$ for $i=1, \ldots, k$. Show that R_{i} is Fréchet differentiable everywhere with derivative

$$
\partial\left(R_{i}\right)=(\partial R)_{i}, \quad \text { for } i=1, \ldots, k
$$

Clarification. For all $x \in \mathcal{X}$,

$$
\left(f_{0}+\delta \otimes e_{i}\right)(x)=\left[\begin{array}{c}
\left(f_{0}(x)\right)_{1} \\
\left(f_{0}(x)\right)_{2} \\
\vdots \\
\left(f_{0}(x)\right)_{i-1} \\
\left(f_{0}(x)\right)_{i}+\delta(x) \\
\left(f_{0}(x)\right)_{i+1} \\
\vdots \\
\left(f_{0}(x)\right)_{k}
\end{array}\right]
$$

Therefore, $\left(\left.\partial_{f} R\right|_{f_{0}}\right)_{i}$ is the derivative of R with respect the infinitestimal changes in the i th output of the input function f_{0}.

Problem 6: Let $\mathcal{X} \subseteq \mathbb{R}^{d}$ be nonempty, $X_{1}, \ldots, X_{N} \in \mathcal{X}$, and

$$
P=\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{i}}
$$

Let $R: L^{2}\left(P ; \mathbb{R}^{k}\right) \rightarrow \mathbb{R}$ be Fréchet differentiable everywhere with derivative $\left.\partial R\right|_{f_{0}}: \mathcal{X} \rightarrow \mathbb{R}^{k}$ for all $f_{0} \in L^{2}\left(P ; \mathbb{R}^{k}\right)$. Assume $f_{\theta}(x)$ is differentiable in θ for all x. Show that

$$
\frac{\partial}{\partial \theta_{p}} R\left[f_{\theta}\right]=\left\langle\frac{\partial f_{\theta}}{\partial \theta_{p}}, \partial_{f} R\right\rangle_{L^{2}\left(P ; \mathbb{R}^{k}\right)}
$$

or, to be more precise, that

$$
\left.\left(\frac{\partial}{\partial \theta_{p}} R\left[f_{\theta}\right]\right)\right|_{\theta=\theta_{0}}=\left\langle\left.\frac{\partial f_{\theta}}{\partial \theta_{p}}\right|_{\theta=\theta_{0}},\left.\partial_{f} R\right|_{f_{\theta_{0}}}\right\rangle_{L^{2}\left(P ; \mathbb{R}^{k}\right)}
$$

Hint. Differentiability of $f_{\theta}(x)$ in θ implies directional differentiability

$$
f_{\theta_{0}+h e_{i}}(x)=f_{\theta_{0}}(x)+\frac{d f_{\theta}(x)}{d \theta_{i}} h+o(h)
$$

Problem 7: General NTK calculation for MLPs. Consider the depth- L MLP

$$
\begin{aligned}
f_{\theta}(x) & =y_{L} & & \\
y_{L} & =z_{L}, & z_{L} & =\frac{\sigma_{A}}{\sqrt{n_{L-1}}} A_{L} y_{L-1}+\sigma_{b} b_{L} \in \mathbb{R}^{n_{L}}, \\
y_{L-1} & =\sigma\left(z_{L-1}\right), & z_{L-1} & =\frac{\sigma_{A}}{\sqrt{n_{L-2}}} A_{L-1} y_{L-2}+\sigma_{b} b_{L-1} \in \mathbb{R}^{n_{L-1}}, \\
& \vdots & & \\
y_{2} & =\sigma\left(z_{2}\right), & z_{2} & =\frac{\sigma_{A}}{\sqrt{n_{1}}} A_{2} y_{1}+\sigma_{b} b_{2} \in \mathbb{R}^{n_{2}}, \\
y_{1} & =\sigma\left(z_{1}\right), & z_{1} & =\frac{\sigma_{A}}{\sqrt{n_{0}}} A_{1} x+\sigma_{b} b_{1} \in \mathbb{R}^{n_{1}},
\end{aligned}
$$

where $\sigma_{A}>0, \sigma_{b}>0, x \in \mathbb{R}^{n_{0}}, A_{\ell} \in \mathbb{R}^{n_{\ell} \times n_{\ell-1}}$, and $b_{\ell} \in \mathbb{R}^{n_{\ell}}$. For $\ell=1, \ldots, L$, define

$$
\theta^{(\ell)}=\left(A_{1}, b_{1}, A_{2}, b_{2}, \ldots, A_{\ell}, b_{\ell}\right)
$$

and

$$
\Theta^{(\ell)}\left(x, x^{\prime}\right)=\left(\frac{\partial z_{\ell}(x)}{\partial \theta^{(\ell)}}\right)\left(\frac{\partial z_{\ell}\left(x^{\prime}\right)}{\partial \theta^{(\ell)}}\right)^{\top} .
$$

Show that

$$
\Theta^{(1)}\left(x, x^{\prime}\right)=\left(\frac{\sigma_{A}^{2}}{n_{0}} x^{\top} x^{\prime}+\sigma_{b}^{2}\right) I_{n_{1}}
$$

for all $x, x^{\prime} \in \mathbb{R}^{n_{0}}$, and that

$$
\begin{aligned}
\Theta^{(\ell+1)}\left(x, x^{\prime}\right)=(& \left.\frac{\sigma_{A}^{2}}{n_{\ell}} \sigma\left(z_{\ell}(x)\right)^{\top} \sigma\left(z_{\ell}\left(x^{\prime}\right)\right)+\sigma_{b}^{2}\right) I_{n_{\ell}} \\
& +\frac{\sigma_{A}^{2}}{n_{\ell}} A_{\ell+1} \operatorname{diag}\left(\sigma^{\prime}\left(z_{\ell}(x)\right)\right) \Theta^{(\ell)}\left(x, x^{\prime}\right) \operatorname{diag}\left(\sigma^{\prime}\left(z_{\ell}\left(x^{\prime}\right)\right)\right) A_{\ell+1}^{\top}
\end{aligned}
$$

for all $x, x^{\prime} \in \mathbb{R}^{n_{0}}$ and $\ell=1, \ldots, L-1$.
Clarification. We do not assume $n_{L}=1$. We do not take any infinite-width limits in this problem. We are not considering gradient flow or any process for updating the parameters in this problem.

