Topics in Applied Mathematics: Infinitely Large Neural Networks, 3341.751 E. Ryu Spring 2022

Homework 5 Due 5pm, Friday, May 20, 2022

Problem 1: Preconditioned gradient flow. Let $\mathcal{L}: \mathbb{R}^p \to \mathbb{R}$ be a differentiable convex function. Assume a minimizer θ_* exists. Let $M \in \mathbb{R}^{p \times p}$ be symmetric (strictly) positive definite. Consider the preconditioned gradient flow

$$\dot{\theta}(t) = -M\nabla \mathcal{L}(\theta(t)), \qquad \theta(0) = \theta_0.$$

Show that (i) $\frac{d}{dt}\mathcal{L}(\theta(t)) \leq 0$ for all t > 0 and (ii) $\mathcal{L}(\theta(t)) \to \mathcal{L}(\theta_{\star})$ as $t \to \infty$.

Remark. Applying a positive definite matrix to the gradient is referred to as "preconditioning", since the right choice of M can reduce the "condition number" and accelerate convergence. In fact, $M = (\nabla^2 \mathcal{L}(\theta))^{-1}$ corresponds to Newton's method.

Problem 2: Variational formulation of gradient flow. Assume that $\mathcal{L}: \mathbb{R}^p \to \mathbb{R}$ is differentiable and that $\nabla \mathcal{L}: \mathbb{R}^p \to \mathbb{R}^p$ is *L*-Lipschitz continuous and *M*-bounded. For $\alpha > 0$, define the sequence $\{\theta_{(\alpha)}^k\}_{k\in\mathbb{N}}$ as

$$\theta_{(\alpha)}^{k+1} = \operatorname*{argmin}_{\theta \in \mathbb{R}^p} \left\{ \mathcal{L}(\theta) + \frac{1}{2\alpha} \|\theta - \theta_{(\alpha)}^k\|^2 \right\},\,$$

with $\theta_{(\alpha)}^0 = \theta^0 \in \mathbb{R}^p$. Assume that the argmin uniquely exists. Let $\theta(t)$ be the gradient flow starting from $\theta(0) = \theta^0$. Show that for any $T < \infty$,

$$\sup_{t \in [0,T]} \|\theta(t) - \theta_{(\alpha)}^{\lfloor t/\alpha \rfloor}\| \to 0$$

as $\alpha \to 0$.

Remark. We say $\mathcal{L} : \mathbb{R}^d \to \mathbb{R}$ is λ -semiconvex if $\mathcal{L}(\theta) + (\lambda/2) \|\theta\|^2$ is a convex function. If \mathcal{L} is λ -semiconvex, then $\{\theta_{(\alpha)}^k\}_{k\in\mathbb{N}}$ is well defined for $\alpha < 1/\lambda$.

Problem 3: Matrix-valued PDK from vector-valued features. Let $\phi: \mathcal{X} \to \mathbb{R}^{d \times M}$ and write

$$\phi(x) = \begin{bmatrix} \psi_1(x) & \psi_2(x) & \cdots & \psi_M(x) \end{bmatrix}.$$

Assume $\psi_1, \ldots, \psi_M \colon \mathcal{X} \to \mathbb{R}^d$ are linearly independent as functions. Consider the mvPDK $K \colon \mathcal{X} \times \mathcal{X} \to \mathbb{R}^{d \times d}$ defined as

$$K(x, x') = (\phi(x))(\phi(x'))^{\mathsf{T}}$$

. .

or equivalently,

$$K = \sum_{k=1}^{M} \psi_k \otimes \psi_k.$$

Let

$$\mathcal{H} = \operatorname{span}\{\psi_k\}_{k=1}^M.$$

For

$$f = \sum_{k=1}^{M} \alpha_k \psi_k, \qquad g = \sum_{k=1}^{M} \beta_k \psi_k,$$

define the inner product

$$\langle f,g \rangle_{\mathcal{H}} = \sum_{k=1}^{M} \alpha_k \beta_k.$$

Show that \mathcal{H} is the vvRKHS corresponding to K.

Problem 4: Eigenfunctions of L_K with respect to a finitely-supported measure. Let \mathcal{X} be a nonempty set. Let $\mathbb{R}^{\mathcal{X}}$ denote the set of functions $f: \mathcal{X} \to \mathbb{R}$. Let $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a strictly positive definite kernel. Let $X_1, \ldots, X_N \in \mathcal{X}$ be distinct. Consider the operator $L_K: \mathbb{R}^{\mathcal{X}} \to \mathbb{R}^{\mathcal{X}}$ defined as

$$L_K[f] = \sum_{i=1}^N K(\cdot, X_i) f(X_i).$$

Let $G \in \mathbb{R}^{N \times N}$ be the kernel matrix defined as $G_{ij} = K(X_i, X_j)$ for $i, j \in \{1, \ldots, N\}$. Let u_1, \ldots, u_n be the orthonormal eigenvectors of G with respective positive eigenvalues $\lambda_1, \ldots, \lambda_N$.

(i) Define

$$f^{(i)} = \sum_{j=1}^{N} K(\cdot, X_j)(u_i)_j, \quad \text{for } i = 1, \dots, N.$$

Show that $f^{(i)}$ is an eigenfunction of L_K with eigenvalue λ_i , i.e., $L_K[f^{(i)}] = \lambda_i f^{(i)}$, for i = 1, ..., N.

(ii) Show that

$$\mathbb{R}^{\mathcal{X}} = \underbrace{\{f \in \mathbb{R}^{\mathcal{X}} \mid f(x_i) = 0 \text{ for } i = 1, \dots, N\}}_{:=V_0} \oplus \operatorname{span}\{f^{(1)}, \dots, f^{(N)}\},\$$

i.e., for any $f \in \mathbb{R}^{\mathcal{X}}$, we can find a unique decomposition

$$f = f^{(0)} + \sum_{i=1}^{N} \alpha_i f^{(i)}, \qquad f^{(0)} \in V_0$$

- (iii) Show that any $f^{(0)} \in V_0$ is an eigenfunction of L_K with eigenvalue 0.
- (iv) Define $P \colon \mathbb{R}^{\mathcal{X}} \to \mathbb{R}^N$ as $(P[f])_i = f(X_i)$ for $i = 1, \ldots, N$. Show that if

$$f = f^{(0)} + \sum_{i=1}^{N} \alpha_i f^{(i)}, \qquad f^{(0)} \in V_0,$$

then

$$u_i^{\mathsf{T}} G^{-1} P[f] = \alpha_i, \quad \text{for } i = 1, \dots, N.$$

(v) Consider the ordinary differential equation

$$\dot{f}_t = -L_K[f_t]$$

with initial condition f_0 at t = 0. Let

$$f_0 = f_0^{(0)} + \sum_{i=1}^N \alpha_i f^{(i)}, \qquad f_0^{(0)} \in V_0$$

be the eigenfunction expansion of f_0 . Show that

$$f_t = f_0^{(0)} + \sum_{i=1}^N \alpha_i e^{-t\lambda} f_0^{(i)}$$

solves the differential equation.

(vi) Show that

$$\lim_{t \to \infty} f_t(x) = f_0^{(0)}(x) = f_0(x) - \sum_{j=1}^N K(x, X_j) (G^{-1}P[f_0])_j, \qquad \forall x \in \mathcal{X}.$$

Hint. For (i), use P as defined in (iv) and $P^{\dagger} \colon \mathbb{R}^N \to \mathbb{R}^{\mathcal{X}}$ defined as

$$(P^{\dagger}(v))(x) = \begin{cases} v_i & \text{if } x = X_i \text{ for any } i = 1, \dots, N \\ 0 & \text{otherwise.} \end{cases}$$

Then $L_K = L_K P^{\dagger} P$, i.e.,

$$L_K[f] = L_K[P^{\dagger}(P[f])]$$

for all $f \in \mathbb{R}^{\mathcal{X}}$.

Remark. The solution to the ODE of (v) is often expressed via the "exponential map"

$$f_t = e^{-tL_K} f_0.$$

Problem 5: Let $\mathcal{X} \subseteq \mathbb{R}^d$ be nonempty and let $P \in \mathcal{P}(\mathcal{X})$ be a probability measure. Let $R: L^2(P; \mathbb{R}^k) \to \mathbb{R}$ be Fréchet differentiable everywhere with derivative $\partial R|_{f_0}: \mathcal{X} \to \mathbb{R}^k$ for all $f_0 \in L^2(P; \mathbb{R}^k)$. For notational simplicity, we often suppress the dependence on f_0 and write $\partial R = \partial R|_{f_0}$. Define $(\partial R)_i: \mathcal{X} \to \mathbb{R}$ to be the *i*th coordinate of ∂R , i.e., $(\partial R)_i \in L^2(P; \mathbb{R})$ and $(\partial R)_i(x) = e_i^{\mathsf{T}} \partial R(x)$, where $e_i \in \mathbb{R}^k$ is the *i*th unit vector, for $i = 1, \ldots, k$.

(i) Show that

$$R[f_0 + \delta \otimes e_i] = R[f_0] + \langle (\partial R)_i |_{f_0}, \delta \rangle_{L^2(P;\mathbb{R})} + o(\|\delta\|_{L^2(P;\mathbb{R})})$$

for small $\delta \in L^2(P; \mathbb{R})$.

(ii) Assume R has the decomposition

$$R[f] = \sum_{i=1}^{k} R_i[f_i]$$

for any $f = (f_1, \ldots, f_k) \in L^2(P; \mathbb{R}^k)$. So $f_1, \ldots, f_k \in L^2(P; \mathbb{R})$ and $R_i: L^2(P; \mathbb{R}) \to \mathbb{R}$ for $i = 1, \ldots, k$. Show that R_i is Fréchet differentiable everywhere with derivative

$$\partial(R_i) = (\partial R)_i, \quad \text{for } i = 1, \dots, k.$$

Clarification. For all $x \in \mathcal{X}$,

$$(f_0 + \delta \otimes e_i)(x) = \begin{bmatrix} (f_0(x))_1 \\ (f_0(x))_2 \\ \vdots \\ (f_0(x))_{i-1} \\ (f_0(x))_i + \delta(x) \\ (f_0(x))_{i+1} \\ \vdots \\ (f_0(x))_k \end{bmatrix}$$

Therefore, $(\partial_f R|_{f_0})_i$ is the derivative of R with respect the infinitestimal changes in the *i*th output of the input function f_0 .

Problem 6: Let $\mathcal{X} \subseteq \mathbb{R}^d$ be nonempty, $X_1, \ldots, X_N \in \mathcal{X}$, and

$$P = \frac{1}{N} \sum_{i=1}^{N} \delta_{X_i}.$$

Let $R: L^2(P; \mathbb{R}^k) \to \mathbb{R}$ be Fréchet differentiable everywhere with derivative $\partial R|_{f_0}: \mathcal{X} \to \mathbb{R}^k$ for all $f_0 \in L^2(P; \mathbb{R}^k)$. Assume $f_{\theta}(x)$ is differentiable in θ for all x. Show that

$$\frac{\partial}{\partial \theta_p} R[f_{\theta}] = \left\langle \frac{\partial f_{\theta}}{\partial \theta_p}, \partial_f R \right\rangle_{L^2(P; \mathbb{R}^k)}$$

or, to be more precise, that

$$\left(\frac{\partial}{\partial \theta_p} R[f_{\theta}]\right) \bigg|_{\theta=\theta_0} = \left\langle \frac{\partial f_{\theta}}{\partial \theta_p} \bigg|_{\theta=\theta_0}, \partial_f R|_{f_{\theta_0}} \right\rangle_{L^2(P;\mathbb{R}^k)}$$

Hint. Differentiability of $f_{\theta}(x)$ in θ implies directional differentiability

$$f_{\theta_0+he_i}(x) = f_{\theta_0}(x) + \frac{df_{\theta}(x)}{d\theta_i}h + o(h).$$

Problem 7: General NTK calculation for MLPs. Consider the depth-L MLP

$$\begin{split} f_{\theta}(x) &= y_L \\ y_L &= z_L, \\ y_{L-1} &= \sigma(z_{L-1}), \\ \vdots \\ y_2 &= \sigma(z_2), \\ y_1 &= \sigma(z_1), \\ z_L &= \frac{\sigma_A}{\sqrt{n_{L-2}}} A_{L-1} y_{L-2} + \sigma_b b_{L-1} \in \mathbb{R}^{n_{L-1}}, \\ \vdots \\ z_2 &= \frac{\sigma_A}{\sqrt{n_1}} A_2 y_1 + \sigma_b b_2 \in \mathbb{R}^{n_2}, \\ y_1 &= \sigma(z_1), \\ z_1 &= \frac{\sigma_A}{\sqrt{n_0}} A_1 x + \sigma_b b_1 \in \mathbb{R}^{n_1}, \end{split}$$

where $\sigma_A > 0$, $\sigma_b > 0$, $x \in \mathbb{R}^{n_0}$, $A_\ell \in \mathbb{R}^{n_\ell \times n_{\ell-1}}$, and $b_\ell \in \mathbb{R}^{n_\ell}$. For $\ell = 1, \ldots, L$, define

$$\theta^{(\ell)} = (A_1, b_1, A_2, b_2, \dots, A_\ell, b_\ell)$$

and

$$\Theta^{(\ell)}(x,x') = \left(\frac{\partial z_{\ell}(x)}{\partial \theta^{(\ell)}}\right) \left(\frac{\partial z_{\ell}(x')}{\partial \theta^{(\ell)}}\right)^{\mathsf{T}}.$$

Show that

$$\Theta^{(1)}(x,x') = \left(\frac{\sigma_A^2}{n_0}x^{\mathsf{T}}x' + \sigma_b^2\right)I_{n_1}$$

for all $x, x' \in \mathbb{R}^{n_0}$, and that

$$\Theta^{(\ell+1)}(x,x') = \left(\frac{\sigma_A^2}{n_\ell}\sigma(z_\ell(x))^{\mathsf{T}}\sigma(z_\ell(x')) + \sigma_b^2\right)I_{n_\ell} + \frac{\sigma_A^2}{n_\ell}A_{\ell+1}\operatorname{diag}(\sigma'(z_\ell(x)))\Theta^{(\ell)}(x,x')\operatorname{diag}(\sigma'(z_\ell(x')))A_{\ell+1}^{\mathsf{T}}$$

for all $x, x' \in \mathbb{R}^{n_0}$ and $\ell = 1, \ldots, L - 1$.

Clarification. We do not assume $n_L = 1$. We do not take any infinite-width limits in this problem. We are not considering gradient flow or any process for updating the parameters in this problem.