
Topics in Applied Mathematics: Infinitely Large Neural Networks, 3341.751
E. Ryu
Spring 2022

Homework 5
Due 5pm, Friday, May 20, 2022

Problem 1: Preconditioned gradient flow. Let L : Rp → R be a differentiable convex function.
Assume a minimizer θ⋆ exists. LetM ∈ Rp×p be symmetric (strictly) positive definite. Consider
the preconditioned gradient flow

θ̇(t) = −M∇L(θ(t)), θ(0) = θ0.

Show that (i) d
dtL(θ(t)) ≤ 0 for all t > 0 and (ii) L(θ(t)) → L(θ⋆) as t→ ∞.

Remark. Applying a positive definite matrix to the gradient is referred to as “preconditioning”,
since the right choice of M can reduce the “condition number” and accelerate convergence. In
fact, M = (∇2L(θ))−1 corresponds to Newton’s method.

Problem 2: Variational formulation of gradient flow. Assume that L : Rp → R is differentiable
and that ∇L : Rp → Rp is L-Lipschitz continuous and M -bounded. For α > 0, define the
sequence {θk(α)}k∈N as

θk+1
(α) = argmin

θ∈Rp

{
L(θ) + 1

2α
∥θ − θk(α)∥

2

}
,

with θ0(α) = θ0 ∈ Rp. Assume that the argmin uniquely exists. Let θ(t) be the gradient flow

starting from θ(0) = θ0. Show that for any T <∞,

sup
t∈[0,T ]

∥θ(t)− θ
⌊t/α⌋
(α) ∥ → 0

as α→ 0.

Remark. We say L : Rd → R is λ-semiconvex if L(θ) + (λ/2)∥θ∥2 is a convex function. If L is
λ-semiconvex, then {θk(α)}k∈N is well defined for α < 1/λ.
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Problem 3: Matrix-valued PDK from vector-valued features. Let ϕ : X → Rd×M and write

ϕ(x) =
[
ψ1(x) ψ2(x) · · · ψM (x)

]
.

Assume ψ1, . . . , ψM : X → Rd are linearly independent as functions. Consider the mvPDK
K : X × X → Rd×d defined as

K(x, x′) = (ϕ(x))(ϕ(x′))⊺

or equivalently,

K =

M∑
k=1

ψk ⊗ ψk.

Let
H = span{ψk}Mk=1.

For

f =
M∑
k=1

αkψk, g =
M∑
k=1

βkψk,

define the inner product

⟨f, g⟩H =

M∑
k=1

αkβk.

Show that H is the vvRKHS corresponding to K.

Problem 4: Eigenfunctions of LK with respect to a finitely-supported measure. Let X be a
nonempty set. Let RX denote the set of functions f : X → R. Let K : X ×X → R be a strictly
positive definite kernel. Let X1, . . . , XN ∈ X be distinct. Consider the operator LK : RX → RX

defined as

LK [f ] =
N∑
i=1

K(·, Xi)f(Xi).

Let G ∈ RN×N be the kernel matrix defined as Gij = K(Xi, Xj) for i, j ∈ {1, . . . , N}. Let
u1, . . . , un be the orthonormal eigenvectors of G with respective positive eigenvalues λ1, . . . , λN .

(i) Define

f (i) =

N∑
j=1

K(·, Xj)(ui)j , for i = 1, . . . , N.

Show that f (i) is an eigenfunction of LK with eigenvalue λi, i.e., LK [f (i)] = λif
(i), for

i = 1, . . . , N .

(ii) Show that

RX = {f ∈ RX | f(xi) = 0 for i = 1, . . . , N}︸ ︷︷ ︸
:=V0

⊕ span{f (1), . . . , f (N)},

i.e., for any f ∈ RX , we can find a unique decomposition

f = f (0) +
N∑
i=1

αif
(i), f (0) ∈ V0.
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(iii) Show that any f (0) ∈ V0 is an eigenfunction of LK with eigenvalue 0.

(iv) Define P : RX → RN as (P [f ])i = f(Xi) for i = 1, . . . , N . Show that if

f = f (0) +

N∑
i=1

αif
(i), f (0) ∈ V0,

then
u⊺iG

−1P [f ] = αi, for i = 1, . . . , N.

(v) Consider the ordinary differential equation

ḟt = −LK [ft]

with initial condition f0 at t = 0. Let

f0 = f
(0)
0 +

N∑
i=1

αif
(i), f

(0)
0 ∈ V0

be the eigenfunction expansion of f0. Show that

ft = f
(0)
0 +

N∑
i=1

αie
−tλf

(i)
0

solves the differential equation.

(vi) Show that

lim
t→∞

ft(x) = f
(0)
0 (x) = f0(x)−

N∑
j=1

K(x,Xj)(G
−1P [f0])j , ∀x ∈ X .

Hint. For (i), use P as defined in (iv) and P † : RN → RX defined as

(P †(v))(x) =

{
vi if x = Xi for any i = 1, . . . , N
0 otherwise.

Then LK = LKP
†P , i.e.,

LK [f ] = LK [P †(P [f ])]

for all f ∈ RX .

Remark. The solution to the ODE of (v) is often expressed via the “exponential map”

ft = e−tLKf0.
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Problem 5: Let X ⊆ Rd be nonempty and let P ∈ P(X ) be a probability measure. Let
R : L2(P ;Rk) → R be Fréchet differentiable everywhere with derivative ∂R|f0 : X → Rk for all
f0 ∈ L2(P ;Rk). For notational simplicity, we often suppress the dependence on f0 and write
∂R = ∂R|f0 . Define (∂R)i : X → R to be the ith coordinate of ∂R, i.e., (∂R)i ∈ L2(P ;R) and
(∂R)i(x) = e⊺i ∂R(x), where ei ∈ Rk is the ith unit vector, for i = 1, . . . , k.

(i) Show that
R[f0 + δ ⊗ ei] = R[f0] + ⟨(∂R)i|f0 , δ⟩L2(P ;R) + o(∥δ∥L2(P ;R))

for small δ ∈ L2(P ;R).

(ii) Assume R has the decomposition

R[f ] =

k∑
i=1

Ri[fi]

for any f = (f1, . . . , fk) ∈ L2(P ;Rk). So f1, . . . , fk ∈ L2(P ;R) and Ri : L
2(P ;R) → R for

i = 1, . . . , k. Show that Ri is Fréchet differentiable everywhere with derivative

∂(Ri) = (∂R)i, for i = 1, . . . , k.

Clarification. For all x ∈ X ,

(f0 + δ ⊗ ei)(x) =



(f0(x))1
(f0(x))2

...
(f0(x))i−1

(f0(x))i + δ(x)
(f0(x))i+1

...
(f0(x))k


.

Therefore, (∂fR|f0)i is the derivative of R with respect the infinitestimal changes in the ith
output of the input function f0.

Problem 6: Let X ⊆ Rd be nonempty, X1, . . . , XN ∈ X , and

P =
1

N

N∑
i=1

δXi .

Let R : L2(P ;Rk) → R be Fréchet differentiable everywhere with derivative ∂R|f0 : X → Rk for
all f0 ∈ L2(P ;Rk). Assume fθ(x) is differentiable in θ for all x. Show that

∂

∂θp
R[fθ] =

〈
∂fθ
∂θp

, ∂fR

〉
L2(P ;Rk)

or, to be more precise, that(
∂

∂θp
R[fθ]

) ∣∣∣∣∣
θ=θ0

=

〈
∂fθ
∂θp

∣∣∣∣
θ=θ0

, ∂fR|fθ0

〉
L2(P ;Rk)

.

Hint. Differentiability of fθ(x) in θ implies directional differentiability

fθ0+hei(x) = fθ0(x) +
dfθ(x)

dθi
h+ o(h).
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Problem 7: General NTK calculation for MLPs. Consider the depth-L MLP

fθ(x) = yL

yL = zL, zL =
σA√
nL−1

ALyL−1 + σbbL ∈ RnL ,

yL−1 = σ(zL−1), zL−1 =
σA√
nL−2

AL−1yL−2 + σbbL−1 ∈ RnL−1 ,

...

y2 = σ(z2), z2 =
σA√
n1
A2y1 + σbb2 ∈ Rn2 ,

y1 = σ(z1), z1 =
σA√
n0
A1x+ σbb1 ∈ Rn1 ,

where σA > 0, σb > 0, x ∈ Rn0 , Aℓ ∈ Rnℓ×nℓ−1 , and bℓ ∈ Rnℓ . For ℓ = 1, . . . , L, define

θ(ℓ) = (A1, b1, A2, b2, . . . , Aℓ, bℓ)

and

Θ(ℓ)(x, x′) =

(
∂zℓ(x)

∂θ(ℓ)

)(
∂zℓ(x

′)

∂θ(ℓ)

)⊺

.

Show that

Θ(1)(x, x′) =

(
σ2A
n0
x⊺x′ + σ2b

)
In1

for all x, x′ ∈ Rn0 , and that

Θ(ℓ+1)(x, x′) =

(
σ2A
nℓ
σ(zℓ(x))

⊺σ(zℓ(x
′)) + σ2b

)
Inℓ

+
σ2A
nℓ
Aℓ+1 diag(σ

′(zℓ(x)))Θ
(ℓ)(x, x′) diag(σ′(zℓ(x

′)))A⊺
ℓ+1

for all x, x′ ∈ Rn0 and ℓ = 1, . . . , L− 1.

Clarification. We do not assume nL = 1. We do not take any infinite-width limits in this
problem. We are not considering gradient flow or any process for updating the parameters in
this problem.
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