Topics in Applied Mathematics: Infinitely Large Neural Networks, 3341.751 E. Ryu

Spring 2022

Homework 6 Due 5pm, Friday, June 3, 2022

Problem 1: Let \mathcal{X} be a nonempty set and let $\Theta \subseteq \mathbb{R}^P$. Let $f_{\cdot}(\cdot) \colon \Theta \times \mathcal{X} \to \mathbb{R}$ be a neural network and use the notation $f_{\theta}(x)$. Assume $\nabla_{\theta} f_{\theta}(x)$ is well defined for all θ and x and is continuous both in θ and x. Let $\theta_0 \in \Theta$ and define $h_{\cdot}(\cdot) \colon \Theta \times \mathcal{X} \to \mathbb{R}$ as

$$h_{\theta}(x) = f_{\theta_0}(x) + \langle \nabla_{\theta} f_{\theta_0}(x), \theta - \theta_0 \rangle_{\mathbb{R}^P}$$

To clarify, $\nabla_{\theta} f_{\theta_0}(x) = (\nabla_{\theta} f_{\theta}(x))|_{\theta=\theta_0}$. So, $h_{\theta}(x)$ is the linearization of f_{θ} with respect to θ about θ_0 . (Note, $h_{\theta}(x)$ is linear in θ , but nonlinear in x.) Define the PDK $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ as

$$K(x, x') = \langle \nabla_{\theta} f_{\theta_0}(x), \nabla_{\theta} f_{\theta_0}(x') \rangle_{\mathbb{R}^P}, \qquad \forall x, x' \in \mathcal{X}.$$

Let $X_1, \ldots, X_N \in \mathcal{X}$, and define $G \in \mathbb{R}^{N \times N}$ as

$$G_{ij} = K(X_i, X_j), \qquad \forall i, j \in \{1, \dots, N\}$$

Assume G is strictly positive definite. Let

$$\Phi = \begin{bmatrix} (\nabla_{\theta} f_{\theta_0}(X_1))^{\mathsf{T}} \\ (\nabla_{\theta} f_{\theta_0}(X_2))^{\mathsf{T}} \\ \vdots \\ (\nabla_{\theta} f_{\theta_0}(X_N))^{\mathsf{T}} \end{bmatrix} \in \mathbb{R}^{N \times P}, \qquad \Delta = \begin{bmatrix} f_{\star}(X_1) - f_{\theta_0}(X_1) \\ f_{\star}(X_2) - f_{\theta_0}(X_2) \\ \vdots \\ f_{\star}(X_N) - f_{\theta_0}(X_N) \end{bmatrix} \in \mathbb{R}^N.$$

Consider the regression problem

$$\underset{\theta \in \mathbb{R}^{P}}{\text{minimize}} \quad \sum_{i=1}^{N} (h_{\theta}(X_{i}) - f_{\star}(X_{i}))^{2}.$$

Show that

$$\theta_{\star} = \theta_0 + \Phi^{\mathsf{T}} G^{-1} \Delta$$

is an optimal solution and that

$$h_{\theta_{\star}}(x) = f_{\theta_0}(x) + \sum_{j=1}^{N} K(x, X_j) (G^{-1}\Delta)_j, \qquad \forall x \in \mathcal{X}.$$

Remark. θ_{\star} is not the unique solution, but it is the so-called "minimum-norm" solution.

Remark. This problem considers learning with h_{θ} , the linearization of f_{θ} , rather than the actual neural network f_{θ} . Interestingly, the learned $h_{\theta_{\star}}$ is identical to the prediction function obtained via the NTK theory, which characterizes the training f_{θ} in the infinite-width limit. In fact, K is the neural tangent kernel of f_{θ} at $\theta = \theta_0$.

Problem 2: NTK of random feature learning. Consider the 2-layer MLP

$$f_{\theta}(x) = \sum_{i=1}^{M} \frac{1}{\sqrt{M}} \theta_i \sigma(a_i^{\mathsf{T}} x + b_i),$$

where $\sigma \colon \mathbb{R} \to \mathbb{R}$ is a continuous activation function, $a_1, \ldots, a_N \in \mathbb{R}^d$ and $b_1, \ldots, b_N \in \mathbb{R}$ are initialized as

$$(a_i)_j \sim \mathcal{N}(0, 1/d), \qquad b_i \sim \mathcal{N}(0, 1)$$

and not trained, and $\theta_1, \ldots, \theta_M \in \mathbb{R}$ are trainable parameters. (So we assume f_{θ} outputs a scalar.) Let P be a probability measure with finite support. Consider training through

$$\underset{\theta \in \mathbb{R}^M}{\text{minimize}} \quad R[f_{\theta}],$$

and assume the risk $R: L^2(P) \to \mathbb{R}$ is Fréchet differentiable. Show that the gradient flow dynamics on the parameters

$$\frac{d\theta}{dt} = -\nabla_{\theta} R[f_{\theta}]$$

induces the dynamics

$$\frac{d}{dt}f_{\theta} = -L_{\Theta}[\partial_f R],$$

with

$$\Theta(x, x') = \frac{1}{M} \sum_{i=1}^{M} \sigma(a_i^{\mathsf{T}} x + b_i) \sigma(a_i^{\mathsf{T}} x' + b_i).$$

(Note, Θ is time-independent.) Also show that

 $\Theta \to \tilde{\Sigma}^{(2)}$

in probability as $M \to \infty$ pointwise for inputs (x, x'), where

$$\Sigma^{(1)}(x, x') = \frac{1}{d}x^{\mathsf{T}}x' + 1.$$

and

$$\tilde{\Sigma}^{(2)}(x,x') = \mathbb{E}_{f \sim \mathcal{GP}(0,\Sigma^{(1)})}[\sigma(f(x))\sigma(f(x'))]$$

Clarification. In the NNGP and NTK lectures, we used the variance parameters σ_A and σ_b . Here, we set $\sigma_A = \sigma_b = 1$ for the sake of simplicity. Problem 3: NTK with standard parameterization. Consider the depth-2 MLP

$$f_{\theta}(x) = y_2$$

$$y_2 = z_2, \qquad z_2 = A_2 y_1 + b_2 \in \mathbb{R}^{n_2},$$

$$y_1 = \sigma(z_1), \qquad z_1 = A_1 x + b_1 \in \mathbb{R}^{n_1},$$

where $x \in \mathbb{R}^{n_0}$, $A_{\ell} \in \mathbb{R}^{n_{\ell} \times n_{\ell-1}}$, and $b_{\ell} \in \mathbb{R}^{n_{\ell}}$. Initialize the weights with

$$(A_1)_{ij} \sim \mathcal{N}(0, 1/n_0), \qquad (b_1)_i \sim \mathcal{N}(0, 1)$$

and

$$(A_2)_{ij} \sim \mathcal{N}(0, 1/n_1), \qquad (b_2)_i \sim \mathcal{N}(0, 1)$$

Consider training through

$$\underset{\theta}{\text{minimize}} \quad R[f_{\theta}],$$

and assume the risk $R: L^2(P) \to \mathbb{R}$ is Fréchet differentiable. For $n_1 < \infty$, the gradient flow dynamics

$$\frac{d\theta}{dt} = -\frac{1}{n_1} \nabla_{\theta} R[f_{\theta}]$$

induces the dynamics

$$\frac{d}{dt}f_{\theta} = -L_{\frac{1}{n_1}\Theta_t}[\partial_f R].$$

Find a formula for the NTK Θ_t and show that

$$\frac{1}{n_1}\Theta_0 \to \tilde{\Sigma}^{(2)} \otimes I_{n_2}$$

in probability as $n_1 \to \infty$ pointwise for inputs (x, x') at time t = 0, where $\tilde{\Sigma}^{(2)}$ is as defined in Problem 2.

Problem 4: Gluing Lemma. Let $\Theta \subseteq \mathbb{R}^d$ be nonempty. For any $\rho_1, \rho_2 \in \mathcal{P}(\Theta)$, define

 $\Pi(\rho_1, \rho_2) = \{ \pi \in \mathcal{P}(\Theta \times \Theta) | \text{ probability measures on } \Theta \times \Theta \text{ with marginals } \rho_1 \text{ and } \rho_2 \}.$

Let $\lambda, \mu, \nu \in \mathcal{P}(\Theta)$ and $\pi_{1,2} \in \Pi(\lambda, \mu)$ and $\pi_{2,3} \in \Pi(\mu, \nu)$. Define $P_i \colon \Theta \times \Theta \times \Theta \to \Theta$ for i = 1, 2, 3 as

$$P_1(\theta_1, \theta_2, \theta_3) = \theta_1, \qquad P_2(\theta_1, \theta_2, \theta_3) = \theta_2, \qquad P_3(\theta_1, \theta_2, \theta_3) = \theta_3.$$

Define $P_{i,j} : \Theta \times \Theta \times \Theta \to \Theta \times \Theta$ with $1 \le i < j \le 3$ as

$$P_{i,j}(\theta_1, \theta_2, \theta_3) = (\theta_i, \theta_j).$$

Show that there is a $\pi_{1,2,3} \in \mathcal{P}(\Theta \times \Theta \times \Theta)$ such that

$$P_{1\#}\pi_{1,2,3} = \lambda, \qquad P_{2\#}\pi_{1,2,3} = \mu, \qquad P_{3\#}\pi_{1,2,3} = \nu$$

and

$$\pi_{1,2} = P_{1,2\#}\pi_{1,2,3}, \qquad \pi_{2,3} = P_{2,3\#}\pi_{1,2,3}, \qquad \pi_{1,3} := P_{1,3\#}\pi_{1,2,3} \in \Pi(\lambda,\nu)$$

Hint. Disintegrate $\pi_{1,2}$ as

$$d\pi_{1,2}(\theta_1,\theta_2) = d\tilde{\mu}_{\theta_1}(\theta_2)d\lambda(\theta_1)$$

and $\pi_{2,3}$ as

$$d\pi_{2,3}(\theta_2,\theta_3) = d\tilde{\nu}_{\theta_2}(\theta_3)d\mu(\theta_2).$$

Define $\pi_{1,2,3}$ as

$$d\pi_{1,2,3} = d\tilde{\nu}_{\theta_2}(\theta_3) d\tilde{\mu}_{\theta_1}(\theta_2) d\lambda(\theta_1).$$

Problem 5: Triangle inequality of the Wasserstein distance. Let $\Theta = \Phi \subseteq \mathbb{R}^d$ and $p \in [1, \infty)$. Show that

 $W_p(\lambda,\nu) \le W_p(\lambda,\mu) + W_p(\mu,\nu), \qquad \forall \, \lambda, \mu, \nu \in \mathcal{P}^p(\Theta).$

Hint. Let $\pi_{1,2}$ and $\pi_{2,3}$ be feasible joint probability measures for the optimization problems defining $W_p(\lambda,\mu)$ and $W_p(\mu,\nu)$. (Do not assume $\pi_{1,2}$ and $\pi_{2,3}$ are optimal, since we do not know whether the minimuma are attained.) Using Problem 4, glue $\pi_{1,2}$ and $\pi_{2,3}$ to get $\pi_{1,2,3}$ and $\pi_{1,3}$. Finally, use the Minkowski inequality in $L^p(\pi_{1,2,3})$.

Problem 6: Optimum of book shifting via duality. Let $\Theta = \Phi = \mathbb{R}$, $c(\theta, \phi) = \|\theta - \phi\|$, and

$$\mu = \frac{1}{N} \sum_{i=1}^{N} \delta_i, \qquad \nu = \frac{1}{N} \sum_{i=1}^{N} \delta_{i+1}.$$

Show that $W_1(\mu, \nu) \ge 1$ by finding a suitable feasible $\varphi \in \mathcal{L}_1$ for the Kantorovich–Rubinstein dual

$$W_{1}(\mu,\nu) = \begin{pmatrix} \underset{\varphi \in \mathcal{C}_{0}(\Theta)}{\text{maximize}} & \int_{\mathbb{R}} \varphi(\theta) \ d\mu(\theta) - \int_{\mathbb{R}} \varphi(\phi) \ d\nu(\phi) \\ \text{subject to} & \varphi \in \mathcal{L}_{1} \end{pmatrix}.$$

Problem 7: Let $f: \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable. Let

$$\mathbb{R}^{n}_{+} = \{(x_{1}, \dots, x_{n}) \in \mathbb{R}^{n} \mid x_{1} \ge 0, \dots, x_{n} \ge 0\}$$

be the nonnegative orthant in \mathbb{R}^n . Consider the optimization problem

$$\begin{array}{ll} \underset{\theta \in \mathbb{R}^n}{\text{minimize}} & f(x) \\ \text{subject to} & x \in \mathbb{R}^n_+ \end{array}$$

and let $x^{\star} \in \mathbb{R}^n_+$ be an optimal solution. Show that

$$\frac{\partial f}{\partial x_i}(x^\star) \ge 0, \qquad \forall i = 1, \dots, n$$

and

$$\frac{\partial f}{\partial x_i}(x^\star) = 0, \qquad \forall i \text{ such that } x_i^\star > 0.$$

Problem 8: Let $f: \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable. Let

$$\Delta^{n} = \{ (x_{1}, \dots, x_{n}) \in \mathbb{R}^{n} \mid x_{1} + \dots + x_{n} = 1, x_{1} \ge 0, \dots, x_{n} \ge 0 \}$$

be the probability simplex in \mathbb{R}^n . Consider the optimization problem

$$\begin{array}{ll} \underset{\theta \in \mathbb{R}^n}{\text{minimize}} & f(x) \\ \text{subject to} & x \in \Delta^n \end{array}$$

and let $x^{\star} \in \Delta^n$ be an optimal solution. Let

$$c = \min_{i=1,\dots,n} \frac{\partial f}{\partial x_i}(x^\star).$$

Show that

$$\frac{\partial f}{\partial x_i}(x^\star) = c, \qquad \forall i \text{ such that } x_i^\star > 0.$$

Problem 9: Let $f \colon \mathbb{R}^n \to \mathbb{R}$ and k > 0. Assume f is nonnegative homogeneous of degree k, i.e.,

$$f(\alpha x) = \alpha^k f(x), \qquad \forall \alpha \ge 0, \ x \in \mathbb{R}^n.$$

Assume f is differentiable at x_0 . Show that (i)

$$\langle x_0, \nabla f(x_0) \rangle = k f(x_0)$$

(ii) and

$$\nabla f(\alpha x_0) = \alpha^{k-1} \nabla f(x_0), \qquad \forall \, \alpha > 0.$$

Hint. For (i), differentiate both sides of $f(\alpha x_0) = \alpha^k f(x_0)$ with respect to α and plug in $\alpha = 1$. For (ii), differentiate both sides of $f(\alpha(x_0 + te_i)) = \alpha^k f(x_0 + te_i)$ with respect to t and plug in t = 0.

Problem 10: Let $\sigma \colon \mathbb{R} \to \mathbb{R}$ defined as

$$\sigma(r) = \max\{r, 0\}$$

be the ReLU activation function. Of course, σ is nonnegative homogeneous of degree 1. Let $x \in \mathbb{R}^d$ and $\theta = (u, a, b) \in \mathbb{R} \times \mathbb{R}^d \times \mathbb{R}$. Define

$$f(\theta) = u\sigma(a^{\mathsf{T}}x + b).$$

Show that (i) $f(\theta)$ is nonnegative homogeneous of degree 2 and (ii) $f(\theta)$, is differentiable for (Lesbesgue) almost all $\theta \in \mathbb{R} \times \mathbb{R}^d \times \mathbb{R}$.

Clarification. We view x as a fixed input.