
Topics in Applied Mathematics: Infinitely Large Neural Networks, 3341.751
E. Ryu
Spring 2022

Homework 6
Due 5pm, Friday, June 3, 2022

Problem 1: Let X be a nonempty set and let Θ ⊆ RP . Let f·(·) : Θ × X → R be a neural
network and use the notation fθ(x). Assume ∇θfθ(x) is well defined for all θ and x and is
continuous both in θ and x. Let θ0 ∈ Θ and define h·(·) : Θ×X → R as

hθ(x) = fθ0(x) + ⟨∇θfθ0(x), θ − θ0⟩RP .

To clarify, ∇θfθ0(x) = (∇θfθ(x)) |θ=θ0 . So, hθ(x) is the linearization of fθ with respect to θ
about θ0. (Note, hθ(x) is linear in θ, but nonlinear in x.) Define the PDK K : X × X → R as

K(x, x′) = ⟨∇θfθ0(x),∇θfθ0(x
′)⟩RP , ∀x, x′ ∈ X .

Let X1, . . . , XN ∈ X , and define G ∈ RN×N as

Gij = K(Xi, Xj), ∀ i, j ∈ {1, . . . , N}.

Assume G is strictly positive definite. Let

Φ =


(∇θfθ0(X1))

⊺

(∇θfθ0(X2))
⊺

...
(∇θfθ0(XN ))⊺

 ∈ RN×P , ∆ =


f⋆(X1)− fθ0(X1)
f⋆(X2)− fθ0(X2)

...
f⋆(XN )− fθ0(XN )

 ∈ RN .

Consider the regression problem

minimize
θ∈RP

N∑
i=1

(hθ(Xi)− f⋆(Xi))
2.

Show that
θ⋆ = θ0 +Φ⊺G−1∆

is an optimal solution and that

hθ⋆(x) = fθ0(x) +

N∑
j=1

K(x,Xj)(G
−1∆)j , ∀x ∈ X .

Remark. θ⋆ is not the unique solution, but it is the so-called “minimum-norm” solution.

Remark. This problem considers learning with hθ, the linearization of fθ, rather than the actual
neural network fθ. Interestingly, the learned hθ⋆ is identical to the prediction function obtained
via the NTK theory, which characterizes the training fθ in the infinite-width limit. In fact, K
is the neural tangent kernel of fθ at θ = θ0.
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Problem 2: NTK of random feature learning. Consider the 2-layer MLP

fθ(x) =
M∑
i=1

1√
M

θiσ(a
⊺
i x+ bi),

where σ : R → R is a continuous activation function, a1, . . . , aN ∈ Rd and b1, . . . , bN ∈ R are
initialized as

(ai)j ∼ N (0, 1/d), bi ∼ N (0, 1)

and not trained, and θ1, . . . , θM ∈ R are trainable parameters. (So we assume fθ outputs a
scalar.) Let P be a probability measure with finite support. Consider training through

minimize
θ∈RM

R[fθ],

and assume the risk R : L2(P ) → R is Fréchet differentiable. Show that the gradient flow
dynamics on the parameters

dθ

dt
= −∇θR[fθ]

induces the dynamics
d

dt
fθ = −LΘ[∂fR],

with

Θ(x, x′) =
1

M

M∑
i=1

σ(a⊺i x+ bi)σ(a
⊺
i x

′ + bi).

(Note, Θ is time-independent.) Also show that

Θ → Σ̃(2)

in probability as M → ∞ pointwise for inputs (x, x′), where

Σ(1)(x, x′) =
1

d
x⊺x′ + 1.

and
Σ̃(2)(x, x′) = Ef∼GP(0,Σ(1))[σ(f(x))σ(f(x

′))]

Clarification. In the NNGP and NTK lectures, we used the variance parameters σA and σb.
Here, we set σA = σb = 1 for the sake of simplicity.
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Problem 3: NTK with standard parameterization. Consider the depth-2 MLP

fθ(x) = y2

y2 = z2, z2 = A2y1 + b2 ∈ Rn2 ,

y1 = σ(z1), z1 = A1x+ b1 ∈ Rn1 ,

where x ∈ Rn0 , Aℓ ∈ Rnℓ×nℓ−1 , and bℓ ∈ Rnℓ . Initialize the weights with

(A1)ij ∼ N (0, 1/n0), (b1)i ∼ N (0, 1)

and
(A2)ij ∼ N (0, 1/n1), (b2)i ∼ N (0, 1).

Consider training through
minimize

θ
R[fθ],

and assume the risk R : L2(P ) → R is Fréchet differentiable. For n1 < ∞, the gradient flow
dynamics

dθ

dt
= − 1

n1
∇θR[fθ]

induces the dynamics
d

dt
fθ = −L 1

n1
Θt
[∂fR].

Find a formula for the NTK Θt and show that

1

n1
Θ0 → Σ̃(2) ⊗ In2

in probability as n1 → ∞ pointwise for inputs (x, x′) at time t = 0, where Σ̃(2) is as defined in
Problem 2.
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Problem 4: Gluing Lemma. Let Θ ⊆ Rd be nonempty. For any ρ1, ρ2 ∈ P(Θ), define

Π(ρ1, ρ2) = {π ∈ P(Θ×Θ) |probability measures on Θ×Θ with marginals ρ1 and ρ2}.

Let λ, µ, ν ∈ P(Θ) and π1,2 ∈ Π(λ, µ) and π2,3 ∈ Π(µ, ν). Define Pi : Θ × Θ × Θ → Θ for
i = 1, 2, 3 as

P1(θ1, θ2, θ3) = θ1, P2(θ1, θ2, θ3) = θ2, P3(θ1, θ2, θ3) = θ3.

Define Pi,j : Θ×Θ×Θ → Θ×Θ with 1 ≤ i < j ≤ 3 as

Pi,j(θ1, θ2, θ3) = (θi, θj).

Show that there is a π1,2,3 ∈ P(Θ×Θ×Θ) such that

P1#π1,2,3 = λ, P2#π1,2,3 = µ, P3#π1,2,3 = ν

and
π1,2 = P1,2#π1,2,3, π2,3 = P2,3#π1,2,3, π1,3 := P1,3#π1,2,3 ∈ Π(λ, ν).

Hint. Disintegrate π1,2 as
dπ1,2(θ1, θ2) = dµ̃θ1(θ2)dλ(θ1)

and π2,3 as
dπ2,3(θ2, θ3) = dν̃θ2(θ3)dµ(θ2).

Define π1,2,3 as
dπ1,2,3 = dν̃θ2(θ3)dµ̃θ1(θ2)dλ(θ1).

Problem 5: Triangle inequality of the Wasserstein distance. Let Θ = Φ ⊆ Rd and p ∈ [1,∞).
Show that

Wp(λ, ν) ≤ Wp(λ, µ) +Wp(µ, ν), ∀λ, µ, ν ∈ Pp(Θ).

Hint. Let π1,2 and π2,3 be feasible joint probability measures for the optimization problems
defining Wp(λ, µ) and Wp(µ, ν). (Do not assume π1,2 and π2,3 are optimal, since we do not
know whether the minimuma are attained.) Using Problem 4, glue π1,2 and π2,3 to get π1,2,3
and π1,3. Finally, use the Minkowski inequality in Lp(π1,2,3).

Problem 6: Optimum of book shifting via duality. Let Θ = Φ = R, c(θ, ϕ) = ∥θ − ϕ∥, and

µ =
1

N

N∑
i=1

δi, ν =
1

N

N∑
i=1

δi+1.

Show that W1(µ, ν) ≥ 1 by finding a suitable feasible φ ∈ L1 for the Kantorovich–Rubinstein
dual

W1(µ, ν) =

 maximize
φ∈C0(Θ)

∫
R
φ(θ) dµ(θ)−

∫
R
φ(ϕ) dν(ϕ)

subject to φ ∈ L1

 .
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Problem 7: Let f : Rn → R be continuously differentiable. Let

Rn
+ = {(x1, . . . , xn) ∈ Rn |x1 ≥ 0, . . . , xn ≥ 0}

be the nonnegative orthant in Rn. Consider the optimization problem

minimize
θ∈Rn

f(x)

subject to x ∈ Rn
+

and let x⋆ ∈ Rn
+ be an optimal solution. Show that

∂f

∂xi
(x⋆) ≥ 0, ∀ i = 1, . . . , n

and
∂f

∂xi
(x⋆) = 0, ∀ i such that x⋆i > 0.

Problem 8: Let f : Rn → R be continuously differentiable. Let

∆n = {(x1, . . . , xn) ∈ Rn |x1 + · · ·+ xn = 1, x1 ≥ 0, . . . , xn ≥ 0}

be the probability simplex in Rn. Consider the optimization problem

minimize
θ∈Rn

f(x)

subject to x ∈ ∆n

and let x⋆ ∈ ∆n be an optimal solution. Let

c = min
i=1,...,n

∂f

∂xi
(x⋆).

Show that
∂f

∂xi
(x⋆) = c, ∀ i such that x⋆i > 0.
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Problem 9: Let f : Rn → R and k > 0. Assume f is nonnegative homogeneous of degree k,
i.e.,

f(αx) = αkf(x), ∀α ≥ 0, x ∈ Rn.

Assume f is differentiable at x0. Show that (i)

⟨x0,∇f(x0)⟩ = kf(x0)

(ii) and
∇f(αx0) = αk−1∇f(x0), ∀α > 0.

Hint. For (i), differentiate both sides of f(αx0) = αkf(x0) with respect to α and plug in α = 1.
For (ii), differentiate both sides of f(α(x0 + tei)) = αkf(x0 + tei) with respect to t and plug in
t = 0.

Problem 10: Let σ : R → R defined as

σ(r) = max{r, 0}

be the ReLU activation function. Of course, σ is nonnegative homogeneous of degree 1. Let
x ∈ Rd and θ = (u, a, b) ∈ R× Rd × R. Define

f(θ) = uσ(a⊺x+ b).

Show that (i) f(θ) is nonnegative homogeneous of degree 2 and (ii) f(θ), is differentiable for
(Lesbesgue) almost all θ ∈ R× Rd × R.

Clarification. We view x as a fixed input.
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