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Problem 1: Let X be a nonempty set and let © C R”. Let f.(-): © x X — R be a neural
network and use the notation fy(z). Assume Vjfy(x) is well defined for all # and x and is
continuous both in 6 and x. Let 0y € © and define h.(1): © x ¥ — R as

ho(2) = foo(x) + (Vo o, (2),0 — o)

To clarify, Vyfo,(z) = (Vofo(x)) lo=g,. So, he(z) is the linearization of fp with respect to 6
about 0. (Note, hg(x) is linear in 6, but nonlinear in x.) Define the PDK K: X x X — R as

K(x,l‘/) = <V9f90(:c),V9f90(CC/)>RP, Vm,x' e X.
Let X1,..., Xy € X, and define G € RV*N a5
Gij = K(Xi, Xj), Vi,je{l,...,N}.

Assume G is strictly positive definite. Let

(Vo.fo,(X1))T fo(X1) = foo(X1)
_ (Vefeo'(Xﬂ)T RV A Jo(X2) — Joo(X2) —
(Vo fan(Xn))T £(XN) = fao(X)

Consider the regression problem

N

inimi ho(Xi) — fx(X; 2-
m19n€1£113126 i:1( 0(Xi) — f+(Xi))

Show that
0, =0y + PTG A

is an optimal solution and that

N
ho, (x) = fo (@) + > K(z, X;)(GA);,  Vzed.
j=1

Remark. 6, is not the unique solution, but it is the so-called “minimum-norm” solution.

Remark. This problem considers learning with hg, the linearization of fy, rather than the actual
neural network fg. Interestingly, the learned hg, is identical to the prediction function obtained
via the NTK theory, which characterizes the training fy in the infinite-width limit. In fact, K
is the neural tangent kernel of fy at 6 = 6.



Problem 2: NTK of random feature learning. Consider the 2-layer MLP

Z—Gaaaz—kb)

where o: R — R is a continuous activation function, ai,...,anx € R% and b1,...,by € R are
initialized as

(al) (0 1/d) bz ~ N(O> 1)

and not trained, and 6y,...,0y € R are trainable parameters. (So we assume fy outputs a
scalar.) Let P be a probability measure with finite support. Consider training through

minimize R[fy],
0eRM

and assume the risk R: L?(P) — R is Fréchet differentiable. Show that the gradient flow
dynamics on the parameters

do

E = —VGR[fé)]

induces the dynamics

d

—fo = —Leol0fR

dt f@ @[ f ]’
with

M
O(x, ) MZ o(alz + bj)o(alz’ +b;).
(Note, O is time-independent.) Also show that
0 —x®

in probability as M — oo pointwise for inputs (x,2’), where
(1) / 1 /
b (az,x):gJ:Ta: + 1.

and

£®(z,2') = Byogposmlo(f(2)o(f ()]

Clarification. In the NNGP and NTK lectures, we used the variance parameters o4 and op.
Here, we set 04 = g, = 1 for the sake of simplicity.



Problem 3: NTK with standard parameterization. Consider the depth-2 MLP

fe(if) = Y2
Y2 = 22, 29 = Agyr + by € R™2,
y1 =o(z1), 21 = A1z + b € R™,

where x € R™, A, € R™*™-1_and by € R™. Initialize the weights with
(A1)ij ~ N(0,1/no), (b1)i ~ N(0,1)
and
(A2)ij ~ N(0,1/n1), (bg); ~ N(0,1).
Consider training through

miniamize R fo],

and assume the risk R: L?(P) — R is Fréchet differentiable. For n; < oo, the gradient flow
dynamics

df 1
E = —EVBR[fG]

induces the dynamics
d
o= LielorEl

Find a formula for the NTK ©; and show that

1 ~
—00 > S@ &1,
ni

in probability as ny — oo pointwise for inputs (z,z’) at time ¢t = 0, where 2 is as defined in
Problem 2.



Problem 4: Gluing Lemma. Let © C R? be nonempty. For any pi, p2 € P(0), define
II(p1, p2) = {m € P(© x O) | probability measures on © x © with marginals p; and po}.

Let A\, pu,v € P(O) and m2 € II(\, ) and ma3 € II(p,v). Define P: © x © x © — O for
1=1,2,3 as

Py(01,04,05) = 64, P5(01,09,05) = 0, P5(01,04,605) = 65.
Define P; j: © x©x 0 — O x 0O with 1 <7 <j<3as
P, ;(01,02,05) = (0;,0;).
Show that there is a w1 23 € P(© x © x ©) such that
Piymio3 = A, Poymi93 =, Pyymio3=v
and
T2 = Pioum 23, T3 = Py 34 23, m,3 = Pigamipos € II(A\v).
Hint. Disintegrate m 2 as

dmy2(01,02) = dfig, (62)dA(61)

and mo 3 as
dma 3(02,03) = dig, (03)dp(62).

Define 7123 as
dmi 2,3 = dig,(03)dfig, (62)dA(61).

Problem 5: Triangle inequality of the Wasserstein distance. Let © = ® C R? and p € [1,00).
Show that
WA v) < Wyp(A, ) + Wy(,v), VA p,v € PP(O).

Hint. Let w12 and mo 3 be feasible joint probability measures for the optimization problems
defining W),(A\, ) and Wy(u,v). (Do not assume 712 and mp 3 are optimal, since we do not
know whether the minimuma are attained.) Using Problem 4, glue 71 2 and w3 to get m123
and 7 3. Finally, use the Minkowski inequality in LP(723).

Problem 6: Optimum of book shifting via duality. Let © = ® =R, ¢(0,¢) = ||0 — ¢||, and

1 Y 1Y
M:NZ(Si: ’/:NZ@‘H-
=1 i=1

Show that Wi(u,v) > 1 by finding a suitable feasible ¢ € £ for the Kantorovich-Rubinstein
dual
maximize 0) du(0 / o) dv(¢o
Wy — [ masimize [ o(0) du®) ~ [ o(@) av(o)
subject to ¢ € L4



Problem 7: Let f: R®™ — R be continuously differentiable. Let
RY = {(z1,...,2,) €R" |21 >0,...,2, > 0}
be the nonnegative orthant in R™. Consider the optimization problem

minimize x
nimize  f(z)
subject to x € RY}

and let z* € R’} be an optimal solution. Show that

of
) > L =1,...
axi(x ) >0, Vi=1,...,n
and 5
/ (x*) =0, Vi such that a7 > 0.
(‘9xi

Problem 8: Let f: R™ — R be continuously differentiable. Let
A" ={(x1,...,xn) ER" |21+ F+ap=1,21 >0,...,2, >0}
be the probability simplex in R™. Consider the optimization problem

minimize T
HERn 1 (@)
subject to x € A"

and let * € A™ be an optimal solution. Let

. Of
C = Imin
i=1,...,n OX;

(x).

Show that

Oz (z*) = ¢, Vi such that x} > 0.



Problem 9: Let f: R® — R and & > 0. Assume f is nonnegative homogeneous of degree k,
i.e.,
flaz) = " f(z), Va >0,z eR"

Assume f is differentiable at zp. Show that (i)
(z0, V f(20)) = kf(20)

(ii) and
V f(azxg) = ak_IVf(:Eo), Va > 0.

Hint. For (i), differentiate both sides of f(axg) = o f(2) with respect to o and plug in o = 1.
For (ii), differentiate both sides of f(a(zg + te;)) = o f(xg + te;) with respect to ¢ and plug in
t=0.

Problem 10: Let o: R — R defined as
o(r) = max{r,0}

be the ReLLU activation function. Of course, ¢ is nonnegative homogeneous of degree 1. Let
r € R?and 0 = (u,a,b) € R x R? x R. Define

f(0) =uo(ax +b).

Show that (i) f(f) is nonnegative homogeneous of degree 2 and (ii) f(6), is differentiable for
(Lesbesgue) almost all § € R x R? x R,

Clarification. We view x as a fixed input.



