Homework 6
Due 5pm, Friday, June 3, 2022

Problem 1: Let \mathcal{X} be a nonempty set and let $\Theta \subseteq \mathbb{R}^{P}$. Let $f .(\cdot): \Theta \times \mathcal{X} \rightarrow \mathbb{R}$ be a neural network and use the notation $f_{\theta}(x)$. Assume $\nabla_{\theta} f_{\theta}(x)$ is well defined for all θ and x and is continuous both in θ and x. Let $\theta_{0} \in \Theta$ and define $h .(\cdot): \Theta \times \mathcal{X} \rightarrow \mathbb{R}$ as

$$
h_{\theta}(x)=f_{\theta_{0}}(x)+\left\langle\nabla_{\theta} f_{\theta_{0}}(x), \theta-\theta_{0}\right\rangle_{\mathbb{R}^{P}}
$$

To clarify, $\nabla_{\theta} f_{\theta_{0}}(x)=\left.\left(\nabla_{\theta} f_{\theta}(x)\right)\right|_{\theta=\theta_{0}}$. So, $h_{\theta}(x)$ is the linearization of f_{θ} with respect to θ about θ_{0}. (Note, $h_{\theta}(x)$ is linear in θ, but nonlinear in x.) Define the PDK $K: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ as

$$
K\left(x, x^{\prime}\right)=\left\langle\nabla_{\theta} f_{\theta_{0}}(x), \nabla_{\theta} f_{\theta_{0}}\left(x^{\prime}\right)\right\rangle_{\mathbb{R}^{P}}, \quad \forall x, x^{\prime} \in \mathcal{X}
$$

Let $X_{1}, \ldots, X_{N} \in \mathcal{X}$, and define $G \in \mathbb{R}^{N \times N}$ as

$$
G_{i j}=K\left(X_{i}, X_{j}\right), \quad \forall i, j \in\{1, \ldots, N\}
$$

Assume G is strictly positive definite. Let

$$
\Phi=\left[\begin{array}{c}
\left(\nabla_{\theta} f_{\theta_{0}}\left(X_{1}\right)\right)^{\top} \\
\left(\nabla_{\theta} f_{\theta_{0}}\left(X_{2}\right)\right)^{\top} \\
\vdots \\
\left(\nabla_{\theta} f_{\theta_{0}}\left(X_{N}\right)\right)^{\top}
\end{array}\right] \in \mathbb{R}^{N \times P}, \quad \Delta=\left[\begin{array}{c}
f_{\star}\left(X_{1}\right)-f_{\theta_{0}}\left(X_{1}\right) \\
f_{\star}\left(X_{2}\right)-f_{\theta_{0}}\left(X_{2}\right) \\
\vdots \\
f_{\star}\left(X_{N}\right)-f_{\theta_{0}}\left(X_{N}\right)
\end{array}\right] \in \mathbb{R}^{N}
$$

Consider the regression problem

$$
\underset{\theta \in \mathbb{R}^{P}}{\operatorname{minimize}} \sum_{i=1}^{N}\left(h_{\theta}\left(X_{i}\right)-f_{\star}\left(X_{i}\right)\right)^{2}
$$

Show that

$$
\theta_{\star}=\theta_{0}+\Phi^{\top} G^{-1} \Delta
$$

is an optimal solution and that

$$
h_{\theta_{\star}}(x)=f_{\theta_{0}}(x)+\sum_{j=1}^{N} K\left(x, X_{j}\right)\left(G^{-1} \Delta\right)_{j}, \quad \forall x \in \mathcal{X}
$$

Remark. θ_{\star} is not the unique solution, but it is the so-called "minimum-norm" solution.
Remark. This problem considers learning with h_{θ}, the linearization of f_{θ}, rather than the actual neural network f_{θ}. Interestingly, the learned $h_{\theta_{\star}}$ is identical to the prediction function obtained via the NTK theory, which characterizes the training f_{θ} in the infinite-width limit. In fact, K is the neural tangent kernel of f_{θ} at $\theta=\theta_{0}$.

Problem 2: NTK of random feature learning. Consider the 2-layer MLP

$$
f_{\theta}(x)=\sum_{i=1}^{M} \frac{1}{\sqrt{M}} \theta_{i} \sigma\left(a_{i}^{\top} x+b_{i}\right)
$$

where $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous activation function, $a_{1}, \ldots, a_{N} \in \mathbb{R}^{d}$ and $b_{1}, \ldots, b_{N} \in \mathbb{R}$ are initialized as

$$
\left(a_{i}\right)_{j} \sim \mathcal{N}(0,1 / d), \quad b_{i} \sim \mathcal{N}(0,1)
$$

and not trained, and $\theta_{1}, \ldots, \theta_{M} \in \mathbb{R}$ are trainable parameters. (So we assume f_{θ} outputs a scalar.) Let P be a probability measure with finite support. Consider training through

$$
\underset{\theta \in \mathbb{R}^{M}}{\operatorname{minimize}} \quad R\left[f_{\theta}\right],
$$

and assume the risk $R: L^{2}(P) \rightarrow \mathbb{R}$ is Fréchet differentiable. Show that the gradient flow dynamics on the parameters

$$
\frac{d \theta}{d t}=-\nabla_{\theta} R\left[f_{\theta}\right]
$$

induces the dynamics

$$
\frac{d}{d t} f_{\theta}=-L_{\Theta}\left[\partial_{f} R\right],
$$

with

$$
\Theta\left(x, x^{\prime}\right)=\frac{1}{M} \sum_{i=1}^{M} \sigma\left(a_{i}^{\top} x+b_{i}\right) \sigma\left(a_{i}^{\top} x^{\prime}+b_{i}\right)
$$

(Note, Θ is time-independent.) Also show that

$$
\Theta \rightarrow \tilde{\Sigma}^{(2)}
$$

in probability as $M \rightarrow \infty$ pointwise for inputs $\left(x, x^{\prime}\right)$, where

$$
\Sigma^{(1)}\left(x, x^{\prime}\right)=\frac{1}{d} x^{\top} x^{\prime}+1 .
$$

and

$$
\tilde{\Sigma}^{(2)}\left(x, x^{\prime}\right)=\mathbb{E}_{f \sim \mathcal{G P}\left(0, \Sigma^{(1)}\right)}\left[\sigma(f(x)) \sigma\left(f\left(x^{\prime}\right)\right)\right]
$$

Clarification. In the NNGP and NTK lectures, we used the variance parameters σ_{A} and σ_{b}. Here, we set $\sigma_{A}=\sigma_{b}=1$ for the sake of simplicity.

Problem 3: NTK with standard parameterization. Consider the depth-2 MLP

$$
\begin{aligned}
f_{\theta}(x) & =y_{2} & & \\
y_{2} & =z_{2}, & & z_{2}=A_{2} y_{1}+b_{2} \in \mathbb{R}^{n_{2}}, \\
y_{1} & =\sigma\left(z_{1}\right), & & z_{1}=A_{1} x+b_{1} \in \mathbb{R}^{n_{1}},
\end{aligned}
$$

where $x \in \mathbb{R}^{n_{0}}, A_{\ell} \in \mathbb{R}^{n_{\ell} \times n_{\ell-1}}$, and $b_{\ell} \in \mathbb{R}^{n_{\ell}}$. Initialize the weights with

$$
\left(A_{1}\right)_{i j} \sim \mathcal{N}\left(0,1 / n_{0}\right), \quad\left(b_{1}\right)_{i} \sim \mathcal{N}(0,1)
$$

and

$$
\left(A_{2}\right)_{i j} \sim \mathcal{N}\left(0,1 / n_{1}\right), \quad\left(b_{2}\right)_{i} \sim \mathcal{N}(0,1) .
$$

Consider training through

$$
\underset{\theta}{\operatorname{minimize}} \quad R\left[f_{\theta}\right],
$$

and assume the risk $R: L^{2}(P) \rightarrow \mathbb{R}$ is Fréchet differentiable. For $n_{1}<\infty$, the gradient flow dynamics

$$
\frac{d \theta}{d t}=-\frac{1}{n_{1}} \nabla_{\theta} R\left[f_{\theta}\right]
$$

induces the dynamics

$$
\frac{d}{d t} f_{\theta}=-L_{\frac{1}{n_{1}} \Theta_{t}}\left[\partial_{f} R\right] .
$$

Find a formula for the NTK Θ_{t} and show that

$$
\frac{1}{n_{1}} \Theta_{0} \rightarrow \tilde{\Sigma}^{(2)} \otimes I_{n_{2}}
$$

in probability as $n_{1} \rightarrow \infty$ pointwise for inputs $\left(x, x^{\prime}\right)$ at time $t=0$, where $\tilde{\Sigma}^{(2)}$ is as defined in Problem 2.

Problem 4: Gluing Lemma. Let $\Theta \subseteq \mathbb{R}^{d}$ be nonempty. For any $\rho_{1}, \rho_{2} \in \mathcal{P}(\Theta)$, define

$$
\Pi\left(\rho_{1}, \rho_{2}\right)=\left\{\pi \in \mathcal{P}(\Theta \times \Theta) \mid \text { probability measures on } \Theta \times \Theta \text { with marginals } \rho_{1} \text { and } \rho_{2}\right\} .
$$

Let $\lambda, \mu, \nu \in \mathcal{P}(\Theta)$ and $\pi_{1,2} \in \Pi(\lambda, \mu)$ and $\pi_{2,3} \in \Pi(\mu, \nu)$. Define $P_{i}: \Theta \times \Theta \times \Theta \rightarrow \Theta$ for $i=1,2,3$ as

$$
P_{1}\left(\theta_{1}, \theta_{2}, \theta_{3}\right)=\theta_{1}, \quad P_{2}\left(\theta_{1}, \theta_{2}, \theta_{3}\right)=\theta_{2}, \quad P_{3}\left(\theta_{1}, \theta_{2}, \theta_{3}\right)=\theta_{3} .
$$

Define $P_{i, j}: \Theta \times \Theta \times \Theta \rightarrow \Theta \times \Theta$ with $1 \leq i<j \leq 3$ as

$$
P_{i, j}\left(\theta_{1}, \theta_{2}, \theta_{3}\right)=\left(\theta_{i}, \theta_{j}\right) .
$$

Show that there is a $\pi_{1,2,3} \in \mathcal{P}(\Theta \times \Theta \times \Theta)$ such that

$$
P_{1 \#} \pi_{1,2,3}=\lambda, \quad P_{2 \#} \pi_{1,2,3}=\mu, \quad P_{3 \#} \pi_{1,2,3}=\nu
$$

and

$$
\pi_{1,2}=P_{1,2 \#} \pi_{1,2,3}, \quad \pi_{2,3}=P_{2,3 \#} \pi_{1,2,3}, \quad \pi_{1,3}:=P_{1,3 \#} \pi_{1,2,3} \in \Pi(\lambda, \nu) .
$$

Hint. Disintegrate $\pi_{1,2}$ as

$$
d \pi_{1,2}\left(\theta_{1}, \theta_{2}\right)=d \tilde{\mu}_{\theta_{1}}\left(\theta_{2}\right) d \lambda\left(\theta_{1}\right)
$$

and $\pi_{2,3}$ as

$$
d \pi_{2,3}\left(\theta_{2}, \theta_{3}\right)=d \tilde{\nu}_{\theta_{2}}\left(\theta_{3}\right) d \mu\left(\theta_{2}\right) .
$$

Define $\pi_{1,2,3}$ as

$$
d \pi_{1,2,3}=d \tilde{\nu}_{\theta_{2}}\left(\theta_{3}\right) d \tilde{\mu}_{\theta_{1}}\left(\theta_{2}\right) d \lambda\left(\theta_{1}\right) .
$$

Problem 5: Triangle inequality of the Wasserstein distance. Let $\Theta=\Phi \subseteq \mathbb{R}^{d}$ and $p \in[1, \infty)$. Show that

$$
W_{p}(\lambda, \nu) \leq W_{p}(\lambda, \mu)+W_{p}(\mu, \nu), \quad \forall \lambda, \mu, \nu \in \mathcal{P}^{p}(\Theta) .
$$

Hint. Let $\pi_{1,2}$ and $\pi_{2,3}$ be feasible joint probability measures for the optimization problems defining $W_{p}(\lambda, \mu)$ and $W_{p}(\mu, \nu)$. (Do not assume $\pi_{1,2}$ and $\pi_{2,3}$ are optimal, since we do not know whether the minimuma are attained.) Using Problem 4, glue $\pi_{1,2}$ and $\pi_{2,3}$ to get $\pi_{1,2,3}$ and $\pi_{1,3}$. Finally, use the Minkowski inequality in $L^{p}\left(\pi_{1,2,3}\right)$.

Problem 6: Optimum of book shifting via duality. Let $\Theta=\Phi=\mathbb{R}, c(\theta, \phi)=\|\theta-\phi\|$, and

$$
\mu=\frac{1}{N} \sum_{i=1}^{N} \delta_{i}, \quad \nu=\frac{1}{N} \sum_{i=1}^{N} \delta_{i+1} .
$$

Show that $W_{1}(\mu, \nu) \geq 1$ by finding a suitable feasible $\varphi \in \mathcal{L}_{1}$ for the Kantorovich-Rubinstein dual

$$
W_{1}(\mu, \nu)=\left(\begin{array}{ll}
\underset{\varphi \in \mathcal{C}_{0}(\Theta)}{\operatorname{maximize}} & \int_{\mathbb{R}} \varphi(\theta) d \mu(\theta)-\int_{\mathbb{R}} \varphi(\phi) d \nu(\phi) \\
\text { subject to } & \varphi \in \mathcal{L}_{1}
\end{array}\right)
$$

Problem 7: Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuously differentiable. Let

$$
\mathbb{R}_{+}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{1} \geq 0, \ldots, x_{n} \geq 0\right\}
$$

be the nonnegative orthant in \mathbb{R}^{n}. Consider the optimization problem

$$
\begin{array}{ll}
\underset{\theta \in \mathbb{R}^{n}}{\operatorname{minimize}} & f(x) \\
\text { subject to } & x \in \mathbb{R}_{+}^{n}
\end{array}
$$

and let $x^{\star} \in \mathbb{R}_{+}^{n}$ be an optimal solution. Show that

$$
\frac{\partial f}{\partial x_{i}}\left(x^{\star}\right) \geq 0, \quad \forall i=1, \ldots, n
$$

and

$$
\frac{\partial f}{\partial x_{i}}\left(x^{\star}\right)=0, \quad \forall i \text { such that } x_{i}^{\star}>0
$$

Problem 8: Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuously differentiable. Let

$$
\Delta^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{1}+\cdots+x_{n}=1, x_{1} \geq 0, \ldots, x_{n} \geq 0\right\}
$$

be the probability simplex in \mathbb{R}^{n}. Consider the optimization problem

$$
\begin{array}{ll}
\underset{\theta \in \mathbb{R}^{n}}{\operatorname{minimize}} & f(x) \\
\text { subject to } & x \in \Delta^{n}
\end{array}
$$

and let $x^{\star} \in \Delta^{n}$ be an optimal solution. Let

$$
c=\min _{i=1, \ldots, n} \frac{\partial f}{\partial x_{i}}\left(x^{\star}\right)
$$

Show that

$$
\frac{\partial f}{\partial x_{i}}\left(x^{\star}\right)=c, \quad \forall i \text { such that } x_{i}^{\star}>0
$$

Problem 9: Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $k>0$. Assume f is nonnegative homogeneous of degree k, i.e.,

$$
f(\alpha x)=\alpha^{k} f(x), \quad \forall \alpha \geq 0, x \in \mathbb{R}^{n} .
$$

Assume f is differentiable at x_{0}. Show that (i)

$$
\left\langle x_{0}, \nabla f\left(x_{0}\right)\right\rangle=k f\left(x_{0}\right)
$$

(ii) and

$$
\nabla f\left(\alpha x_{0}\right)=\alpha^{k-1} \nabla f\left(x_{0}\right), \quad \forall \alpha>0 .
$$

Hint. For (i), differentiate both sides of $f\left(\alpha x_{0}\right)=\alpha^{k} f\left(x_{0}\right)$ with respect to α and plug in $\alpha=1$. For (ii), differentiate both sides of $f\left(\alpha\left(x_{0}+t e_{i}\right)\right)=\alpha^{k} f\left(x_{0}+t e_{i}\right)$ with respect to t and plug in $t=0$.

Problem 10: Let $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ defined as

$$
\sigma(r)=\max \{r, 0\}
$$

be the ReLU activation function. Of course, σ is nonnegative homogeneous of degree 1. Let $x \in \mathbb{R}^{d}$ and $\theta=(u, a, b) \in \mathbb{R} \times \mathbb{R}^{d} \times \mathbb{R}$. Define

$$
f(\theta)=u \sigma\left(a^{\top} x+b\right) .
$$

Show that (i) $f(\theta)$ is nonnegative homogeneous of degree 2 and (ii) $f(\theta)$, is differentiable for (Lesbesgue) almost all $\theta \in \mathbb{R} \times \mathbb{R}^{d} \times \mathbb{R}$.

Clarification. We view x as a fixed input.

