Homework 7
Due 5pm, Friday, June 17, 2022

Problem 1: Solution via test functions. Let $f:(0, \infty) \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be measurable. Consider the ODE

$$
\dot{X}=f(t, X), \quad X(0)=X_{0}
$$

We define $X:[0, \infty) \rightarrow \mathbb{R}$ to be a solution if X is measurable and

$$
X(t)=X_{0}+\int_{0}^{t} f(s, X(s)) d s, \quad \text { for } t \geq 0
$$

Show that X is a solution if and only if

$$
\int_{0}^{\infty} \varphi(t) f(t, X(t)) d t=-\int_{0}^{\infty} \varphi^{\prime}(t) X(t) d t, \quad \forall \varphi \in \mathcal{C}_{c}^{\infty}((0, \infty))
$$

Clarification. $\mathcal{C}_{c}^{\infty}(0, \infty)$ is the set of infinitely smooth functions with compact support in $(0, \infty)$. Thus, $\lim _{t \rightarrow 0_{+}} \varphi(t)=0$ for all $\varphi \in \mathcal{C}_{c}^{\infty}((0, \infty)) .\left(\operatorname{So} \mathcal{C}_{c}^{\infty}((0, \infty))\right.$ and $\mathcal{C}_{c}^{\infty}([0, \infty))$ are materially different.)

Problem 2: Discontinuous weak solutions of a PDE. Consider the PDE

$$
\frac{\partial u}{\partial t}+\frac{\partial u}{\partial x}=0, \quad u(0, \cdot)=\mathbf{1}_{[-1,1]}
$$

Show that

$$
u(t, x)=\mathbf{1}_{[-1,1]}(x-t)
$$

is a weak solution, i.e., show that

$$
0=\int_{-\infty}^{\infty} \int_{0}^{\infty}\left(\partial_{t} \varphi(t, x)+\partial_{x} \varphi(t, x)\right) u(t, x) d t d x, \quad \forall \varphi \in C_{c}^{\infty}((0, \infty) \times \mathbb{R})
$$

Remark. Even though $u(t, x)$ is decided not differentiable, it is a (weak) solution of a partial differential equation.

Problem 3: Divergence theorem for the continuity equation. Assume $\rho(t, x)$ is continuously differentiable in t and x. Assume $\mathbf{v}(t, x ; \rho(t, \cdot))$ is continuously differentiable in x. Let $\varphi \in$ $C_{c}^{\infty}\left((0, \infty) \times \mathbb{R}^{d}\right)$. Show that

$$
\begin{aligned}
\int_{\mathbb{R}^{d}} \int_{0}^{\infty} \varphi \partial_{t} \rho d t d x+\int_{0}^{\infty} \int_{\mathbb{R}^{d}} \varphi \nabla & \cdot(\rho \mathbf{v}) d x d t \\
& =-\int_{\mathbb{R}^{d}} \int_{0}^{\infty} \partial_{t} \varphi \rho d t d x-\int_{0}^{\infty} \int_{\mathbb{R}^{d}} \rho((\nabla \varphi) \cdot \mathbf{v}) d x d t
\end{aligned}
$$

Problem 4: Exercise on functional derivatives I. Let $\Phi: \mathbb{R}^{d_{1}} \times \mathbb{R}^{d_{2}} \rightarrow \mathbb{R}$ be a bounded measurable function. (Boundedness is assumed to ensure all integrals are well defined.) Let $P \in \mathcal{P}\left(\mathbb{R}^{d_{1}}\right)$ and define

$$
\begin{aligned}
U\left(\theta, \theta^{\prime}\right) & =\mathbb{E}_{X \sim P}\left[\Phi(X ; \theta) \Phi\left(X ; \theta^{\prime}\right)\right] \\
V(\theta) & =\mathbb{E}_{X \sim P}\left[\Phi(X ; \theta) f_{\star}(X)\right]
\end{aligned}
$$

Define $\tilde{R}: \mathcal{P}\left(\mathbb{R}^{d+2}\right) \rightarrow \mathbb{R}$ as

$$
\tilde{R}(\rho)=\frac{1}{2} \int_{\mathbb{R}^{d_{2}}} \int_{\mathbb{R}^{d_{2}}} U\left(\theta, \theta^{\prime}\right) d \rho(\theta) d \rho\left(\theta^{\prime}\right)-\int_{\mathbb{R}^{d_{2}}} V(\theta) d \rho(\theta)
$$

Show that

$$
\left.\frac{\delta \tilde{R}}{\delta \rho}\right|_{\rho}(\cdot)=\int U\left(\cdot, \theta^{\prime}\right) d \rho\left(\theta^{\prime}\right)-V(\cdot)
$$

Problem 5: Exercise on functional derivatives II. Let $R: \mathcal{H} \rightarrow \mathbb{R}$ be Fréchet differentiable, and write $\left.\partial_{f} R\right|_{f_{0}} \in \mathcal{H}$ for the Fréchet derivative of R at f_{0}. Let $\Phi(\cdot ; \theta) \in \mathcal{H}$ for all $\theta \in \Theta$. (The primary example we consider is $\Phi(x ; \theta)=u \sigma\left(a^{\top} x+b\right)$, where σ is a nonlinear activation function and $\theta=(u, a, b)$.) Define $\tilde{R}: \mathcal{P}(\Theta) \rightarrow \mathbb{R}$ as

$$
\tilde{R}(\rho)=R\left[\int_{\Theta} \Phi(\cdot ; \theta) d \rho(\theta)\right]
$$

Show that

$$
\left.\frac{\delta \tilde{R}}{\delta \rho}\right|_{\rho}(\theta)=\left\langle\left.\partial_{f} R\right|_{\int_{\Theta} \Phi(\cdot ; \theta) d \rho(\theta)}, \Phi(\cdot ; \theta)\right\rangle_{\mathcal{H}}
$$

which is often expressed more concisely as

$$
\left.\frac{\delta \tilde{R}}{\delta \rho}\right|_{\rho}(\theta)=\left\langle\left.\partial_{f} R\right|_{\int_{\Theta} \Phi d \rho}, \Phi(\cdot ; \theta)\right\rangle_{\mathcal{H}}
$$

or

$$
\frac{\delta \tilde{R}}{\delta \rho}=\left\langle\partial_{f} R, \Phi\right\rangle_{\mathcal{H}}
$$

Problem 6: Continuity equation requires continuous flow. Let $\eta \in \mathcal{C}_{c}^{\infty}(\mathbb{R})$ satisfy $\eta \geq 0$, $\eta(x)=0$ for $|x| \geq 1 / 3$, and

$$
\int_{-1 / 3}^{1 / 3} \eta(x) d x=1
$$

Let

$$
\rho(t, x)=(1-t) \eta(x)+t \eta(x-1), \quad \text { for } t \in[0,1], x \in \mathbb{R}
$$

Show that ρ cannot be a solution of the continuity equation

$$
\partial_{t} \rho+\nabla \cdot(\rho \mathbf{v})=0
$$

no matter the choice of \mathbf{v}.

Hint. Integrate with respect to $x \in[-1 / 2,1 / 2]$ and use the divergence theorem.
Remark. The point is that the continuity equation only allows continuous flow. Particles or mass are not allowed to "teleport".

Problem 7: Non-continuous transport has infinite curve length under W_{2}. Consider $\gamma_{1}:[0,1] \rightarrow$ $\mathcal{P}(\mathbb{R})$ defined as

$$
\gamma_{1}(t)=\delta_{t}
$$

and $\gamma_{2}:[0,1] \rightarrow \mathcal{P}(\mathbb{R})$ defined as

$$
\gamma_{2}(t)=(1-t) \delta_{0}+t \delta_{1}
$$

Under the W_{2} metric, show that γ_{1} has length $1 / \sqrt{2}$ while γ_{2} has length ∞.
Remark. In fact, γ_{1} is a constant-speed geodesic.
Remark. For a metric space (X, d) and a continuous function $\gamma:[0,1] \rightarrow X$, the length of the curve γ is defined as

$$
\sup _{\substack{0=t_{0}<t_{1}<\cdots<t_{n}=1 \\ n \in \mathbb{N}}} \sum_{i=0}^{n-1} d\left(\gamma\left(t_{i}\right), \gamma\left(t_{i+1}\right)\right) .
$$

Problem 8: Divergence theorem on weak solutions. Let $\left\{\rho_{t}\right\}_{t \geq 0} \subset \mathcal{P}\left(\mathbb{R}^{d+2}\right)$ be a weak solution to

$$
\partial_{t} \rho_{t}=\operatorname{div}\left(\rho_{t} \nabla J\left(\cdot \mid \rho_{t}\right)\right)
$$

Assume that $\left\{\rho_{t}\right\}_{t \geq 0}$ is (weakly) continuous in t, i.e., for all $t_{0} \in[0, \infty)$ and $h \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{d+2}\right)$,

$$
\lim _{t \rightarrow t_{0}} \int_{\mathbb{R}^{d+2}} h(\theta) d \rho_{t}(\theta)=\int_{\mathbb{R}^{d+2}} h(\theta) d \rho_{t_{0}}(\theta)
$$

Show that for all $0 \leq t_{1}<t_{2}$ and $h \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{d+2}\right)$,

$$
\int_{\mathbb{R}^{d+2}} h(\theta) d\left(\rho_{t_{2}}-\rho_{t_{1}}\right)(\theta)=-\int_{t_{1}}^{t_{2}} \int_{\mathbb{R}^{d+2}} \nabla h(\theta) \cdot \nabla J\left(\theta \mid \rho_{t}\right) d \rho_{t}(\theta) d t
$$

Remark. One can prove that $\left\{\rho_{t}\right\}_{t \geq 0}$ is (or can be chosen to be) continuous, instead of assuming the property.
Remark. With formal calculations, we can "derive"

$$
\rho_{t_{2}}-\rho_{t_{1}}=\int_{t_{1}}^{t_{2}} \partial_{t} \rho_{t} d t=\int_{t_{1}}^{t_{2}} \operatorname{div}\left(\rho_{t} \nabla J\left(\cdot \mid \rho_{t}\right)\right) d t
$$

However, this is not rigorous since the divergence theorem (or the fundamental theorem of calculus) $\rho_{t_{2}}-\rho_{t_{1}}=\int_{t_{1}}^{t_{2}} \partial_{t} \rho_{t} d t$ has not been established.
Hint. Let

$$
\Psi(t)=\left\{\begin{array}{ll}
\exp \left(-\frac{1}{1-t^{2}}\right) & \text { for } t \in(-1,1) \\
0 & \text { otherwise, }
\end{array} \quad \phi_{\delta}(t)=\frac{1}{\delta \int_{\mathbb{R}} \Psi(t) d t} \Psi(t / \delta)\right.
$$

(Then $\phi_{\delta} \in \mathcal{C}^{\infty}$ is supported on $[-\delta, \delta]$ and $\int_{\mathbb{R}} \phi_{\delta}(t) d t=1$.) Let

$$
g_{\delta}(t)=\int_{-\infty}^{t} \phi_{\delta}\left(t-t_{1}\right)-\phi_{\delta}\left(t-t_{2}\right) d t
$$

Let

$$
\varphi_{\delta}(t, \theta)=g_{\delta}(t) h(\theta) \in \mathcal{C}_{c}^{\infty}\left((0, \infty) \times \mathbb{R}^{d+2}\right)
$$

and consider $\delta \rightarrow 0$.

