
Mathematical Foundations of Deep Neural Networks, M1407.001200
E. Ryu
Spring 2021

Midterm Exam
Thursday, October 21, 2021, 3:30–7:30 pm
4 hours, 7 questions, 100 points, 10 pages

This exam is open-book in the sense that you may use any non-electronic resource.
While we don’t expect you will need more space than provided,

you may continue on the back of the pages.

Name:

Teaching staff signature:

Do not turn to the next page
until the start of the exam.



1. (10 points) Color-wise finite difference as convolution. Given a color image X ∈ R3×m×n, we wish
to compute the x- and y-direction derivatives for each color channel. Define Y ∈ R6×m×n with

Y1,i,j = X1,i+1,j −X1,i,j

Y2,i,j = X1,i,j+1 −X1,i,j

Y3,i,j = X2,i+1,j −X2,i,j

Y4,i,j = X2,i,j+1 −X2,i,j

Y5,i,j = X3,i+1,j −X3,i,j

Y6,i,j = X3,i,j+1 −X3,i,j

for i = 1, . . . ,m and j = 1, . . . , n. We define X:,m+1,: = 0 and X:,:,n+1 = 0, i.e., we define the
out-of-bounds elements to have 0 value. How can we represent the mapping X 7→ Y as a convolution
with a 3× 3 filter and zero padding of 1? (The stride is 1.) More specifically, what should the filter
w ∈ R6×3×3×3 be?

Page 2



2. (15 points) Duplicate neurons. Consider the 2-layer neural network

fθ(x) = u⊺σ(ax+ b) =

p∑
j=1

ujσ(ajx+ bj),

where x ∈ R and a, b, u ∈ Rp. Let σ be a differentiable activation function. Using the data
X1, . . . , XN ∈ R and labels Y1, . . . , YN ∈ Y, we train the neural network by solving

minimize
θ∈R3p

1
N

∑N
i=1 ℓ(fθ(Xi), Yi)

with Adam. Assume ℓ(f, y) is differentiable in f . Initialize with θ0 = (a01, . . . , a
0
p, b

0
1, . . . , b

0
p, u

0
1, . . . , u

0
p)

such that a0p−1 = a0p, b
0
p−1 = b0p, and u

0
p−1 = u0p, i.e., the (p− 1)-th and p-th neuron’s parameters are

equal at initialization. Show that akp−1 = akp, b
k
p−1 = bkp, and u

k
p−1 = ukp throughout the training.

Page 3



3. (15 points) Dropout-ReLU=ReLU-Dropout. Consider the following convolutional layer

class myLayer(nn.Module ):

def __init__(self , input_size , output_size ):

super(myLayer , self). __init__ ()

self.linear = nn.Linear(input_size ,output_size)

self.sigma = nn.ReLU()

# self.sigma = nn.Sigmoid ()

# self.sigma = nn.LeakyReLU ()

self.dropout= nn.Dropout(p=0.4)

def forward(self , x):

return dropout(sigma(linear ))

# return sigma(dropout(linear )) # Is this is equivalent?

In which of the three following cases are the operations linear-dropout-σ and linear-σ-dropout equiv-
alent?

(a) self.sigma = nn.ReLU()

(b) self.sigma = nn.Sigmoid()

(c) self.sigma = nn.LeakyReLU()

Justify your answers.

Clarification. The Leaky ReLU activation function is defined as

σ(z) =

{
z for z ≥ 0
αz otherwise,

where α is a fixed parameter (α is not trained) often set to α = 0.01.

Page 4



4. (15 points) Consider the layer

y = σ(ỹ)

ỹ = Ax+ b,

where x ∈ Rnin and y, ỹ,∈ Rnout . Let σ be the sigmoid, i.e., σ(z) = (1 + e−z)−1. Initialize the
weights with Aij ∼ N (0, σ2

A) and bi = 0. Assume the approximations σ(ỹ) ≈ 1
2 + ỹ

4 and σ′(ỹ) ≈ 1
4

are accurate

(a) Assume x1, . . . , xnin
have mean 1/2, have variance 1, and are uncorrelated. What is the mean

and variance of the y1, . . . , ynout
?

(b) Consider the gradient with respect to some loss ℓ(y). Assume
(

∂ℓ
∂y

)
i
for i = 1, . . . , nout have

mean 0, have variance 1, are uncorrelated, and are independent from A. What is the mean and
variance of

(
∂ℓ
∂x

)
j
for j = 1, . . . , nin?

Page 5



5. (15 points) Split-transform-merge convolutions. Consider a series of 1 × 1, 3 × 3, 1 × 1 conv-ReLU
operations with 256–128–128–256 channels:

class MyConvLayer(nn.Module ):

def __init__(self):

super(MyConvLayer , self). __init__ ()

self.conv1 = nn.Conv2d (256, 128, 1,)

self.conv2 = nn.Conv2d (128, 128, 3, padding =1)

self.conv3 = nn.Conv2d (128, 256, 1)

def forward(self , x):

out = torch.nn.functional.relu(self.conv1(x))

out = torch.nn.functional.relu(self.conv2(out))

out = torch.nn.functional.relu(self.conv3(out))

return out

An issue with this construction, however, is that it has too many trainable parameters. To reduce
the number of trainable parameters, we use the following split-transform-merge structure: [apply a
series of 1 × 1, 3 × 3, 1 × 1 conv-ReLU operations with 256–4–4–256 channels] a total of 32 times
and sum the 32 outputs. The following figure illustrates this construction.

  

256, 1x1, 4 
(Output: Bx4xwxh) 

4, 3x3, 4 
(Output: Bx4xwxh) 

4, 1x1, 256 
(Output: Bx256xwxh) 

256, 1x1, 4 
(Output: Bx4xwxh) 

4, 3x3, 4 
(Output: Bx4xwxh) 

4, 1x1, 256 
(Output: Bx256xwxh) 

256, 1x1, 4 
(Output: Bx4xwxh) 

4, 3x3, 4 
(Output: Bx4xwxh) 

4, 1x1, 256 
(Output: Bx256xwxh) 

total 32 

paths 

..... 

Input 
Bx256xwxh 

Output 
Bx256xwxh 

To clarify, all convolutions use biases and the strides are all equal to 1. ReLU is not applied after
the sum operation.

(a) How many trainable parameters are present in both constructions?

(b) In the following page, implement this convolution with the split-transform-merge structure.

Remark. For part (a), you will perform some lengthy hand calculations. I apologize for making you
do this without the aid of a calculator. We will not deduct points for simple calculation mistakes.

Page 6



class STMConvLayer(nn.Module ):

def __init__(self):

super(STMConvLayer , self). __init__ ()

#----------------------------------------

# Fill in code here

#----------------------------------------

def forward(self , x):

# [apply 1x1conv with 4 output channels

# apply 3x3conv with 4 output channels (with padding =1)

# apply 1x1conv with 256 output channels] X 32

# Add all 32 outputs

#----------------------------------------

# Fill in code here

#----------------------------------------

return out

Page 7



6. (15 points) Two forms of Nesterov momentum SGD. There are two forms for the Nesterov momen-
tum SGD. Form I is

ψk+1 = θk − αgk

θk+1 = ψk+1 + β(ψk+1 − ψk)

for k = 0, 1, . . . , where ψ0 = θ0. Form II is

mk+1 = gk + βmk

vk+1 = βmk+1 + gk

θk+1 = θk − αvk+1

for k = 0, 1, . . . , where m0 = 0. In both algorithms, gk represents stochastic gradients computed
with θk. Form II is the form implemented in PyTorch with the option Nesterov=True. Show that
the two forms are equivalent in the sense that given a starting point θ0 ∈ Rn and a sequence of
stochastic gradients g0, g1, . . . ∈ Rn, Forms I and II produce the same θ1, θ2, . . . sequence.

Page 8



7. (15 points) Backprop for MLP with residual connections. Let σ : R → R be a differentiable activation
function and consider the following MLP with residual connections

yL = ALyL−1 + bL

yL−1 = σ(AL−1yL−2 + bL−1) + yL−2

...

y3 = σ(A3y2 + b3) + y2

y2 = σ(A2y1 + b2) + y1

y1 = σ(A1x+ b1),

where x ∈ Rn, A1 ∈ Rm×n, b1 ∈ Rm, Aℓ ∈ Rm×m, bℓ ∈ Rm for ℓ = 2, . . . , L − 1, and AL ∈ R1×m,
bL ∈ R1. (To clarify, σ is applied element-wise.) For notational convenience, define y0 = x.

(i) Find formulae for
∂yℓ
∂yℓ−1

for ℓ = 2, . . . , L.

(ii) Find formulae for
∂yL
∂bℓ

,
∂yL
∂Aℓ

for ℓ = 1, . . . , L.

(iii) The gradients
∂yL
∂bi

,
∂yL
∂Ai

for i = 1, . . . , ℓ need not vanish when [Aj = 0 for some j ∈ {ℓ+ 1, . . . , L− 1}] or
[σ′(Ajyj−1 + bj) = 0 for some j ∈ {ℓ+ 1, . . . , L− 1}]. Explain why.

Page 9



Page 10


