Midterm Exam

Thursday, October 21, 2021, 3:30-7:30 pm
4 hours, 7 questions, 100 points, 10 pages

This exam is open-book in the sense that you may use any non-electronic resource.
 While we don't expect you will need more space than provided, you may continue on the back of the pages.

Name: \qquad

Teaching staff signature:

Do not turn to the next page until the start of the exam.

1. (10 points) Color-wise finite difference as convolution. Given a color image $X \in \mathbb{R}^{3 \times m \times n}$, we wish to compute the x - and y-direction derivatives for each color channel. Define $Y \in \mathbb{R}^{6 \times m \times n}$ with

$$
\begin{aligned}
& Y_{1, i, j}=X_{1, i+1, j}-X_{1, i, j} \\
& Y_{2, i, j}=X_{1, i, j+1}-X_{1, i, j} \\
& Y_{3, i, j}=X_{2, i+1, j}-X_{2, i, j} \\
& Y_{4, i, j}=X_{2, i, j+1}-X_{2, i, j} \\
& Y_{5, i, j}=X_{3, i+1, j}-X_{3, i, j} \\
& Y_{6, i, j}=X_{3, i, j+1}-X_{3, i, j}
\end{aligned}
$$

for $i=1, \ldots, m$ and $j=1, \ldots, n$. We define $X_{:, m+1,:}=0$ and $X_{:,:, n+1}=0$, i.e., we define the out-of-bounds elements to have 0 value. How can we represent the mapping $X \mapsto Y$ as a convolution with a 3×3 filter and zero padding of 1 ? (The stride is 1 .) More specifically, what should the filter $w \in \mathbb{R}^{6 \times 3 \times 3 \times 3}$ be?
2. (15 points) Duplicate neurons. Consider the 2-layer neural network

$$
f_{\theta}(x)=u^{\boldsymbol{\top}} \sigma(a x+b)=\sum_{j=1}^{p} u_{j} \sigma\left(a_{j} x+b_{j}\right),
$$

where $x \in \mathbb{R}$ and $a, b, u \in \mathbb{R}^{p}$. Let σ be a differentiable activation function. Using the data $X_{1}, \ldots, X_{N} \in \mathbb{R}$ and labels $Y_{1}, \ldots, Y_{N} \in \mathcal{Y}$, we train the neural network by solving

$$
\operatorname{minimize}_{\theta \in \mathbb{R}^{3} p} \frac{1}{N} \sum_{i=1}^{N} \ell\left(f_{\theta}\left(X_{i}\right), Y_{i}\right)
$$

with Adam. Assume $\ell(f, y)$ is differentiable in f. Initialize with $\theta^{0}=\left(a_{1}^{0}, \ldots, a_{p}^{0}, b_{1}^{0}, \ldots, b_{p}^{0}, u_{1}^{0}, \ldots, u_{p}^{0}\right)$ such that $a_{p-1}^{0}=a_{p}^{0}, b_{p-1}^{0}=b_{p}^{0}$, and $u_{p-1}^{0}=u_{p}^{0}$, i.e., the $(p-1)$-th and p-th neuron's parameters are equal at initialization. Show that $a_{p-1}^{k}=a_{p}^{k}, b_{p-1}^{k}=b_{p}^{k}$, and $u_{p-1}^{k}=u_{p}^{k}$ throughout the training.
3. (15 points) Dropout-ReLU=ReLU-Dropout. Consider the following convolutional layer

```
class myLayer(nn.Module):
    def __init__(self, input_size, output_size):
        super(myLayer, self).__init__()
        self.linear = nn.Linear(input_size,output_size)
        self.sigma = nn.ReLU()
        # self.sigma = nn.Sigmoid()
        # self.sigma = nn.LeakyReLU()
        self.dropout= nn.Dropout(p=0.4)
    def forward(self, x):
        return dropout(sigma(linear))
        # return sigma(dropout(linear)) # Is this is equivalent?
```

In which of the three following cases are the operations linear-dropout- σ and linear- σ-dropout equivalent?
(a) self.sigma $=$ nn.ReLU()
(b) self.sigma $=$ nn.Sigmoid()
(c) self.sigma $=$ nn.LeakyReLU()

Justify your answers.
Clarification. The Leaky ReLU activation function is defined as

$$
\sigma(z)= \begin{cases}z & \text { for } z \geq 0 \\ \alpha z & \text { otherwise }\end{cases}
$$

where α is a fixed parameter (α is not trained) often set to $\alpha=0.01$.
4. (15 points) Consider the layer

$$
\begin{aligned}
& y=\sigma(\tilde{y}) \\
& \tilde{y}=A x+b
\end{aligned}
$$

where $x \in \mathbb{R}^{n_{\text {in }}}$ and $y, \tilde{y}, \in \mathbb{R}^{n_{\text {out }}}$. Let σ be the sigmoid, i.e., $\sigma(z)=\left(1+e^{-z}\right)^{-1}$. Initialize the weights with $A_{i j} \sim \mathcal{N}\left(0, \sigma_{A}^{2}\right)$ and $b_{i}=0$. Assume the approximations $\sigma(\tilde{y}) \approx \frac{1}{2}+\frac{\tilde{y}}{4}$ and $\sigma^{\prime}(\tilde{y}) \approx \frac{1}{4}$ are accurate
(a) Assume $x_{1}, \ldots, x_{n_{\text {in }}}$ have mean $1 / 2$, have variance 1 , and are uncorrelated. What is the mean and variance of the $y_{1}, \ldots, y_{n_{\text {out }}}$?
(b) Consider the gradient with respect to some loss $\ell(y)$. Assume $\left(\frac{\partial \ell}{\partial y}\right)_{i}$ for $i=1, \ldots, n_{\text {out }}$ have mean 0 , have variance 1 , are uncorrelated, and are independent from A. What is the mean and variance of $\left(\frac{\partial \ell}{\partial x}\right)_{j}$ for $j=1, \ldots, n_{\text {in }}$?
5. (15 points) Split-transform-merge convolutions. Consider a series of $1 \times 1,3 \times 3,1 \times 1$ conv-ReLU operations with 256-128-128-256 channels:

```
class MyConvLayer(nn.Module):
    def __init__(self):
        super(MyConvLayer, self).__init__()
        self.conv1 = nn.Conv2d(256, 128, 1,)
        self.conv2 = nn.Conv2d(128, 128, 3, padding=1)
        self.conv3 = nn.Conv2d(128, 256, 1)
    def forward(self, x):
        out = torch.nn.functional.relu(self.conv1(x))
        out = torch.nn.functional.relu(self.conv2(out))
        out = torch.nn.functional.relu(self.conv3(out))
        return out
```

An issue with this construction, however, is that it has too many trainable parameters. To reduce the number of trainable parameters, we use the following split-transform-merge structure: [apply a series of $1 \times 1,3 \times 3,1 \times 1$ conv-ReLU operations with $256-4-4-256$ channels] a total of 32 times and sum the 32 outputs. The following figure illustrates this construction.

To clarify, all convolutions use biases and the strides are all equal to 1 . ReLU is not applied after the sum operation.
(a) How many trainable parameters are present in both constructions?
(b) In the following page, implement this convolution with the split-transform-merge structure.

Remark. For part (a), you will perform some lengthy hand calculations. I apologize for making you do this without the aid of a calculator. We will not deduct points for simple calculation mistakes.

```
class STMConvLayer(nn.Module):
    def __init__(self):
        super(STMConvLayer, self).__init__()
        #-------------------------------------------
        # Fill in code here
```

 \#---
 def forward (self, \(x\)):
 \# [apply \(1 \times 1\) conv with 4 output channels
 \# apply \(3 x 3\) conv with 4 output channels (with padding=1)
 \# apply \(1 \times 1\) conv with 256 output channels] X 32
 \# Add all 32 outputs
 \#------------------
 \#---
 return out
 6. (15 points) Two forms of Nesterov momentum SGD. There are two forms for the Nesterov momentum SGD. Form I is

$$
\begin{aligned}
\psi^{k+1} & =\theta^{k}-\alpha g^{k} \\
\theta^{k+1} & =\psi^{k+1}+\beta\left(\psi^{k+1}-\psi^{k}\right)
\end{aligned}
$$

for $k=0,1, \ldots$, where $\psi^{0}=\theta^{0}$. Form II is

$$
\begin{aligned}
m^{k+1} & =g^{k}+\beta m^{k} \\
v^{k+1} & =\beta m^{k+1}+g^{k} \\
\theta^{k+1} & =\theta^{k}-\alpha v^{k+1}
\end{aligned}
$$

for $k=0,1, \ldots$, where $m^{0}=0$. In both algorithms, g^{k} represents stochastic gradients computed with θ^{k}. Form II is the form implemented in PyTorch with the option Nesterov=True. Show that the two forms are equivalent in the sense that given a starting point $\theta^{0} \in \mathbb{R}^{n}$ and a sequence of stochastic gradients $g^{0}, g^{1}, \ldots \in \mathbb{R}^{n}$, Forms I and II produce the same $\theta^{1}, \theta^{2}, \ldots$ sequence.
7. (15 points) Backprop for MLP with residual connections. Let $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable activation function and consider the following MLP with residual connections

$$
\begin{aligned}
y_{L}= & A_{L} y_{L-1}+b_{L} \\
y_{L-1}= & \sigma\left(A_{L-1} y_{L-2}+b_{L-1}\right)+y_{L-2} \\
& \vdots \\
y_{3}= & \sigma\left(A_{3} y_{2}+b_{3}\right)+y_{2} \\
y_{2}= & \sigma\left(A_{2} y_{1}+b_{2}\right)+y_{1} \\
y_{1}= & \sigma\left(A_{1} x+b_{1}\right),
\end{aligned}
$$

where $x \in \mathbb{R}^{n}, A_{1} \in \mathbb{R}^{m \times n}, b_{1} \in \mathbb{R}^{m}, A_{\ell} \in \mathbb{R}^{m \times m}, b_{\ell} \in \mathbb{R}^{m}$ for $\ell=2, \ldots, L-1$, and $A_{L} \in \mathbb{R}^{1 \times m}$, $b_{L} \in \mathbb{R}^{1}$. (To clarify, σ is applied element-wise.) For notational convenience, define $y_{0}=x$.
(i) Find formulae for

$$
\frac{\partial y_{\ell}}{\partial y_{\ell-1}}
$$

for $\ell=2, \ldots, L$.
(ii) Find formulae for

$$
\frac{\partial y_{L}}{\partial b_{\ell}}, \quad \frac{\partial y_{L}}{\partial A_{\ell}}
$$

for $\ell=1, \ldots, L$.
(iii) The gradients

$$
\frac{\partial y_{L}}{\partial b_{i}}, \quad \frac{\partial y_{L}}{\partial A_{i}}
$$

for $i=1, \ldots, \ell$ need not vanish when $\left[A_{j}=0\right.$ for some $\left.j \in\{\ell+1, \ldots, L-1\}\right]$ or $\left[\sigma^{\prime}\left(A_{j} y_{j-1}+b_{j}\right)=0\right.$ for some $\left.j \in\{\ell+1, \ldots, L-1\}\right]$. Explain why.

