
Mathematical Foundations of Deep Neural Networks, M1407.001200
E. Ryu
Fall 2021

Homework 6
Due 5pm, Tuesday, November 9, 2021

Problem 1: Removing BN after training. During training, the addition of batch norm adds
additional operations that were otherwise not present and therefore increases the computational
cost per iteration. During testing, however, the effect of batch normalization can be combined
with the preceding convolutional or linear layer so that no additional computational cost is
incurred. Download the starter code bn_remove.py and the save file smallNetSaved and carry
out the removal of the batchnorm layers. Specifically, load the pre-trained smallNetTrain

model and set the weights and parameters of smallNetTest so that the two models produce
exactly the same outputs on the test set.

Problem 2: Default weight initialization. Consider the multi-layer perceptron

yL = ALyL−1 + bL

yL−1 = σ(AL−1yL−2 + bL−1)

...

y2 = σ(A2y1 + b2)

y1 = σ(A1x+ b1),

where x ∈ Rn0 , Aℓ ∈ Rnℓ×nℓ−1 , bℓ ∈ Rnℓ , and nL = 1. For the sake of simplicity, let

σ(z) = z.

Assume x1, . . . , xn0 are IID with zero-mean and unit variance. If this network is initialized with
the default weight initialization of PyTorch, what will the mean and variance of yL be?

Clarification. For this problem, you are being asked to read the PyTorch source code
https://pytorch.org/docs/stable/_modules/torch/nn/modules/linear.html

to identify the default initialization behavior and then to perform calculations.
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Problem 3: Change of variables formula for Gaussians. If φ : Rn → Rn is a one-to-one differ-
entiable function, Y = φ(X), and Y is a continuous random variable with density function pY ,
then X is a continuous random variable with density function

pX(x) = pY (φ(x))

∣∣∣∣det ∂φ∂x (x)
∣∣∣∣ .

Let Y ∈ Rn be a continuous random vector with density

pY (y) =
1

(2π)n/2
e−

1
2
∥y∥2 ,

i.e., Y ∼ N (0, I). Let X = AY + b with an invertible matrix A ∈ Rn×n and a vector b ∈ Rn.
Define Σ = AA⊺. Show that X is a continuous random vector with density

pX(x) =
1√

(2π)n detΣ
e−

1
2
(x−b)⊺Σ−1(x−b).

Problem 4: DKL of continuous random variables. The KL-divergence between continuous
random variables X ∼ f and Y ∼ g, where f and g are probability density functions in Rd, is

DKL (X∥Y ) =

∫
Rd

f(x) log

(
f(x)

g(x)

)
dx.

(a) Show that
DKL (X∥Y ) ≥ 0.

(b) Show that if X = (X1, . . . , Xd) is a continuous random variable such that X1, . . . , Xd are
independent and Y = (Y1, . . . , Yd) is a continuous random variable such that Y1, . . . , Yd
are independent, then

DKL(X∥Y ) = DKL(X1∥Y1) + · · ·+DKL(Xd∥Yd).

Problem 5: DKL of Gaussian random variables. Let N (µ,Σ) denote the Gaussian distribution
with mean µ and covariance Σ. So if X ∼ N (µ,Σ), then

E[X] = µ, E[(X − µ)(X − µ)⊺] = Σ.

Show that

DKL (N (µ0,Σ0)∥N (µ1,Σ1)) =
1

2

(
tr
(
Σ−1
1 Σ0

)
+ (µ1 − µ0)

⊺Σ−1
1 (µ1 − µ0)− d+ log

(
detΣ1

detΣ0

))
,

where d is the underlying dimension of the random variables N (µ0,Σ0) and N (µ1,Σ1). Assume
Σ0 and Σ1 are positive definite.
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