oY
Mathematical Foundations of Deep Neural Networks, M1407.001200 \\f . . ‘\J,
E. Ryu \\i!'|®%|' Y

) N
Fall 2022 Tl

Final Exam
Saturday, December 17, 2022, 1:00-5:00pm
4 hours, 7 questions, 100 points, 11 pages

This exam is open-book in the sense that you may use any non-electronic resource.
While we don’t expect you will need more space than provided,
you may continue on the back of the pages.

Name:

Do not turn to the next page
until the start of the exam.

1. (15 points) Layer normalization. Remember that BatchNorm2D applied to 4-dimensional tensor
X € RBXCXPXQ i5 defined by

1 b;l 21:31 j;l
AQH = TMZZZ(X[b’:’Z j} _/:\L[])2
b=1 i=1 j=1
BN, s (X)) = 9 R 4 g

while the running mean and variance is computed to later replace fi and 62 in test mode. Batch-
Norm2D can be implemented as follows:

class myBatchNorm(nn.Module):
def __init__(self, num_features, momentum=0.9, epsilon=1e-05):
super (MyBatchNorm, self).__init__()
self .momentum = momentum
self.insize = num_features
self .epsilon = epsilon

init weight (gamma), bias(beta),running mean, var

self .weight = nn.Parameter (torch.ones(self.insize))
self .bias = nn.Parameter (torch.zeros(self.insize))
self .run_mean = torch.zeros(self.insize)
self.run_var = torch.ones(self.insize)

def forward(self, input, mode):
if mode == ’train’:
mean over dims 0,2,3
mean = input.mean(dim=(0, 2, 3)).view(1l,-1,1,1)
var over dims 0,2,3
var = ((input - mean) ** 2).mean(dim=(0, 2, 3)).view(1l,-1,1,1)

run_mean_curr = self.momentum * self.run_mean
self.run_mean = run_mean_curr + (l1-self.momentum) * mean
run_var_curr = self.momentum * self.run_var

self.run_var = run_var_curr + (1-self.momentum) *var

weight = self.weight.view(1l, -1, 1, 1)
bias = self.bias.view(1l, -1, 1, 1)
out = weight*(input-mean)/torch.sqrt(var+self.epsilon) + bias

if mode == ’test’:
pass # in this problem, only consider train mode

return out

Page 2

In contrast, layer normalization is defined by

3-
Ma
M
M

] = op X[y e, 1, 7]
c=11i=1 j=1
1 C P Q
5‘2[1] = %ZZZ(‘X[’C:@J] - ﬂ[])2

LN, s(X)[:; ¢, 1, 5] = 7,4, j] + Ble,i, jl.

Vo2]+ e

Explain why layer norm does not need to distinguish train mode from test mode, and implement
layer normalization.

Page 3

2. (15 points) Hierarchical Invertible Neural Transport (HINT) flow. Let n = 2K for some K € N.
Define the flow fp: R™ — R™ recursively as follows. Let fp(x) = hg(z) for = € R2". For k =
K, K—1,...,1, let

h—1(z1.00-1)

hi(x)=|»
+(@) Pg—1((261 41):2k | Yr—1,0(1:90-1))

k
for x € R?", where

¢k71,9($1:2k*1) = (Sk—1,9(1’1:2k71)7 tk71,9($1z2k71))

— Sk—1.0(T 1 ok-1)

}Alk—l($(2kfl+1);2k | Yr—1,0(T1:00-1)) © Z(gk-141):26 + te-1,0(T1:26-1)

for xz € Rzk, where @ denotes the elementwise product. In other words, hi_1 is an affine coupling

layer. Finally, ho(x) for x € R is a 1D flow (and therefore is invertible). Assume we can evaluate
—1 /

50,05+, SK—1,05 t0,03 v 7tK—1,97 ho) and h’O'

(a) Describe an algorithm for computing = = f, ' (z).

(b) Describe an algorithm for computing

%(m))

log

Hint. The Jacobian matrix will have a lower-triangular structure:

Yo () = AN

ox

Page 4

3. (10 points) Normalizing flow MLE minimizes KL-divergence. Let pyue be a probability density
function. We call

H(ptrue) = - /d DPtrue (I) logptrue(x) dx
R

the (differential) entropy of pirye. Assume we have IID samples X7, ..., Xy ~ DPtrue. Consider the
setup of training a flow model fy: R™ — R™ with

1 & dfs
maximize 1:21 log pz(fo(Xi)) + log I&E(XJ

)

dcgncfﬁ(e)

where pz is the density function of some prior distribution. Let pg be the density function f, 1(Z),

where Z ~ pz. Show that
E[L(e)] = DKL(ptrue”pe) + H(ptrue)-

Page 5

4. (10 points) VAE with Bernoulli likelihood. For any p € [0,1]", i.e., (u); € [0,1] for i =1,...,n, let

B(u) denote the distribution of an n independent Bernoulli random variables with means p. In other
words, if X ~ B(u), then

P(X;

0)=1-p
P(X, =1

):Ni

for i = 1,...,n and X,...,X,, are independent. Let our dataset XM ..., XN) ¢ {0,1}" be
“images” with each pixel value being 0 or 1. (As a concrete example, consider modifying the MNIST
image to have pixel value 0 if the original pixel value is between 0 and 128 and 1 if between 128 and
255.) Consider the VAE setup with

bz = N(Ov I)
qs(z |) = N(pg(x), X (z)) with diagonal X, with positive diagonals
po(x | z) = B(fo(2)),
where f14: {0,1}" — R?, 34: {0,1}" — R4 and fy: RY — (0,1)". (We implement fy as a deep
neural network with the sigmoid activation function applied to the final output so that the outputs

of fy are strictly between 0 and 1.) Describe the training objective that we can directly implement
and backpropagate on in PyTorch.

Clarification. The training objective may not contain any expectations.

Page 6

5. (10 points) VAE prior scaling is unimportant. Consider the VAE with training data X1, ... X(V) ¢
R™ and

pz = N(0,*I) (note here)
qs(z |) = N(pg(z), Xe(z)) with diagonal X, with positive diagonals
po(z | 2) = N(fo(2),0°),

where j5: R" — R, $5: R® — R4, fp: RY — R", and o > 0 is fixed.

(a) Show that the variational lower bound (VLB) changes as a function of A > 0.

(b) Show that the VLB with A = 1 is the same as the VLB with A > 0, ps > Ag, T — A28,
and fo(2) = fo(z/A).

Page 7

6. (20 points) Geometric GAN. For r € R, define

r ifr>0
0 otherwise.

(1) = max{o.r} = {

Consider a GAN with generator Gg: R¥ — R" and discriminator Dy: R — R trained with the
maximin problem:

maximize migeiflyqize EX~pie (1 = Do(X)) 1] + Ezono,n[(1 + Dp(Go(2)))+],

where pirue is a density function.

(a) Let a,b € [0,00). Show that

h(y) = a(l —y)+ +b(1 +y)4,

where y € (—00,), is minimized at y = —1 or y = +1.

(b) Let pp be the density function of Gy(Z) with Z ~ N (0,I). (Assume the density function py
exists for all § € RP.) Assume that Dy: R” — R is infinitely powerful, i.e., Dy can represent
any function from R™ to R. Show that the minimax problem is equivalent to

maximize / min{perue (), po(x)} de. (1)

(¢) Further assume Gy is infinitely powerful. Show that pg(x) = prrue(2) attains the maximum.

(d) For any probability density functions p and ¢, show that

Drvp) ™ 5 [1o(e) = (o)l da
=1- min{p(z), ¢(x)} dz.
R

Drv is acalled the total variation distance of p and q.

(e) Show that (1) is equivalent to

mlglel%yze Dy (perue (), po ().

Hint. For (d), let A = {z|p(x) < q(2)} CR" and AY = {x|p(z) > q(z)} C R and use

/Ap(i'f) dx:l—/Aop(x) dx, /Aq(x) dle—/Acq(x) dx.

Remark. You can transform the maximin problem into a minimax problem by flipping the sign of
the objective, i.e., the maximin problem is equivalent to

minimize maximize —Ex~p,,. (1= Dg(X))+] = Ezono,n[(1 + Dy(Go(Z)))+]-

Page 8

Page 9

7. (20 points) 2-layer ResNext block = 2-layer ResNet block. Show that the following two blocks are
equivalent.

Input
64, 3x3, 4 64, 3x3,4 total 64, 3x3, 4
32
: ‘ paths ‘
4, 3x3, 64 4,3x3,64 | ... 4, 3x3, 64
+
Output

Each box represents a convolutional layer with no bias followed the by ReLU activation function.
The two blocks are formally defined as follows

class twoResNext (nn.Module):
def __init__(self):

super (twoResNext, self).__init__()

self.layerl = nn.ModuleList ([
nn.Conv2d (64, 4, kernel_size=3, padding=1, bias=False)
for i in range (32)

D

self.layer2 = nn.Modulelist ([
nn.Conv2d (4, 64, kernel_size=3, padding=1, bias=False)
for i in range (32)

D

def forward(self, x):
out = 0
for i in range (32):
tmp = torch.nn.functional.relu(self.layer1[i](x))
tmp = torch.nn.functional.relu(self.layer2[i] (tmp))
out += tmp
return out + x

class twoResNet (nn.Module):
def __init__(self):
super (twoResNet , self).
self.layerl
= nn.Conv2d (64, 128, kernel_size=3, padding=1, bias=False)
self .layer2
= nn.Conv2d (128, 64, kernel_size=3, padding=1, bias=False)

_init__ Q)

def forward(self, x):
tmp = torch.nn.functional.relu(self.layerl(x))
tmp = torch.nn.functional.relu(self.layer2(tmp))
return tmp + X

Remark. This is why the “basic” ResNext blocks has depth 3.

Page 10

Page 11

