
Mathematical Foundations of Deep Neural Networks, M1407.001200
E. Ryu
Fall 2022

Final Exam
Saturday, December 17, 2022, 1:00–5:00pm
4 hours, 7 questions, 100 points, 11 pages

This exam is open-book in the sense that you may use any non-electronic resource.
While we don’t expect you will need more space than provided,

you may continue on the back of the pages.

Name:

Do not turn to the next page
until the start of the exam.

1. (15 points) Layer normalization. Remember that BatchNorm2D applied to 4-dimensional tensor
X ∈ RB×C×P×Q is defined by

µ̂[:] =
1

BPQ

B∑
b=1

P∑
i=1

Q∑
j=1

X[b, :, i, j]

σ̂2[:] =
1

BPQ

B∑
b=1

P∑
i=1

Q∑
j=1

(X[b, :, i, j]− µ̂[:])2

BNγ,β(X)[b, :, i, j] = γ[:]
X[b, :, i, j]− µ̂[:]√

σ̂2[:] + ε
+ β[:],

while the running mean and variance is computed to later replace µ̂ and σ̂2 in test mode. Batch-
Norm2D can be implemented as follows:

class myBatchNorm(nn.Module):

def __init__(self , num_features , momentum =0.9, epsilon =1e -05):

super(MyBatchNorm , self). __init__ ()

self.momentum = momentum

self.insize = num_features

self.epsilon = epsilon

init weight(gamma), bias(beta),running mean , var

self.weight = nn.Parameter(torch.ones(self.insize))

self.bias = nn.Parameter(torch.zeros(self.insize))

self.run_mean = torch.zeros(self.insize)

self.run_var = torch.ones(self.insize)

def forward(self , input , mode):

if mode == ’train ’:

mean over dims 0,2,3

mean = input.mean(dim=(0, 2, 3)). view(1,-1,1,1)

var over dims 0,2,3

var = ((input - mean) ** 2). mean(dim=(0, 2, 3)). view(1,-1,1,1)

run_mean_curr = self.momentum * self.run_mean

self.run_mean = run_mean_curr + (1-self.momentum) * mean

run_var_curr = self.momentum * self.run_var

self.run_var = run_var_curr + (1-self.momentum) *var

weight = self.weight.view(1, -1, 1, 1)

bias = self.bias.view(1, -1, 1, 1)

out = weight *(input -mean)/ torch.sqrt(var+self.epsilon) + bias

if mode == ’test’:

pass # in this problem , only consider train mode

return out

Page 2

In contrast, layer normalization is defined by

µ̂[:] =
1

CPQ

C∑
c=1

P∑
i=1

Q∑
j=1

X[:, c, i, j]

σ̂2[:] =
1

CPQ

C∑
c=1

P∑
i=1

Q∑
j=1

(X[:, c, i, j]− µ̂[:])2

LNγ,β(X)[:, c, i, j] = γ[c, i, j]
X[:, c, i, j]− µ̂[:]√

σ̂2[:] + ε
+ β[c, i, j].

Explain why layer norm does not need to distinguish train mode from test mode, and implement
layer normalization.

Page 3

2. (15 points) Hierarchical Invertible Neural Transport (HINT) flow. Let n = 2K for some K ∈ N.
Define the flow fθ : Rn → Rn recursively as follows. Let fθ(x) = hK(x) for x ∈ R2K . For k =
K,K − 1, . . . , 1, let

hk(x) =

[
hk−1(x1:2k−1)

ĥk−1(x(2k−1+1):2k |ψk−1,θ(x1:2k−1))

]
for x ∈ R2k , where

ψk−1,θ(x1:2k−1) = (sk−1,θ(x1:2k−1), tk−1,θ(x1:2k−1))

ĥk−1(x(2k−1+1):2k |ψk−1,θ(x1:2k−1)) = esk−1,θ(x1:2k−1) ⊙ x(2k−1+1):2k + tk−1,θ(x1:2k−1)

for x ∈ R2k , where ⊙ denotes the elementwise product. In other words, ĥk−1 is an affine coupling
layer. Finally, h0(x) for x ∈ R is a 1D flow (and therefore is invertible). Assume we can evaluate
s0,θ, . . . , sK−1,θ, t0,θ, . . . , tK−1,θ, h

−1
0 , and h′0.

(a) Describe an algorithm for computing x = f−1
θ (z).

(b) Describe an algorithm for computing

log

∣∣∣∣∂fθ∂x (x)

∣∣∣∣ .
Hint. The Jacobian matrix will have a lower-triangular structure:

∂fθ
∂x (x) =

Page 4

3. (10 points) Normalizing flow MLE minimizes KL-divergence. Let ptrue be a probability density
function. We call

H(ptrue) = −
∫
Rd

ptrue(x) log ptrue(x) dx

the (differential) entropy of ptrue. Assume we have IID samples X1, . . . , XN ∼ ptrue. Consider the
setup of training a flow model fθ : Rn → Rn with

maximize
θ∈Rp

1

N

N∑
i=1

log pZ(fθ(Xi)) + log

∣∣∣∣∂fθ∂x (Xi)

∣∣∣∣︸ ︷︷ ︸
define
= −L(θ)

,

where pZ is the density function of some prior distribution. Let pθ be the density function f−1
θ (Z),

where Z ∼ pZ . Show that
E[L(θ)] = DKL(ptrue∥pθ) +H(ptrue).

Page 5

4. (10 points) VAE with Bernoulli likelihood. For any µ ∈ [0, 1]n, i.e., (µ)i ∈ [0, 1] for i = 1, . . . , n, let
B(µ) denote the distribution of an n independent Bernoulli random variables with means µ. In other
words, if X ∼ B(µ), then

P(Xi = 0) = 1− µi

P(Xi = 1) = µi

for i = 1, . . . , n and X1, . . . , Xn are independent. Let our dataset X(1), . . . , X(N) ∈ {0, 1}n be
“images” with each pixel value being 0 or 1. (As a concrete example, consider modifying the MNIST
image to have pixel value 0 if the original pixel value is between 0 and 128 and 1 if between 128 and
255.) Consider the VAE setup with

pZ = N (0, I)

qϕ(z | x) = N (µϕ(x),Σϕ(x)) with diagonal Σϕ with positive diagonals

pθ(x | z) = B(fθ(z)),

where µϕ : {0, 1}n → Rd, Σϕ : {0, 1}n → Rd×d, and fθ : Rd → (0, 1)n. (We implement fθ as a deep
neural network with the sigmoid activation function applied to the final output so that the outputs
of fθ are strictly between 0 and 1.) Describe the training objective that we can directly implement
and backpropagate on in PyTorch.

Clarification. The training objective may not contain any expectations.

Page 6

5. (10 points) VAE prior scaling is unimportant. Consider the VAE with training dataX(1), . . . , X(N) ∈
Rn and

pZ = N (0, λ2I) (note here)

qϕ(z | x) = N (µϕ(x),Σϕ(x)) with diagonal Σϕ with positive diagonals

pθ(x | z) = N (fθ(z), σ
2I),

where µϕ : Rn → Rd, Σϕ : Rn → Rd×d, fθ : Rd → Rn, and σ > 0 is fixed.

(a) Show that the variational lower bound (VLB) changes as a function of λ > 0.

(b) Show that the VLB with λ = 1 is the same as the VLB with λ > 0, µϕ 7→ λµϕ, Σϕ 7→ λ2Σϕ,
and fθ(z) 7→ fθ(z/λ).

Page 7

6. (20 points) Geometric GAN. For r ∈ R, define

(r)+ = max{0, r} =

{
r if r ≥ 0
0 otherwise.

Consider a GAN with generator Gθ : Rk → Rn and discriminator Dϕ : Rn → R trained with the
maximin problem:

maximize
θ∈Rp

minimize
ϕ∈Rq

EX∼ptrue
[(1−Dϕ(X))+] + EZ∼N (0,I)[(1 +Dϕ(Gθ(Z)))+],

where ptrue is a density function.

(a) Let a, b ∈ [0,∞). Show that

h(y) = a(1− y)+ + b(1 + y)+,

where y ∈ (−∞,∞), is minimized at y = −1 or y = +1.

(b) Let pθ be the density function of Gθ(Z) with Z ∼ N (0, I). (Assume the density function pθ
exists for all θ ∈ Rp.) Assume that Dϕ : Rn → R is infinitely powerful, i.e., Dϕ can represent
any function from Rn to R. Show that the minimax problem is equivalent to

maximize
θ∈Rp

∫
min{ptrue(x), pθ(x)} dx. (1)

(c) Further assume Gθ is infinitely powerful. Show that pθ(x) = ptrue(x) attains the maximum.

(d) For any probability density functions p and q, show that

DTV(p, q)
def
=

1

2

∫
Rn

|p(x)− q(x)| dx

= 1−
∫
Rn

min{p(x), q(x)} dx.

DTV is acalled the total variation distance of p and q.

(e) Show that (1) is equivalent to

minimize
θ∈Rp

DTV(ptrue(x), pθ(x)).

Hint. For (d), let A = {x | p(x) ≤ q(z)} ⊆ Rn and AC = {x | p(x) > q(z)} ⊆ Rn and use∫
A

p(x) dx = 1−
∫
AC

p(x) dx,

∫
A

q(x) dx = 1−
∫
AC

q(x) dx.

Remark. You can transform the maximin problem into a minimax problem by flipping the sign of
the objective, i.e., the maximin problem is equivalent to

minimize
θ∈Rp

maximize
ϕ∈Rq

−EX∼ptrue
[(1−Dϕ(X))+]− EZ∼N (0,I)[(1 +Dϕ(Gθ(Z)))+].

Page 8

Page 9

7. (20 points) 2-layer ResNext block = 2-layer ResNet block. Show that the following two blocks are
equivalent.

Each box represents a convolutional layer with no bias followed the by ReLU activation function.
The two blocks are formally defined as follows

class twoResNext(nn.Module):

def __init__(self):

super(twoResNext , self). __init__ ()

self.layer1 = nn.ModuleList ([

nn.Conv2d (64, 4, kernel_size =3, padding=1, bias=False)

for i in range (32)

])

self.layer2 = nn.ModuleList ([

nn.Conv2d(4, 64, kernel_size =3, padding=1, bias=False)

for i in range (32)

])

def forward(self , x):

out = 0

for i in range (32):

tmp = torch.nn.functional.relu(self.layer1[i](x))

tmp = torch.nn.functional.relu(self.layer2[i](tmp))

out += tmp

return out + x

class twoResNet(nn.Module):

def __init__(self):

super(twoResNet , self). __init__ ()

self.layer1

= nn.Conv2d (64, 128, kernel_size =3, padding=1, bias=False)

self.layer2

= nn.Conv2d (128, 64, kernel_size =3, padding=1, bias=False)

def forward(self , x):

tmp = torch.nn.functional.relu(self.layer1(x))

tmp = torch.nn.functional.relu(self.layer2(tmp))

return tmp + x

Remark. This is why the “basic” ResNext blocks has depth 3.

Page 10

Page 11

