Midterm Exam

Saturday, October 15, 2022, 8:00am-12:00pm
4 hours, 7 questions, 100 points, 11 pages

This exam is open-book in the sense that you may use any non-electronic resource.
 While we don't expect you will need more space than provided, you may continue on the back of the pages.

Name: \qquad

Do not turn to the next page until the start of the exam.

1. (10 points) $\{R M S P r o p$, sign $S G D\} \subset$ Adam without bias correction. Let $g^{0}, g^{1}, \ldots \in \mathbb{R}^{d}$ be a sequence of stochastic gradients. Define Adam without bias correction as

$$
\begin{gathered}
m_{1}^{k+1}=\beta_{1} m_{1}^{k}+\left(1-\beta_{1}\right) g^{k}, \quad m_{2}^{k+1}=\beta_{2} m_{2}^{k}+\left(1-\beta_{2}\right)\left(g^{k} \circledast g^{k}\right) \\
\theta^{k+1}=\theta^{k}-\alpha m_{1}^{k+1} \oslash \sqrt{m_{2}^{k+1}+\epsilon}
\end{gathered}
$$

for $k=0,1, \ldots$. Recall that RMSProp has the form

$$
m_{2}^{k+1}=\beta_{2} m_{2}^{k}+\left(1-\beta_{2}\right)\left(g^{k} \circledast g^{k}\right), \quad \theta^{k+1}=\theta^{k}-\alpha g^{k} \oslash \sqrt{m_{2}^{k+1}+\epsilon}
$$

for $k=0,1, \ldots$ Here, \circledast and \oslash denote element-wise multiplication and division.
(a) Show that RMSProp is an instance of Adam without bias correction.
(b) The optimizer signSGD is defined as

$$
\theta^{k+1}=\theta^{k}-\alpha \operatorname{sign}\left(g^{k}\right)
$$

for $k=0,1, \ldots$, where the sign function

$$
\operatorname{sign}(x)= \begin{cases}+1 & \text { if } x>0 \\ -1 & \text { if } x<0\end{cases}
$$

is applied elementwise to $g^{k} \in \mathbb{R}^{d}$. For simplicity, assume $\left(g^{k}\right)_{i} \neq 0$ for all $i=1, \ldots, d$ and $k=0,1, \ldots$. Show that signSGD is an instance of Adam without bias correction.

Clarification. You are being asked to identify particular choices of Adam's parameters β_{1}, β_{2}, and ϵ such that Adam reduces to the two other optimizers.
2. (10 points) Composing conv, max-pool, ReLU. Show that the compositions

- conv-MP-ReLU
- conv-ReLU-MP
- conv-ReLU-MP-ReLU
are equivalent. More precisely, show that the following three models are equivalent

```
class model1(nn.Module):
    def __init__(self, in_chan, out_chan):
        super(model1, self).__init__()
        self.conv = nn.Conv2d(in_channels=in_chan,
            out_channels=out_chan, kernel_size=3)
        self.mp = nn.MaxPool2d(2, stride=2)
    def forward(self, x):
        return torch.relu(self.mp(self.conv(x)))
class model2(nn.Module):
    def __init__(self, in_chan, out_chan):
        super(model2, self).__init__()
        self.conv = nn.Conv2d(in_channels=in_chan,
                        out_channels=out_chan, kernel_size=3)
        self.mp = nn.MaxPool2d(2, stride=2)
    def forward(self, x):
        return self.mp(torch.relu(self.conv(x)))
class model3(nn.Module):
    def __init__(self, in_chan, out_chan):
        super(model3, self).__init__()
        self.conv = nn.Conv2d(in_channels=in_chan,
                        out_channels=out_chan, kernel_size=3)
        self.mp = nn.MaxPool2d(2, stride=2)
    def forward(self, x):
        return torch.relu(self.mp(torch.relu(self.conv(x))))
```

3. (10 points) Convolution can represent identity. Consider a 2 DConv layer with 3×3 filter, padding 1, C input channels, and C output channels. If we want the layer to represent the identity map, i.e., if we want the 2 DConv layer to map any $X \in \mathbb{R}^{C \times v \times h}$ to X itself without modification, what should the filter w and bias b be?

Clarification. Precisely specify all elements of w and b.
4. (10 points) Logistic regression via BCE loss. Consider the supervised learning setup with data $X_{1}, \ldots, X_{N} \in \mathbb{R}^{p}$ and labels $Y_{1}, \ldots, Y_{N} \in\{-1,+1\}$. Recall that logistic regression uses the model

$$
f_{a, b}(x)=\left[\begin{array}{c}
\frac{1}{1+e^{a \top} x+b} \\
\frac{1}{1+e^{-(a \top x+b)}}
\end{array}\right]
$$

and solves

$$
\underset{a \in \mathbb{R}^{d}, b \in \mathbb{R}}{\operatorname{minimize}} \sum_{i=1}^{N} D_{\mathrm{KL}}\left(\mathcal{P}\left(Y_{i}\right) \| f_{a, b}\left(X_{i}\right)\right),
$$

where

$$
\mathcal{P}\left(Y_{i}\right)=\left\{\begin{array}{ll}
{[1} & 0
\end{array}\right]^{\top} \text { if } Y_{i}=-1 .
$$

The binary cross-entropy (BCE) loss is defined as

$$
\ell^{\mathrm{BCE}}(x, y)=-(y \log x+(1-y) \log (1-x))
$$

for $x \in(0,1)$ and $y \in\{0,+1\}$. Let

$$
\sigma(r)=\frac{1}{1+e^{-r}}
$$

be the sigmoid activation function. Define $\tilde{f}_{a, b}(x)=a^{\top} x+b$ and

$$
\tilde{Y}_{i}= \begin{cases}0 & \text { if } Y_{i}=-1 \\ 1 & \text { if } Y_{i}=+1\end{cases}
$$

for $i=1, \ldots, N$. Show that

$$
\underset{a \in \mathbb{R}^{d}, b \in \mathbb{R}}{\operatorname{minimize}} \sum_{i=1}^{N} \ell^{\mathrm{BCE}}\left(\sigma\left(\tilde{f}_{a, b}\left(X_{i}\right)\right), \tilde{Y}_{i}\right)
$$

is equivalent to logistic regression.
5. (20 points) MLP with zero-initialization. Let $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ be the hyperbolic tangent activation function, i.e.,

$$
\sigma(r)=\frac{e^{2 r}-1}{e^{2 r}+1}
$$

Consider the MLP

$$
\begin{aligned}
f_{\theta}(x) & =y_{L} \\
y_{L} & =A_{L} y_{L-1}+b_{L} \\
y_{L-1} & =\sigma\left(A_{L-1} y_{L-2}+b_{L-1}\right) \\
& \vdots \\
y_{2}= & \sigma\left(A_{2} y_{1}+b_{2}\right) \\
y_{1}= & \sigma\left(A_{1} x+b_{1}\right),
\end{aligned}
$$

where $x \in \mathbb{R}^{n_{0}}, A_{\ell} \in \mathbb{R}^{n_{\ell} \times n_{\ell-1}}, b_{\ell} \in \mathbb{R}^{n_{\ell}}$, and $n_{L}=1$. (To clarify, σ is applied element-wise.) Use the notation $\theta=\left(A_{1}, b_{1}, A_{2}, b_{2}, \ldots, A_{L}, b_{L}\right)$. Assume $A_{1}, \ldots, A_{L}, b_{1}, \ldots, b_{L}$ are all initialized to zero. Let $X_{1}, \ldots, X_{N} \in \mathbb{R}^{n_{0}}$ and $Y_{1}, \ldots, Y_{N} \in \mathbb{R}$. Consider training f_{θ} by solving

$$
\underset{\theta}{\operatorname{minimize}} \sum_{i=1}^{N} \frac{1}{2}\left(f_{\theta}\left(X_{i}\right)-Y_{i}\right)^{2} .
$$

For simplicity, assume we use gradient descent (GD) for training.
(a) Show that A_{1}, \ldots, A_{L} and b_{1}, \ldots, b_{L-1} do not move throughout the training, i.e., they all stay at the initial values of 0 .
(b) Assume the learning rate of GD is chosen appropriately. What does b_{L} converge to?
6. (20 points) He initialization. Consider the layer

$$
\begin{aligned}
y^{+} & =A x+b \\
x & =\sigma(y),
\end{aligned}
$$

where $x, y \in \mathbb{R}^{n_{\mathrm{in}}}, y^{+} \in \mathbb{R}^{n_{\text {out }}}$, and $\sigma(r)=\max \{0, r\}$ is the ReLU activation function. Assume the elements of A and b are initialized IID as $A_{i j} \sim \mathcal{N}\left(0, \sigma_{A}^{2}\right)$ and $b_{i}=0$. Assume y is a random vector, independent of A and b, such that y_{j} has mean 0 and variance 1 for $j=1, \ldots, n_{\text {in }}$. Assume $y_{1}, \ldots, y_{n_{\text {in }}}$ are uncorrelated. Finally, assume y is symmetric, i.e., y and $-y$ have the same distribution. Show the following:
(a) $\mathbb{E}\left[\left(x_{j}\right)^{2}\right]=\frac{1}{2}$ for $j=1, \ldots, n_{\text {in }}$.
(b) $\mathbb{E}\left[y^{+}\right]=0$.
(c) $\mathbb{E}\left[\left(y_{i}^{+}\right)^{2}\right]=\frac{n_{\text {in }} \sigma_{A}^{2}}{2}$ for $i=1, \ldots, n_{\text {out }}$.
(d) $y_{1}^{+}, \ldots, y_{n_{\text {out }}}^{+}$are uncorrelated.
(e) y^{+}is symmetric.

Hint. For (e), use the fact that A and $-A$ have the same distribution.
7. (20 points) Is NiN shift-invariant? Let $X \in \mathbb{R}^{3 \times 32 \times 32}$ be such that

$$
X_{i j k}= \begin{cases}1 & \text { for } i=1, j=19, k=19 \\ 0 & \text { otherwise. }\end{cases}
$$

Let $\tilde{X} \in \mathbb{R}^{3 \times 32 \times 32}$ be X shifted along the j coordinate by 4 pixels, i.e.,

$$
\tilde{X}_{i j k}= \begin{cases}1 & \text { for } i=1, j=23, k=19 \\ 0 & \text { otherwise }\end{cases}
$$

Consider the NiN network, precisely defined below, in eval mode. For simplicity, do not use biases. We use 0-based indexing, so the j and k indices for $X_{i j k}$ range from 0 to 31 .
(a) When X and \tilde{X} are provided as inputs to NiN , are the outputs approximately equal?
(b) When X is provided as input to NiN, which elements of out1 can be nonzero?
(c) When X is provided as input to NiN, which elements of out2 can be nonzero?
(d) When X is provided as input to NiN, which elements of out3 can be nonzero?
(e) When X and \tilde{X} are provided as inputs to NiN , are the outputs exactly equal?

Justify your answers.

```
class NiN(nn.Module):
    def __init__(self):
        super(NiN, self).__init__()
        self.mlpconv_layer1 = nn.Sequential(
        nn.Conv2d(3, 192, kernel_size=5, padding=2, bias=False),
        nn.ReLU(),
        nn.Conv2d(192, 160, kernel_size=1, bias=False),
        nn.ReLU(),
        nn.Conv2d(160, 96, kernel_size=1, bias=False),
        nn.ReLU(),
        nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
        nn.Dropout()
        )
        self.mlpconv_layer2 = nn.Sequential(
        nn.Conv2d(96, 192, kernel_size=5, padding=2, bias=False),
        nn.ReLU(),
        nn.Conv2d(192, 192, kernel_size=1, bias=False),
        nn.ReLU(),
        nn.Conv2d(192, 192, kernel_size=1, bias=False),
        nn.ReLU(),
        nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
        nn.Dropout()
        )
        self.mlpconv_layer3 = nn.Sequential(
            nn.Conv2d(192, 192, kernel_size=3, padding=1, bias=False),
            nn.ReLU(),
            nn.Conv2d(192, 192, kernel_size=1, bias=False),
            nn.ReLU(),
            nn.Conv2d(192, 10, kernel_size=1, bias=False),
            nn.ReLU()
        )
    def forward(self, x) :
        out1 = self.mlpconv_layer1(x)
        out2 = self.mlpconv_layer2(out1)
        out3 = self.mlpconv_layer3(out2)
        out4 = nn.AvgPool2d(kernel_size=8)(out3)
        return out4.view (-1, 10)
```

