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1. (10 points) {RMSProp, sign SGD} ⊂ Adam without bias correction. Let g0, g1, . . . ∈ Rd be a se-
quence of stochastic gradients. Define Adam without bias correction as

mk+1
1 = β1m

k
1 + (1− β1)g

k, mk+1
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k
2 + (1− β2)(g
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θk+1 = θk − αmk+1
1 �

√
mk+1

2 + ϵ

for k = 0, 1, . . . . Recall that RMSProp has the form

mk+1
2 = β2m

k
2 + (1− β2)(g

k ⊛ gk), θk+1 = θk − αgk ⊘
√

mk+1
2 + ϵ

for k = 0, 1, . . . . Here, ⊛ and ⊘ denote element-wise multiplication and division.

(a) Show that RMSProp is an instance of Adam without bias correction.

(b) The optimizer signSGD is defined as

θk+1 = θk − α sign(gk)

for k = 0, 1, . . . , where the sign function

sign(x) =

{
+1 if x > 0
−1 if x < 0

is applied elementwise to gk ∈ Rd. For simplicity, assume (gk)i ̸= 0 for all i = 1, . . . , d and
k = 0, 1, . . . . Show that signSGD is an instance of Adam without bias correction.

Clarification. You are being asked to identify particular choices of Adam’s parameters β1, β2, and ϵ
such that Adam reduces to the two other optimizers.
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2. (10 points) Composing conv, max-pool, ReLU. Show that the compositions

• conv-MP-ReLU

• conv-ReLU-MP

• conv-ReLU-MP-ReLU

are equivalent. More precisely, show that the following three models are equivalent.

class model1(nn.Module ):

def __init__(self , in_chan , out_chan ):

super(model1 , self). __init__ ()

self.conv = nn.Conv2d(in_channels=in_chan ,

out_channels=out_chan , kernel_size =3)

self.mp = nn.MaxPool2d(2, stride =2)

def forward(self , x):

return torch.relu(self.mp(self.conv(x)))

class model2(nn.Module ):

def __init__(self , in_chan , out_chan ):

super(model2 , self). __init__ ()

self.conv = nn.Conv2d(in_channels=in_chan ,

out_channels=out_chan , kernel_size =3)

self.mp = nn.MaxPool2d(2, stride =2)

def forward(self , x):

return self.mp(torch.relu(self.conv(x)))

class model3(nn.Module ):

def __init__(self , in_chan , out_chan ):

super(model3 , self). __init__ ()

self.conv = nn.Conv2d(in_channels=in_chan ,

out_channels=out_chan , kernel_size =3)

self.mp = nn.MaxPool2d(2, stride =2)

def forward(self , x):

return torch.relu(self.mp(torch.relu(self.conv(x))))
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3. (10 points) Convolution can represent identity. Consider a 2DConv layer with 3× 3 filter, padding
1, C input channels, and C output channels. If we want the layer to represent the identity map, i.e.,
if we want the 2DConv layer to map any X ∈ RC×v×h to X itself without modification, what should
the filter w and bias b be?

Clarification. Precisely specify all elements of w and b.
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4. (10 points) Logistic regression via BCE loss. Consider the supervised learning setup with data
X1, . . . , XN ∈ Rp and labels Y1, . . . , YN ∈ {−1,+1}. Recall that logistic regression uses the model

fa,b(x) =

[ 1
1+ea

⊺x+b

1
1+e−(a⊺x+b)

]
and solves

minimize
a∈Rd, b∈R

N∑
i=1

DKL(P(Yi)∥fa,b(Xi)),

where

P(Yi) =

{ [
1 0

]⊺
if Yi = −1[

0 1
]⊺

if Yi = +1.

The binary cross-entropy (BCE) loss is defined as

ℓBCE(x, y) = −(y log x+ (1− y) log(1− x))

for x ∈ (0, 1) and y ∈ {0,+1}. Let
σ(r) =

1

1 + e−r

be the sigmoid activation function. Define f̃a,b(x) = a⊺x+ b and

Ỹi =

{
0 if Yi = −1
1 if Yi = +1

for i = 1, . . . , N . Show that

minimize
a∈Rd, b∈R

N∑
i=1

ℓBCE(σ(f̃a,b(Xi)), Ỹi)

is equivalent to logistic regression.
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5. (20 points) MLP with zero-initialization. Let σ : R → R be the hyperbolic tangent activation func-
tion, i.e.,

σ(r) =
e2r − 1

e2r + 1
.

Consider the MLP

fθ(x) = yL

yL = ALyL−1 + bL

yL−1 = σ(AL−1yL−2 + bL−1)

...

y2 = σ(A2y1 + b2)

y1 = σ(A1x+ b1),

where x ∈ Rn0 , Aℓ ∈ Rnℓ×nℓ−1 , bℓ ∈ Rnℓ , and nL = 1. (To clarify, σ is applied element-wise.) Use
the notation θ = (A1, b1, A2, b2, . . . , AL, bL). Assume A1, . . . , AL, b1, . . . , bL are all initialized to zero.
Let X1, . . . , XN ∈ Rn0 and Y1, . . . , YN ∈ R. Consider training fθ by solving

minimize
θ

N∑
i=1

1

2
(fθ(Xi)− Yi)

2.

For simplicity, assume we use gradient descent (GD) for training.

(a) Show that A1, . . . , AL and b1, . . . , bL−1 do not move throughout the training, i.e., they all stay
at the initial values of 0.

(b) Assume the learning rate of GD is chosen appropriately. What does bL converge to?
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6. (20 points) He initialization. Consider the layer

y+ = Ax+ b

x = σ(y),

where x, y ∈ Rnin , y+ ∈ Rnout , and σ(r) = max{0, r} is the ReLU activation function. Assume the
elements of A and b are initialized IID as Aij ∼ N (0, σ2

A) and bi = 0. Assume y is a random vector,
independent of A and b, such that yj has mean 0 and variance 1 for j = 1, . . . , nin. Assume y1, . . . , ynin

are uncorrelated. Finally, assume y is symmetric, i.e., y and −y have the same distribution. Show
the following:

(a) E[(xj)
2] = 1

2 for j = 1, . . . , nin.

(b) E[y+] = 0.

(c) E[(y+i )2] =
ninσ

2
A

2 for i = 1, . . . , nout.

(d) y+1 , . . . , y
+
nout

are uncorrelated.

(e) y+ is symmetric.

Hint. For (e), use the fact that A and −A have the same distribution.
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7. (20 points) Is NiN shift-invariant? Let X ∈ R3×32×32 be such that

Xijk =

{
1 for i = 1, j = 19, k = 19
0 otherwise.

Let X̃ ∈ R3×32×32 be X shifted along the j coordinate by 4 pixels, i.e.,

X̃ijk =

{
1 for i = 1, j = 23, k = 19
0 otherwise.

Consider the NiN network, precisely defined below, in eval mode. For simplicity, do not use biases.
We use 0-based indexing, so the j and k indices for Xijk range from 0 to 31.

(a) When X and X̃ are provided as inputs to NiN, are the outputs approximately equal?

(b) When X is provided as input to NiN, which elements of out1 can be nonzero?

(c) When X is provided as input to NiN, which elements of out2 can be nonzero?

(d) When X is provided as input to NiN, which elements of out3 can be nonzero?

(e) When X and X̃ are provided as inputs to NiN, are the outputs exactly equal?

Justify your answers.

class NiN(nn.Module ):

def __init__(self):

super(NiN , self). __init__ ()

self.mlpconv_layer1 = nn.Sequential(

nn.Conv2d(3, 192, kernel_size =5, padding=2, bias=False),

nn.ReLU(),

nn.Conv2d (192, 160, kernel_size =1, bias=False),

nn.ReLU(),

nn.Conv2d (160, 96, kernel_size =1, bias=False),

nn.ReLU(),

nn.MaxPool2d(kernel_size =3, stride=2, ceil_mode=True),

nn.Dropout ()

)

self.mlpconv_layer2 = nn.Sequential(

nn.Conv2d (96, 192, kernel_size =5, padding=2, bias=False),

nn.ReLU(),

nn.Conv2d (192, 192, kernel_size =1, bias=False),

nn.ReLU(),

nn.Conv2d (192, 192, kernel_size =1, bias=False),

nn.ReLU(),

nn.MaxPool2d(kernel_size =3, stride=2, ceil_mode=True),

nn.Dropout ()

)

self.mlpconv_layer3 = nn.Sequential(

nn.Conv2d (192, 192, kernel_size =3, padding=1, bias=False),

nn.ReLU(),

nn.Conv2d (192, 192, kernel_size =1, bias=False),

nn.ReLU(),

nn.Conv2d (192, 10, kernel_size =1, bias=False),

nn.ReLU()

)

def forward(self , x) :

out1 = self.mlpconv_layer1(x)

out2 = self.mlpconv_layer2(out1)

out3 = self.mlpconv_layer3(out2)

out4 = nn.AvgPool2d(kernel_size =8)( out3)

return out4.view(-1, 10)
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