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Supervised learning setup

We have data X3, ..., Xy € X and corresponding labels Y, ...,Yy € T.

Example) X; is the ith email and Y; € {—1, +1} denotes whether X; is a spam email.

Example) X; is the ith image and Y; € {0, ..., 9} denotes handwritten digit.

Assume there is a true unknown function
fir X =Y
mapping data to its label. In particular, Y; = f.(X;) fori =1, ..., N.

The goal of supervised learning is to use Xy, ..., Xy and Yy, ..., Yy tofind f = f,.



Formulating the right objective

The goal of “finding f = f,” must be further quantified.
Assume a loss function such that (y;,y,) = 0if y; =y, and £(y,,y,) > 0 if y; # y,.

Attempt 1)

minimize sup €(f(x), fi(x))
f XEX

Problems:
* There is a trivial solution f = f,.

« Minimization over all functions f is in general algorithmically intractable'. How would one
represent a f on a computer?



Formulating the right objective

Attempt 2) Restrict search to a class of parametrized functions fg(x) where 8 € ® € RP, i.e.,
only consider f € {fy | 8 € ©} where ® € RP. Then solve

minimize sup €(f(x), f.(x
fupimEs  Sap CU G 100)

which is equivalent to
minimize sup €(fg(x), f(x))
e XEX

Problems:

* The supremum sup is computationally inconvenient to deal with.
XEX

» Objective is too pessimistic. We do not need to do well all the time, we just need to do
well on average.



Formulating the right objective

Attempt 3) Take a finite sample™ X4, ..., Xy € X and corresponding labels Y3, ..., Yy € Y. Then
solve

mlnlmlze —z L(fe (X)), fr (X))

which is equivalent to

N
. » . 1
minimize Z (fo(X;), Yy)
i=

This is the standard form of the optimization problem (except regularizers) we consider in
the supervised learning. We will talk about regularizers later.



Aside: Minimum vs. Infimum

We clarify terminology.

* “Minimize”: Used to specify an optimization problem.

« “Minimizer: A solution to a minimization problem.

* “Minimum”: Used to specify the smallest objective value and asserts a minimizer exists.

* “Infimum”: Used to specify the limiting smallest objective value, but a minimizer may not
exist.
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Analogous definitions with “maximize”, “maximizer”, “maximum”, and “supremum”



Training is optimization

In machine learning, the anthropomorphized word “training” refers to solving an optimization
problem such as

mlnlmlze —Z L(fo(X;), Y7)

In most cases, SGD or variants of SGD are used.

We call fy the machine learning model or the neural network.



Least-squares regression

INLS, X =RP, Y=R,0=RP, fy(x) =x"0, and £(y,y,) = %(yl — y5)2.

Y1
where X =| : |landY =| :

Yy

The model f5(x) = x "0 is a shallow neural network. (The terminology will makes sense
when contrasted with deep neural networks.)



Binary classification and linear
separabillity
In binary classification, we have X = RP and Y = {-1, +1}.

The data is linearly separable if there is a hyperplane defined by (arye, birye) SUCh that

- 1 ifalyeX + brye > 0
—1 otherwise.

separating
hyperplane

not linearly separable




Linear classification

Consider linear (affine) models

_J+1 ifa'x+b>0
fap(x) = {—1 otherwise.

Consider the loss function

1 0 if =
f()’1y}’2)=§|1—)’1h|={1 ifﬁiii

The optimization problem

N

. » " 1

minimize Z L(fap(Xi), Y1)
1=

has a solution with optimal value 0 when the data is linearly separable.

Problem: Optimization problem is discontinuous and thus cannot be solved with SGD.
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Relaxing into continuous formulation

Even if the underlying function or phenomenon to approximate is discontinuous, the model
needs to be continuous’ in its parameters. The loss function also needs to be continuous.
(The prediction need not be continuous.)

We consider a relaxation, is a continuous proxy of the discontinuous thing. Specifically,
consider
fap(x) =a'x+b

Once trained, f, ,(x) > 0 means the neural network is predicting y = +1 to be “more likely”,
and f, ,(x) < 0 means the neural network is predicting y = —1 to be “more likely”.

Therefore, we train the model to satisfy
Yifap(X;) >0 fori=1,..,N.
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Relaxing into continuous formulation

Problem with strict inequality Y;f, ,(X;) > 0:
« Strict inequality has numerical problems with round-off error.

 The magnitude |falb(x)| can be viewed as the confidence™ of the prediction, but having a
small positive value for Y;f, , (X;) indicates small confidence of the neural network.

We modify our model’s desired goal to be Y;f, ,(X;) = 1.
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Support vector machine (SVM)

To train the neural network to satisfy
0=>1-YfapX;) fori=1,...,N.

we minimize the excess positive component of the RHS

N

= . . 1

minjmize NZ max{0, 1~ ¥;fo,» (X))}
1=

which is equivalent to

N

1

. . . _ _ i T )

minimize NZ max{0,1 —Y;(a'X; + b)}
i=

If the optimal value is 0, then the data is linearly separable.
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Support vector machine (SVM)

This formulation is called the support vector machine (SVM)

N

1

. . _ _ i T )

minimize NZ max{0,1 —Y;(a'X; + b)}
i=

It is also common to add a regularizer

N

12 0,1 Y(Tx+b)+’1 2

gy meo T ile X g el
1=

We will talk about regularizers later.
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Prediction with SVM

Once the SVM is trained, make predictions with
sign (fa,b (x)) = sign(a’x + b)

when f, ,(x) = 0, we assign sign (fa,b(x)) arbitrarily.

Note that the prediction is discontinuous, but predictions are in {—1, +1} so it must be
discontinuous.

If ¥ N, max{0, 1 — Y;f, ,(X;)} = 0, then sign (fa,b(Xl-)) =Y, fori=1,..,N,i.e., the neural

network predicts the known labels perfectly. (Make sure you understand this.) Of course, it
is a priori not clear how accurate the prediction will be for new unseen data.
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SVM is a relaxation

Directly minimizing the prediction error on the data is

N

e ST T

migimze v 2, 3|1 = Yisien (Far ()
=

The optimization we instead solve is

N

u = . 1

TR 2, O~ ifas (K0}
1=

Let the optimal values be p7 and p3. Again, SVM is of as a relaxation of the first. The two
are not equivalent. (An equivalent formulation is not referred to as a relaxation.)

» Itis possible to show™ that p7 = 0 if and only if p; = 0.

« If p7 > 0 and p; > 0, a solution to the first problem need not correspond to a solution to
the second problem, i.e., there solutions may be completely different.
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Relaxed supervised learning setup

We relax the supervised learning setup to predict probabilities, rather than make point
predictions’. So, labels are generated based on data, perhaps randomly. Consider data
X, .., Xy EX and labels Yi,...,Yy € Y. Assume there exists a function

fi: X = P(Y)
where P (Y) denotes the set of probability distributions on Y.

Assume the generation of ¥; given X; is independent of ¥; and X; for j # i.

0.8
0.2

Example) An email saying “Buy this thing at our store!” may be spam to some people, but it may
not be spam to others.

Example) f(X) = [ in dog vs. cat classifier.

The relaxed SL setup is more general and further realistic.
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KL-divergence

Let p, g € R™ represent probability masses, i.e., p; = 0fori =1,...,nand )i, p; = 1 and the

same for q. The Ku/lback—Lelb/er-dlvergence (KL divergence) from gtopis

Dk (pll@)= Z pilog ( ) z pilog(q;) + Z pilog(p;)

= H(p,q) _
Properties: SHEES GO Gifg en_tro H(g?
P ' relative to p Py of'p

* Not symmetric, i.e., Dk (pllg) # DxL(qllp).

* DxL(pll@)>0ifp # q and Dk (pllg)=01ifp = q.
* DiL(p||g)= is possible. (Further detail on the next slide.)

Often used as a “distance” between p and g despite not being a metric.
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KL-divergence

n
p.
D pllg)= ) pilog (%)
i=1 i

Clarification: Use the convention
0
* Olog (6) = 0 (when p; = q; = 0)

. Olog(q%) =0ifg; >0

* p;log (%) = o ifp; >0

Probabilistic interpretation:
p
Do (pll)=E |1og )]

with the random variable I such that P(I = i) = p;.
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Empirical distribution for binary
classification

In basic binary classification, define the empirical distribution

f'é' ify=-1
PO =901
1) ify =+1

More generally, the empirical distribution describes the data we have seen. In this context,
we have only seen one label per datapoint, so our empirical distributions are one-hot
vectors.

(If there are multiple annotations per data point x and they don’t agree, then the empirical
distribution may not be one-hot vectors. For example, given the same email, some users
may flag it as spam while others consider it useful information.)
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Logistic regression

Logistic regression (LR), is another model for binary classification:

1. Use the model

1 1 1 -
=P(y=-1
05 = 14 ea’x+b | 1+ e x+b (v )
fap(x) = @' xtb |7 1
— =P(y = +1)
|1 4+ eaTx+b] 1 + e—(a'x+Db)_

2. Minimize KL-Divergence (or cross entropy) from the model f, ,(X;) output probabilities to
the empirical distribution P(Y;).

N
mingmize ), Dea (PN fap(X0)
i=



Logistic regression

Note:

N
minimize > D (PO fup (X))
i=1

a€ERP,bER
()

N
rgei%%r’giezRe Z H(P ), fapr(X;)) + (terms independent of a, b)
i=1

0
N
... —_V(aTY.
minjmize Zlog(1+exp( Y;(a"X; + b)))
i=1 4
0
1o ;
. . . _ g T .
R DICICERED)
i=1 2

Log[1+e77]

where £(z) = log(1 + e~%).

22



Point prediction with logistic regression

When performing point prediction with LR, a’x + b > 0 means P(y = +1) > 0.5 and vice
versa.

Once the LR is trained, make predictions with
sign(a'x + b)

when a'x + b = 0, we assign sign(a'x + b) arbitrarily. This is the same as SVM.

Again, it is a priori not clear how accurate the prediction will be for new unseen data.
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SVM vs. LR

Both support vector machine and logistic regression can be written as

N

1

. . . _ : T )

minjie v ), ((N@TH )
=

« SVM uses #(z) = max{0,1 — z}. Obtained from relaxing the discontinuous prediction loss.

« LR uses ?(z) =log(1 + e%). Obtained from relaxing the supervised learning setup from
predicting the label to predicting the label probabilities.

— Max{0,1-z}
Log[1+e7%]
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SVM vs. LR

SVM and LR are both “linear” classifiers:
 Decision boundary a’x + b = 0 is linear.

* Model completely ignores information perpendicular to a.

LR naturally generalizes to multi-class classification via softmax regression. Generalizing
SVM to multi-class classification is trickier and less common.
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Estimation vs. Prediction

Finding f = f, for unknown

fir X = P(Y)

is called estimation”. When we consider a parameterized model fy, finding 0 is the
estimation. However, estimation is usually not the end goal.

The end goal is prediction. It is to use fy ~ f, on new data Xy, ..., X); € X to find labels
Y{,...Y5 €.

The word inference is sometimes, but not always, used as a synonym of estimation. In machine learning and statistics, the words estimation, inference,
and prediction are used wildly inconsistently to the point that one must always ask for the definition to be clarified. In any case, what is most important is
that you understand the distinction between the two concepts, regardless of which two of the three words are used to describe them.
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|s prediction possible?

In the worst hypotheticals, prediction is impossible.

« Even though smoking is harmful for every other human being, how can we be 100% sure that this one
person is not a mutant who benefits from the chemicals of a cigarette?

« Water freezes at 0°, but will the same be true tomorrow? How can we be 100% sure that the laws of
physics will not suddenly change tomorrow?

Of course, prediction is possible in practice.

Theoretically, prediction requires assumptions on the distribution of X and the model of f, is needed. This is
in the realm of statistics of statistical learning theory.

For now, we will take the view that if we predict known labels of the training data, we can reasonably hope
to do well on the new data. (We will discuss the issue of generalization and overfitting later.)
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Training data vs. test data

When testing a machine learning model, it is essential that one separates the training data
with the test data.

In other classical disciplines using data, one performs a statistical hypothesis test to obtain
a p-value. In ML, people do not do that.

The only sure way to ensure that the model is doing well is to assess its performance on
new data.

Usually, training data and test data is collected together. This ensures that they have the
same statistical properties. The assumption is that this test data will be representative of the
actual data one intends to use machine learning on.
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Aside: Maximum likelihood estimation =
minimizing KL divergence

Consider the setup where you have |ID discrete random variables X;, ..., Xy that can take values 1, ..., k. We model the probability
masses with Py(X = 1), ..., Po(X = k). The maximum likelihood estimation (MLE) is obtained by solving

- . 1 N
maximize NZIOg(PQ(X = X))

=1

Next, define
Po(X =1) . #X;, =1
fQ = : ], “P(Xll""XN):ﬁ : .
Po(X = k) #X, =k
Then MLE is equivalent to minimizing the KL divergence from the model to the empirical distribution.
MLE
()
N
miniemize Z H(PXy, ..., XNn), fo)
i=1
()

N
miniemize z Dx1.(P(Xq, -, X)) fe)

=1
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Aside: Maximum likelihood estimation =
minimizing KL divergence

One can also derive LR equivalently as the MLE.

Generally, one can view the MLE as minimizing the KL divergence between the model and
the empirical distribution. (For continuous random variables like the Gaussian, this requires
extra work, since we haven'’t defined the KL divergence for continuous random variables.)

In deep learning, the distance measure need not be KL divergence.
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Dataset: MNIST

Images of hand-written digits with
28x28 = 784 pixels and integer-
valued intensity between 0 and 255.

Every digit has a label in {0,1, ..., 8,9}.

70,000 images (60,000 for training
10,000 testing) of 10 almost
balanced classes.

One of the simplest data set used in
machine learning.
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Dataset: MNIST

The USA government needed a standardized test to
assess handwriting recognition software being sold
to the government. So the NIST (National Institute
of Standards and Technology) created the dataset
in the 1990s. In 1990, NIST Special Database 1
distributed on CD-ROMs by mail. NIST SD 3 (1992)
and SD 19 (1995) were improvements.

Humans were instructed to fill out handwriting
sample forms.

HANDWRITING SAMPLE FORM

DATE CITY STATE _ZIP

18-3-59 | lywwewziry o grssz ]

This sample of handwriting is being collected for use in testing computer recognition of hand printed numbers
and letters. Please print the following characters in the boxes that appear below.
0123456789 0123456789 0123456789

lo23yserg9 | | 0r23¢5¢2¢7| [ or23/52787)
960941

7 701 3752 80759
G /] [Grsa) [Gersz) [2eos7r ]
1 4586 212 832656 82
I/;E'] [#58¢] [32/03]) [ 837657 | |£2|
7481 80539 419219 67 904
[ovs/] [foszs) [wr02/9 | [67] [p2¢]
738

729658 5716

61 75 390
6735 (22965 | [ [322] [5276]
109334 40 4234 46002
(10933 | [#0] [e75] [4227] [#é-22]

gyxlakpdesbtzirumwiqjenhocyvy

|9)f)<la/f/¢7'5é72/'/'w/yh/ﬁ9‘JE/;Aoc:/' |

ZXSBNGECMYWQTKFLUOHPIRVDIJA

| ZXSBUCECHYWRTKFLVOHP /Y pTH ]

Please print the following text in the box below:

We, the People of the United States, in order to form a more perfect Union, establish Justice, insure domestic
Tranquility, provide for the common Defense, promote the general Welfare, and secure the Blessings of Liberty to
ourselves and our posterity, do ordain and establish this CONSTITUTION for the United States of America.

we, The Deofte of the Ypiteq STetes,//orderss
Lform a pore pem‘\eo.f— ()“loﬁ’ establish Svstee,
Mmooy e dome<+,¢C Tmhq0)|l+y) P rovide. £of Fhe-
common Defens< ) promote dhe geneva L Welfare
and Seeye twe Qless ays of fberty +o our—
8elves and oor Pogtev\ Ty  do ordawn and
esta blish She ConusSsTITLTION For Yhe

Onted &Yates of America .
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Dataset: MNIST

However, humans cannot be trusted to
follow instructions, so a lab technician
performed “human ground truth
adjudication”.

In 1998, Yann LeCun, Corinna Cortes,
Christopher J. C. Burges took the NIST

dataset and modified it to create the
MNIST dataset.
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Role of Datasets in ML Research

An often underappreciated contribution.
Good datasets play a crucial role in driving progress in ML research.

Thinking about the dataset is the essential first step of understanding the feasibility of a ML
task.

Accounting for the cost of producing datasets and leveraging freely available data as much
as possible (semi-supervised learning) is a recent trend in machine learning.
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Dataset;: CIFAR10

60,000 32x32 color images in 10
(perfectly) balanced classes.

(There is no overlap between
automobiles and trucks. “Automobile”
includes sedans, SUVs, things of that
sort. “Truck” includes only big trucks.
Neither includes pickup trucks.)

airplane
automobile
bird

cat

deer

dog

frog

horse

ship

truck

hod 4

\

L

Hr AR ERENE
i [ B B SN

P EE A 3 >

B =
El= S
pey
= P
R A EE
K
A
ik el
Bl »
Ve A0

o 11 MR 2
O 35 3 I
i ARSI

n
5

w
~



Dataset;: CIFAR10

In 2008, a MIT and NYU team created the 80 million
tiny images data set by searching on Google, Flickr,
and Altavista for every non-abstract English noun
and downscaled the images to 32x32. The search
term provided an unreliable label for the image. This
dataset was not very easy to use since the classes
were too0 numerous.

In 2009, Alex Krizhevsky published the CIFAR10, by
distilling just a few classes and cleaning up the
labels. Students were paid to verify the labels.

The dataset was named CIFAR-10 after the funding
agency Canadian Institute For Advanced Research.
There is also a CIFAR-100 with 100 classes.
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Shallow learning with PyTorch

We follow the following steps

1.
2.
3.

Load data
Define model
Miscellaneous setup
. Instantiate model
. Choose loss function
. Choose optimizer
Train with SGD
. Clear previously computed gradients
. Compute forward pass
. Compute gradient via backprop

. SGD update
Evaluate trained model

Visualize results of trained model

PyTorch demo
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LR as a 1-layer neural network

In LR, we solve

N
1 -
. 1 NV Output
miniie 7 0, 0ok, |

= layer
Where ,f(yb yz) — log(l + e_ylyz) and f@ iS Iinear.
We can view fy(x) =0 =a'x + b as a Input
1-layer (shallow) neural network. laver
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Linear deep networks make no sense

What happens if we stack multiple linear layers?

Problem: This is pointless because composition of linear functions is linear.

Output 0 =W,h =W,(Wyx) = (W,W;)x « linearin x!
layer 1Xx5

/|

Hidden

layer hs = h=W;x hy=W)x i=1,..,5
\W / 5%4 1x4

Input -

layer '
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Deep neural networks with nonlinearities

Solution: use a nonlinear activation function ¢ to inject nonlinearities.

Solution: use a nonlinear activation function o to inject nonlinearities.
0 =W,h =W,o0(Wyx) <« nonlinearin x
1x5

h = c(W;x) < nonlinear function applied elementwise
5%4
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Common activation functions

Rectified Linear Unit (ReLU) Sigmoid Hyperboliclteingggzt
ReLU(z) = max(z, 0) S]gmmd(z) = T oz tanh(z) _ —

4

3

2
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Multilayer perceptron (MLP)

The multilayer perceptron, also called fully connected neural network, has the form

yr, = Wryr—1 + b
yr,—1 = 0c(Wr_1yr—2 +br_1)

Y2 = o(Wayr + b2)
Yy = U(Wlilf + bl),

where z € R™, W, € R™"*™-1 p, ¢ R™ and n; = 1. To clarify, o is applied element-wise.
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MLP for CIFAR10 binary classification

Output layer O O = Ashs + by ER
T~ 1x384

Hidden layer 3 ha hs = o(Ashy + b3) € R384
T 384x768

Hidden layer 2 ho ho = o(Ash, + by) € R768
T 768%1536

Hidden layer 1 hq hiy = o(Aijxz + b1) € R1536

1536%3072
Input layer @ length 32 x 32 x 3 = 3072

activation function o = ReLLU

PyTorch demo
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Linear layer: Formal definition

Input tensor: X € RB*™, B batch size, n number of indices.

Output tensor: Y € RB*™ B batch size, m number of indices.

With weight A € R™*" biasb e R™, k=1,..B,andi=1,..,m:
n
Yk,i - EAi'ij'j + bi
j=1

Operation is independent across elements of the batch.

If bias=False, then b = 0.
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Weight initialization

Remember, SGD is
9k+1 — Qk _ C(gk

where 8° € RP is an initial point.

In nice (convex) optimization problems, the initial point 8° is not important; you converge to the
global solution no matter how you initialize.

In deep learning, it is very important to initialize 8° well. In fact, 8° = 0 is a terrible idea.

Example) With an MLP with ReLU activations functions, if all weights and biases are initialized
to be zero, then only the output layer’s bias is trained and all other parameters do not move. So
the training is stuck at a trivial network setting with fy(x) = constant.
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Weight initialization

PyTorch layers have default initialization schemes. (The default is not to initialize everything
to 0.) Sometimes this default initialization scheme is sufficient (eg. Chapter 2 code.ipynb)
sometimes it is not sufficient (eg. Hw3 problem 1).

How to initialize weights is tricky. More on this later.
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Gradient computation via backprop

PyTorch and other deep learning libraries allows users to specify how to evaluate a function
then compute derivatives (gradients) automatically.

No need to work out gradient computation by hand (even though | make you do it in
homework assignments).

This feature is called, automatic differentiation, back propagation, or just the chain rule. This
IS implemented in the torch.autograd module.

More on this later.
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Multi-class classification problem

Consider supervised learning with data X;, ..., Xy € R* and labels Y3, ..., Yy € {1, ..., k}. (A k-
class classification problem.) Assume there exists a function f,: R® — A* mapping from data
to label probabilities. Here, A* denotes the set of probability mass functions on {1, ..., k}.

Define the empirical distribution P(y) € R* as the one-hot vector-

0 otherwise

fori=1,..,k.
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Softmax function

Examples:

Softmax function u: R¥ — R¥ is defined by
e
ui(z); = ﬁgzlezj

where fori =1, ...,k and z = (zy, ..., zx) € R¥. Since
k
ZMi(Z) =1, u>0
i=1

we can view u: R¥ — A¥.
Name “softmax” is a misnomer. “Softargmax” would be more accurate

 u(z) # max(z)

 u(z) = argmax(z)

d
|
dE

:
|

—2
—2
99

0.09
=10.24
0.67

o))

-k
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Softmax regression

In softmax regression (SR):

1. Choose the model

- alx+b;- al- by
T T
1 a, x+b b
:“(fA,b(x)) =————|¢7" 7| fap(x)=Ax+b, A= “21eRF, b =|"2[e R~
i=1€ 't :
_ea;crx+bk_ _a;(r_ _bk_

2. Minimize KL-Divergence (or cross entropy) from the model u (fA,b (Xl-)) output
probabilities to the empirical distribution P(Y;).

C e N ) . s N g .
Jnipiizh 2.i=1 DxL (?(YL)IIM (fA,b(Xl))) © mipimize, l=1H(5"(K),u(fA,b(Xl)))
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Softmax regression

minimize iH (iP(Y) i fap(Xi ))>

AEeRkXN peRk
i=1

iz, NZ-log )
1=

exp(ay X; + by,)

1
minimize —Z —log ( )
AeRkxnperk N o 25?:1 eXp(a]TXi + bj)

N
minimize lz (ay X; + by, ) + log
AeRkxn perk N o

(

k

Z exp(a/ X; + b;)

Jji=il

|
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Cross entropy loss

So
N
mipimize, > H (PO, 1 (far() )
AERKXN heRK -
)
1 N
Inimi — » ¢CE X),Y:
Agl[[éggggﬁk NZ (fA,b( l) l)
where

exp(fy) >

fCE , — (
f>¥) 0og Zﬁlexp(fj)

IS the cross entropy loss.



Classification with deep networks

SR = linear model f, ; with cross entropy loss:

e 1N HCE N Vv e e N : ,
 niimize, B (fap X)) Yy) & prininizch Yi=1 Dk, (?(K)Ilu(fA,b(Xl)))

(Note #“E(f,y) > 0. More on homework 3.)

The natural extension of SR is to consider

. .. 1 . .
minimize  ~ ¥, £F(fo(X), Y) & minimize T D (PODI(fa(XD))

where fy is a deep neural network.
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History of GPU Computin

CPU GPU

Multicore 1 Multicore 2

. .

. .
n n Multicore 3 Multicore 4

. .

n n - -
... ...
HEEEEE.N HEEEEEEN

Rendering graphics involves computing many small tasks in parallel. Graphics cards
provide many small processors to render graphics.

In 1999, Nvidia released GeForce 256 and introduced programmability in the form of vertex
and pixel shaders. Marketed as the first ‘Graphical Processing Unit (GPU)'.

Researchers quickly learned how to implement linear algebra by mapping matrix data into
textures and applying shaders.

To be precise, the GPU is the chip that goes inside the graphics card. The graphics card is the complete unit with the physical encasing, monitor port, and 56
other supporting electronic circuits.



General Purpose GPUs (GPGPU)

In 2007, Nvidia released ‘Compute Unified Device Architecture (CUDA)’, which enabled
general purpose computing on a CUDA-enabled GPUs.

Unlike CPUs which provide fast serial processing, GPUs provide massive parallel
computing with its numerous slower processors.

The 2008 financial crisis hit Nvidia very hard as GPUs were luxury items used for games.

This encouraged Nvidia to invest further in GPGPUs and create a more stable consumer
base.
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CPU computing model

Primary storage

memory Stores variables (arrays) in programs

Several = 12 processors

Hard Disk Drive Secondary Storage
Sold-State Drive Long-term storage
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GPU computing model

SM

Thousands of processors

GPU
DEOOn
CPU GPU

Lo Lo U

INT Unit

Register
S o o
Global Memory

PCIl/Express
Bus

Shared Memory

Warp Scheduler

Data transfer
Outsourcing computation to GPU

i
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GPUs for machine learning

Raina et al.’s 2009 paper demonstrated that GPUs can be used to train large neural
networks. (This was not the first to use of GPUs in machine learning, but it was one of the
most influential.)

Modern deep learning is driven by big data and big compute, respectively provided by the
internet and GPUs.

Krizhevsky et al.’s 2012" landmark paper introduced AlexNet trained on GPUs and
kickstarted the modern deep learning boom.

1 ha dense | |dense

1000

o= , L
\WiStrid Max 128 Max pooling 2048 2048
Uof 4 pooling pooling

3 48

‘R. Raina, A. Madhavan, and A. Y. Ng , Large-scale Deep Unsupervised Learning using Graphics Processors, ICML, 2009.
A. Krizhevsky, |. Sutskever, G. E. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, NeurlPS, 2012. 60



Example: Power iteration with GPUs

Computing x1%0 = 41990 with a GPU:

send A from host (CPU) to device (GPU)
send x=x0 from host (CPU) to device (GPU)
for _ in range(100):

tell GPU to compute x=A*x
send x from device (GPU) to host (CPU)

In this example and deep learning, GPU accelerates computation since:
Amount of computation > data communication.

Large information resides in the GPU, and CPU issues commands to perform computation
on the data. (A4 in this example, neural network architecture in deep learning.)

PyTorch demo
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Deep learning on GPUs

Steps for training neural network on GPU:

1.

SO

Create the neural network on CPU and send it to GPU. Neural network parameters stay on GPU.

Sometimes you load parameters from CPU to GPU.

Select data batch (image, label) and send it to GPU every iteration

Data for real-world setups is large, so keeping all data on GPU is infeasible.

On GPU, compute network output (forward pass)

On GPU, compute gradients (backward pass)

On GPU, perform gradient update
Once trained, perform prediction on GPU.

Send test data to GPU.

Compute network output.

Retrieve output on CPU.

Alternatively, neural network can be loaded on CPU and prediction can be done on CPU.

PyTorch demo
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