
Chapter 5:
Unsupervised Learning

Mathematical Foundations of Deep Neural Networks

Fall 2022

Department of Mathematical Sciences

Ernest K. Ryu

Seoul National University

1



Unsupervised learning

Unsupervised learning utilizes data 𝑋1, … , 𝑋𝑁 to learn the “structure” of the data. No labels 

are utilized.

There are a wide range of unsupervised learning tasks. In this class, we discuss just a few.

Generally, unsupervised learning tasks tend to have more mathematical complexity.
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Low-dimensional latent representation

Many high-dimensional data has some underlying low-dimensional structure.*

If you randomly generate the pixels of a color image 𝑋 ∈ ℝ3×𝑚×𝑛, it will likely make no 

sense. Only a very small subset of pixel values correspond to meaningful images.

3*One can model this assumption as data residing in a low dimensional manifold and utilize ideas from differential geometry. We won’t pursue this direction.



Finding latent representations

In machine learning, especially in unsupervised learning, finding a “meaningful” low-

dimensional latent representation is of interest.

A good lower-dimensional representation of the data implies you have a good 

understanding of the data. 
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Autoencoder

An autoencoder (AE) has encoder 𝐸𝜃 ∶ ℝ
𝑛 → ℝ𝑟 and decoder 𝐷𝜑 ∶ ℝ𝑟 → ℝ𝑛 networks, 

where 𝑟 ≪ 𝑛. (If 𝑟 ≥ 𝑛, AE learns identity mapping, so pointless.) The two networks are 
trained through the loss

ℒ 𝜃, 𝜑 =

𝑖=1

𝑁

𝑋𝑖 − 𝐷𝜑 𝐸𝜃 𝑋𝑖
2

The low-dimensional output 𝐸𝜃 𝑋 is the latent vector. The encoder performs dimensionality 
reduction.

The autoencoder can be thought of as a deep non-linear generalization of the principle 
component analysis (PCA).

5G. E. Hinton and R. R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science, 2006.



Autoencoder with MNIST

PyTorch demo
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Applications of AE: Denoising

Autoencoders can be used to denoise 

or reconstruct corrupted images.

7

P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, Stacked denoising autoencoders: Learning useful representations in a deep network 

with a local denoising criterion, JMLR, 2010.

G. Nishad, Reconstruct corrupted data using Denoising Autoencoder, Medium, 2020.



Applications of AE: Compression

Once an AE has been trained, storing the latent variable representation, rather than the 

original image can be used as a compression mechanism.

More generally, latent variable representations can be used for video compression.

https://youtu.be/NqmMnjJ6GEg
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Applications of AE: Clustering

Train an AE and then perform clustering on the latent variables. For the clustering algorithm, 

one can use things like k-means, which groups together 

9J. Xie, R. Girshick, and A. Farhadi, Unsupervised deep embedding for clustering analysis, ICML, 2016.
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Applications of AE: Clustering

10J. Xie, R. Girshick, and A. Farhadi, Unsupervised deep embedding for clustering analysis, ICML, 2016.

Clustering is also referred to 

as unsupervised 

classification. Without labels, 

we want the group “similar” 

data.



Anomaly/outlier detection

Problem: detecting data that is significantly different from the data seen during training.

Insight: AE should not be able to faithfully reconstruct novel data.

Solution: Train an AE and define the score function to be the reconstruction loss:

𝑠 𝑋 = 𝑋 − 𝐷𝜑 𝐸𝜃 𝑋
2

If score is high, determine the datapoint to be an outliner. (Cf. hw7.)

11S. Hawkins, H. He, G. Williams, and R. Baxter, Outlier detection using replicator neural networks, DaWaK, 2002.



Probabilistic generative models

A probabilistic generative model learns a distribution 𝑝𝜃 from 𝑋1, … , 𝑋𝑁 ∼ 𝑝true such that 

𝑝𝜃 ≈ 𝑝true and such that we can generate new samples 𝑋 ∼ 𝑝𝜃.

The ability to generate new synthetic data is interesting, but by itself not very useful.*

The structure of the data learned through the unsupervised learning is of higher value. 

However, we won’t talk about the downstream applications in this course.

In this class, we will talk about flow models, VAEs, and GANs.

12*Generating fake images to use in fake social media accounts is the only direct application that I can think of.



Flow model: Change of variable formula 
combined with deep neural networks

13D. P. Kingma and P. Dhariwal, Glow: Generative flow with invertible 1x1 convolutions, NeurIPS, 2018.



Flow models

Fit a probability density function 𝑝𝜃 𝑥 with continuous data 𝑋1, … , 𝑋𝑁 ∼ 𝑝true 𝑥 .

• We want to fit the data 𝑋1, … , 𝑋𝑁 (or really the underlying distribution 𝑝true) well.

• We want to be able to sample from 𝑝𝜃.

• (We want to get a good latent representation.)

We first develop the mathematical discussion with 1D flows, and then generalize the 

discussion to high dimensions.
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Example density model: Gaussian 
mixture model

Parameters: means and variances of 

components, mixture weights

Problems with GMM:

• Highly non-convex optimization problem. 

Can easily get stuck in local minima.

• It is does not have the representation 

power to express high-dimensional data.
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Example density model: Gaussian 
mixture model
GMM doesn’t work with high-dimensional 

data. The sampling process is:

1.Pick a cluster center

2.Add Gaussian noise

If this is done with natural images, a 

realistic image can be generated only if it 

is a cluster center, i.e., the clusters must 

already be realistic images.

16

So then how do we fit a general (complex) density model?



Math review: 1D continuous RV

A random variable 𝑋 is continuous if there exists a probability 

density function 𝑝𝑋 𝑥 ≥ 0 such that

ℙ 𝑎 ≤ 𝑋 ≤ 𝑏 = න
𝑎

𝑏

𝑝𝑋 𝑥 𝑑𝑥

In this case, we write 𝑋 ∼ 𝑝𝑋.

The cumulative distribution function (CDF) of 𝑋 is defined as

𝐹𝑋 𝑡 = ℙ 𝑋 ≤ 𝑡 = න

−∞

𝑡

𝑝𝑋 𝑥 𝑑𝑥

𝐹𝑋 𝑡 is a nondecreasing function.

𝐹𝑋 𝑡 is a continuous function if 𝑋 is a continuous random variable.

17
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Naïve approach: prameterize 𝑝𝜃 as DNN

Naïve approach for fitting a density model. Represent 𝑝𝜃(𝑥) with DNN.

There are some challenges:

1.How to ensure proper distribution?

2. How to sample?

18

𝑋 … 𝑝𝜃(𝑋)



Normalization of 𝑝𝜃

For discrete random variables, one can use the soft-max function 𝜇 ∶ ℝ𝑘 → ℝ𝑘 defined as

𝜇𝑖 𝑧 𝑖 =
𝑒𝑧𝑖

σ𝑗=1
𝑘 𝑒𝑧𝑗

to normalize probabilities.

For continuous random variables, we can ensure 𝑝𝜃 ≥ 0 with 𝑝𝜃 𝑥 = 𝑒𝑓𝜃 𝑥 , where 𝑓𝜃 is 

the output of the neural network. However, ensuring the normalization

is not a simple matter. (Any Bayesian statistician can tell you how difficult this is.)
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What happens if we ignore normalization? 

Do we really need this normalization thing? Yes, we do.

Without normalization, one can just assign arbitrarily large probabilities everywhere when 
we perform maximum likelihood estimation:

The solution is to set 𝑝𝜃 𝑥 = 𝑀 with 𝑀 → ∞. 

We want model to place large probability on data 𝑋1, … , 𝑋𝑁 while placing small probability 
elsewhere. Normalization forces model to place small probability where data doesn’t reside.
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Key insight: Parameterize 𝑍 = 𝑓𝜃 𝑋 with 
DNN
Key insight of normalizing flow: DNN outputs random variable 𝑍, rather than 𝑝𝜃 𝑋

In normalizing flow, find 𝜃 such that the flow 𝑓𝜃 normalizes the random variable 𝑋 ∼ 𝑝𝑋 into 𝑍 ∼ 𝒩 0,1 *. 

Important questions to resolve:

1. How to train? (How to evaluate 𝑝𝜃 𝑥 ? DNN outputs 𝑓𝜃, not 𝑝𝜃.)

2. How to sample 𝑋?

21

𝑋 … 𝑍 = 𝑓𝜃(𝑋)

*Generally, we can consider 𝑍 ∼ 𝑝𝑍. The choice of 𝑝𝑍, however, does not seem to make a significant difference.



1D change of variable formula

Assume 𝑓 is invertible, 𝑓 is differentiable, and 𝑓−1 is differentiable.

If 𝑋 ∼ 𝑝𝑋, then 𝑍 = 𝑓 𝑋 has pdf

𝑝𝑍 𝑧 = 𝑝𝑋 𝑓−1 𝑧
𝑑𝑥

𝑑𝑧

If 𝑍 ∼ 𝑝𝑍, then 𝑋 = 𝑓−1 𝑍 has pdf 

𝑝𝑋 𝑥 = 𝑝𝑍 𝑓 𝑥
𝑑𝑓 𝑥

𝑑𝑥

Since 𝑍 = 𝑓 𝑋 , one might think 𝑝𝑋 𝑥 = 𝑝𝑍 𝑧 = 𝑝𝑍 𝑓 𝑥 . ← This is wrong.

Invertibility of 𝑓 is essential; it is not a minor technical issue.
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Training flow models

Train model with MLE

where 𝑓𝜃 is invertible and differentiable, and 𝑋 = 𝑓𝜃
−1 𝑍 with 𝑍 ∼ 𝑝𝑍 so

𝑝𝑋 𝑥 = 𝑝𝑍 𝑓𝜃 𝑥
𝜕𝑓𝜃

𝜕𝑥
𝑥 .

Can optimize with SGD, if we know how to perform backprop on 
𝜕𝑓𝜃

𝜕𝑥
𝑋𝑖 . More on this later.
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Sampling from flow models

Step 1: Sample 𝑍 ∼ 𝑝𝑍

Step 2: Compute 𝑋 = 𝑓𝜃
−1 𝑍

24

𝑋 = 𝑓𝜃
−1 𝑍 … 𝑍 ∼ 𝑝𝑍



Requirements of flow 𝑓𝜃

Theoretical requirement:

• 𝑓𝜃 𝑥 invertible and differentiable.

Computational requirements:

• 𝑓𝜃 𝑥 and 𝛻𝜃𝑓𝜃 𝑥 efficient to evaluate (for training)

•
𝜕𝑓𝜃

𝜕𝑥
𝑥 and 𝛻𝜃

𝜕𝑓𝜃

𝜕𝑥
𝑥 efficient to evaluate (for training)

• 𝑓𝜃
−1 efficient to evaluate (for sampling)
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Example: Flow to 𝑍 ∼ Uniform 0,1
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Example: Flow to 𝑍 ∼ Beta 5,5
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Example: Flow to 𝑍 ∼ 𝒩 0,1
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1D flow demonstration

PyTorch demo
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Universality of flows

Are flows universal, i.e., can 𝑓𝜃
−1 𝑍 ∼ 𝑝𝑋 for any 𝑋 provided that 𝑓𝜃 can represent any 

invertible function?

Yes, 1D flows are universal due to the inverse CDF sampling technique.*

Higher dimensional flows are also universal as shown by Huang et al.# or earlier by the 

general theory of optimal transport.%

30
*Some basic conditions are being omitted.
#C.-W. Huang, D. Krueger, A. Lacoste, and A. Courville, Neural Autoregressive Flows, ICML, 2018.
%https://en.wikipedia.org/wiki/Transportation_theory_(mathematics)



Math review: Sampling via inverse CDF

Inverse CDF sampling is a technique for sampling 𝑋 ∼ 𝑝𝑋.

If 𝐹𝑋 𝑡 is furthermore a strictly increasing function, then 𝐹𝑋 is invertible, i.e., 𝐹𝑋
−1 exists.

Generate a random number 𝑈 ∼ Uniform 0,1 and compute 𝐹𝑋
−1 𝑈 . Then

𝐹𝑋
−1 𝑈 ∼ 𝑝𝑋

since

ℙ 𝐹𝑋
−1 𝑈 ≤ 𝑡 = ℙ 𝑈 ≤ 𝐹𝑋 𝑡 = 𝐹𝑋 𝑡

Technique can be generalized to when 𝐹𝑋 is not invertible.
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Universality of 1D flows

Composition of flows is a flow, and inverse of a 

flow is a flow

Universality of 1D flows:

• Use inverse CDF as flow to transform 𝑋 ∼ 𝑝𝑋
into 𝑈 ∼ Uniform 0,1 and 𝑍 ∼ 𝒩 0,1 into 

𝑈 ∼ Uniform 0,1 .

• Compose flow 𝑋 → 𝑈 and inverse flow 𝑈 → 𝑍

32

𝑋 𝑈

𝑍 𝑈

𝑋 𝑈 𝑍



Jacobian notation

Let 𝑓 ∶ ℝ𝑛 → ℝ𝑛, such that

𝑓 𝑥 =

𝑓1 𝑥

𝑓2 𝑥
⋮

𝑓𝑛 𝑥

The Jacobian matrix is

𝜕𝑓

𝜕𝑥
𝑥 =

𝜕𝑓1
𝜕𝑥1

𝑥
𝜕𝑓1
𝜕𝑥2

𝑥 ⋯
𝜕𝑓1
𝜕𝑥𝑛

𝑥

𝜕𝑓2
𝜕𝑥1

𝑥
𝜕𝑓2
𝜕𝑥2

𝑥 ⋯
𝜕𝑓2
𝜕𝑥𝑛

𝑥

⋮ ⋱ ⋮
𝜕𝑓𝑛
𝜕𝑥1

𝑥
𝜕𝑓𝑛
𝜕𝑥2

𝑥 ⋯
𝜕𝑓𝑛
𝜕𝑥𝑛

𝑥

=

𝛻𝑓1 𝑥
⊤

𝛻𝑓2 𝑥
⊤

⋮

𝛻𝑓𝑛 𝑥
⊤

The Jacobian determinant is det
𝜕𝑓

𝜕𝑥
. We use the notation

𝜕𝑓

𝜕𝑥
𝑥 = det

𝜕𝑓

𝜕𝑥
𝑥

where the second ⋅ is the absolute value of the determinant. (This notation is not completely standard.)
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Math review: Multivariate change of 
variables
Let 𝑓 ∶ ℝ𝑛 → ℝ𝑛 be an invertible function such that both 𝑓 and 𝑓−1 are differentiable. Let 

𝑈 ⊆ ℝ𝑛. Then

න

𝑓 𝑈

ℎ 𝑣 𝑑𝑣 = න

𝑈

ℎ 𝑓 𝑢
𝜕𝑓

𝜕𝑢
𝑢 𝑑𝑢

for any ℎ ∶ ℝ𝑛 → ℝ. (Change of variable from 𝑣 = 𝑓 𝑢 to 𝑢 = 𝑓−1 𝑣 .)

34The conditions for this change of variable formula can be further generalized.



Math review: Multivariate continuous RV

A multivariate random variable 𝑋 ∈ ℝ𝑛 is continuous if there exists a probability density 

function 𝑝𝑋 𝑥 such that 

ℙ 𝑋 ∈ 𝐴 = න
𝐴

𝑝𝑋 𝑥 𝑑𝑥

where the integral is over the volume 𝐴 ⊆ ℝ𝑛. In this case, we write 𝑋 ∼ 𝑝𝑋.

The joint cumulative distribution function (the copula) does not seem to be useful in the 

context of high-dimensional flow models.
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Math review: Mult. change of variables 
for RV
Let 𝑓 ∶ ℝ𝑛 → ℝ𝑛 be an invertible function such that both 𝑓 and 𝑓−1 are differentiable. Let 𝑋
be a continuous random variable with probability density function 𝑝𝑋 and let 𝑌 = 𝑓 𝑋 have 

density 𝑝𝑌. Then 

𝑝𝑋 𝑥 = 𝑝𝑌 𝑓 𝑥
𝜕𝑓

𝜕𝑥
𝑥

Proof)

ℙ 𝑓−1 𝑌 ∈ 𝐴 = ℙ 𝑌 ∈ 𝑓 𝐴 = න

𝑓 𝐴

𝑝𝑌 𝑦 𝑑𝑦 = න

𝐴

𝑝𝑌 𝑓 𝑥
𝜕𝑓

𝜕𝑥
𝑥 𝑑𝑥 = ℙ 𝑋 ∈ 𝐴

∎

Invertibility of 𝑓 is essential; it is not a minor technical issue.
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Math review: Determinant formulae

Fact: Determinant definitions in undergraduate linear algebra textbooks require exponentially many operations to compute:

Efficient computation of determinant for general matrices and performing backprop through the computation is difficult. Therefore, 
high-dimensional flow model are designed to compute determinants only on simple matrices.

Product formula: if 𝐴 and 𝐵 are square, then

det 𝐴𝐵 = det 𝐴 det 𝐵

Block lower triangular formula: if 𝐴 ∈ ℝ𝑛×𝑛 and 𝐶 ∈ ℝ𝑚×𝑚, then

det
𝐴 0
𝐵 𝐶

= det 𝐴 det 𝐶

Lower triangular formula: if 𝑎1, … , 𝑎𝑛 ∈ ℝ and ∗ represents arbitrary values, then

det

𝑎1 0 ⋯ 0

∗ 𝑎2 ⋮
∗ ∗ ⋱ 0
∗ ∗ ∗ 𝑎𝑛

=ෑ

𝑖=1

𝑛

𝑎𝑖

Upper triangular formula: same as for lower triangular matrices.
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Training high-dim flow models

Train model with MLE

where 𝑓𝜃 𝑧 is invertible and differentiable, and 𝑋 = 𝑓−1 𝑍 with 𝑍 ∼ 𝑝𝑍 so

𝑝𝑋 𝑥 = 𝑝𝑍 𝑓𝜃 𝑥
𝜕𝑓𝜃

𝜕𝑥
𝑥 .

(Exactly the same formula as with 1D flow.)

Can optimize with SGD, if we know how to perform backprop on 
𝜕𝑓𝜃

𝜕𝑥
𝑋𝑖 .
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Composing flows

Flows can be composed to increase expressiveness. (Deep NN more expressive.)

Consider composition of 𝑘 flows

Determinant computation splits nicely due to chain rule and product formula
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Basic example: Affine flows

An affine (linear) transformation 

𝑓𝐴,𝑏(𝑥) = 𝐴−1 𝑥 − 𝑏
is a flow if matrix 𝐴 is invertible. Then

𝜕𝑓𝐴,𝑏
𝜕𝑥

= 𝐴−1

and
𝜕𝑓𝐴,𝑏
𝜕𝑥

= det 𝐴−1 =
1

det 𝐴

Sampling: 𝑋 = 𝐴𝑍 + 𝑏, where 𝑍 ∼ 𝒩 0, 𝐼 . 

Problem with affine flows:

• Computing det 𝐴 is expensive and performing backprop over it is difficult. We want 
𝜕𝑓𝐴,𝑏

𝜕𝑥
to 

be further structured so that determinant is easy to compute.
• One affine flow is insufficient to generate complex data. However, composing multiple affine 

flows yields an affine flow and therefore is pointless. We need to introduce nonlinearities.
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Coupling flows

A coupling flow is a general and practical approach for constructing non-linear flows.

Partition input into two disjoint subsets                    . Then

where      is a neural network and is another flow whose parameters depend 

on      .
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Coupling flow: forward evaluation

42

Coupling Network 𝜓𝜃 𝑥𝐴

Coupling

Transform

Split Concat

.



Coupling flow: inverse evaluation

43

Inverse 

Coupling

Transform

SplitConcat

.

Coupling Network 𝜓𝜃 𝑧𝐴



Jacobian of coupling flows

The Jacobian of a coupling flow has a nice block structure

which leads to the simplified determinant formula

Note                             , which will be very complicated, does not appear in the determinant.
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Coupling transformation መ𝑓 𝑥|𝜓

Additive transformations (NICE)*

መ𝑓 𝑥|𝜓 = 𝑥 + 𝑡

where 𝜓 = 𝑡.

Affine transformations (Real NVP)#

መ𝑓 𝑥|𝜓 = 𝑒𝑠 ⊙𝑥 + 𝑡

where 𝜓 = (𝑠, 𝑡).

Other transformations studied throughout the literature.

45
*L. Dinh, D. Krueger, and Y. Bengio, NICE: Non-linear independent components estimation, ICLR Workshop, 2015.
#L. Dinh, J. Sohl-Dickstein, and S. Bengio, Density estimation using Real NVP, ICLR, 2017.



NICE (Non-linear Independent 
Components Estimation)
NICE uses additive coupling layers:

Split variables in half: 𝑥1∶𝑛/2, 𝑥𝑛/2:𝑛

Easily invertible:

Jacobian determinant is easy to compute:

46L. Dinh, D. Krueger, and Y. Bengio, NICE: Non-linear independent components estimation, ICLR Workshop, 2015.



Real NVP (Real-valued Non-Volume 
Preserving)
Real NVP uses affine coupling layers:

Easily invertible:

Jacobian determinant is easy to compute:

47L. Dinh, J. Sohl-Dickstein, and S. Bengio, Density estimation using Real NVP, ICLR, 2017.



Real NVP - Results

48L. Dinh, J. Sohl-Dickstein, and S. Bengio, Density estimation using Real NVP, ICLR, 2017.



How to partition variables? 

Note that the additive and affine coupling layers of NICE and Real NVP are nonlinear 

mappings from 𝑥1∶𝑛 to 𝑧1∶𝑛, since 𝑠𝜃 𝑥1∶𝑛/2 and 𝑡𝜃 𝑥1∶𝑛/2 are nonlinear.

Flow models compose multiple nonlinear flows. But if 𝑥1∶𝑛/2 is always unchanged, then the 

full composition will leave it unchanged. Therefore, we change the partitioning for every 

coupling layer.
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NICE architecture

PyTorch demo
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Real NVP variable partitioning

Two partition strategies:

1. Partition with 

checkerboard pattern.

2. Reshape tensor and then 

partition channelwise.

51L. Dinh, J. Sohl-Dickstein, and S. Bengio, Density estimation using Real NVP, ICLR, 2017.



Real NVP
Architecture

Input 𝑋: 𝑐 × 32 × 32 image with 𝑐 = 3

Layer 1: Input 𝑋: 𝑐 × 32 × 32

• Checkerboard × 3, channel reshape into 4𝑐 × 16 × 16, channel × 3

• Output: Split result to get 𝑋1: 2𝑐 × 16 × 16 and 𝑍1: 2𝑐 × 16 × 16 (fine-grained latents)

Layer 2: Input 𝑋1: 2𝑐 × 16 × 16 from layer 1

• Checkerboard × 3, channel reshape into 8𝑐 × 8 × 8, channel × 3

• Split result to get 𝑋2: 4𝑐 × 8 × 8 and 𝑍2: 4𝑐 × 8 × 8 (coarser latents)

Layer 3:  Input 𝑋2: 4𝑐 × 8 × 8 from layer 2

• Checkerboard × 3, channel reshape into 16𝑐 × 4 × 4, channel × 3

• Get 𝑍3: 16𝑐 × 4 × 4 (latents for highest-level details)

Output 𝑍 = 𝑍1, 𝑍2, 𝑍3 ∈ ℝ𝑐⋅322
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Batch normalization 

To train deep flows, BN is helpful. However, the large model size forces the use of small batch sizes, and 
BN is not robust with small batch sizes. RealNVP uses a modified form of BN

(No 𝛽 and 𝛾 parameters.) This layer has the log Jacobian determinant

The mean and variance parameters are updated with

where 𝜌 is the momentum. During gradient computation, only backprop through the current batch statistics 
ො𝜇𝑘 and ො𝜎𝑘

2.
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𝑠𝜃 and 𝑡𝜃 networks

The 𝑠𝜃 and 𝑡𝜃 do not need to be invertible. The original RealNVP paper does not describe 

its construction.

We let 𝑠𝜃 , 𝑡𝜃 be a deep (20-layer) convolutional neural network using residual connections 

and standard batch normalization.
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Real NVP architecture

PyTorch demo
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Glow paper

The authors of the Glow paper also released a blog post.

https://openai.com/blog/glow/

56D. P. Kingma and P. Dhariwal, Glow: Generative flow with invertible 1x1 convolutions, NeurIPS, 2018.



FFJORD

Instead of a discrete composition of flows, what if we have a continuous-time flow?

Inverse:

57
R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud, Neural ordinary differential equations, NeurIPS, 2018.

W. Grathwohl, R. T. Q. Chen, J. Bettencourt, I. Sutskever, and D. Duvenaud, FFJORD: Free-form continuous dynamics for scalable reversible generative 

models, ICLR, 2019.



Math review: Conditional probabilities

Let 𝐴 and 𝐵 be probabilistic events. Assume 𝐴 has nonzero probability.

Conditional probability satisfies

ℙ 𝐵 𝐴 ℙ 𝐴 = ℙ 𝐴 ∩ 𝐵

Bayes’ theorem is an application of conditional probability:

ℙ 𝐵 𝐴 =
ℙ 𝐴 𝐵 ℙ 𝐵

ℙ 𝐴
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Math review: Conditional densities

Let 𝑋 ∈ ℝ𝑚 and 𝑍 ∈ ℝ𝑛 be continuous random variables with joint density 𝑝 𝑥, 𝑧 .

The marginal densities are defined by

𝑝𝑋 𝑥 = න

ℝ𝑛

𝑝 𝑥, 𝑧 𝑑𝑧 , 𝑝𝑍 𝑧 = න

ℝ𝑚

𝑝 𝑥, 𝑧 𝑑𝑥

The conditional density function 𝑝 𝑧 𝑥 has the following properties

ℙ 𝑍 ∈ 𝑆 𝑋 = 𝑥 = න

𝑆

𝑝 𝑧 𝑥 𝑑𝑧

𝑝 𝑧 𝑥 𝑝𝑋 𝑥 = 𝑝 𝑥, 𝑧 , 𝑝 𝑧 𝑥 =
𝑝 𝑥 𝑧 𝑝𝑍 𝑍

𝑝𝑋 𝑋
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Variational autoencoders (VAE)

These are synthetic (fake) 

images.

60A. Vahdat and J. Kautz, NVAE: A deep hierarchical variational autoencoder, NeurIPS, 2020.



Variational autoencoders (VAE)

Key idea of VAE:

• Latent variable model with conditional probability distribution represented by 𝑝𝜃 𝑥|𝑧 .

• Efficiently estimate 𝑝𝜃 𝑥 = 𝔼𝑍∼𝑝𝑍 𝑝𝜃 𝑥|𝑍 by importance sampling with 𝑍 ∼ 𝑞𝜙 𝑧|𝑥 .

We can interpret 𝑞𝜙 𝑧|𝑥 as an encoder and 𝑝𝜃 𝑥|𝑧 as a decoder.

VAEs differ from autoencoders as follows:

• Derivations (latent variable model vs. dimensionality reduction)

• VAE regularizes/controls latent distribution, while AE does not.
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Latent variable model

Assumption on data 𝑋1, … , 𝑋𝑁: Assumes there is an underlying latent variable 𝑍 representing the 
“essential structure” of the data and an observable variable 𝑋 which generation is conditioned on 
𝑍. Implicitly assumes the conditional randomness of 𝑋 ∼ 𝑝𝑋|𝑍 is significantly smaller than the 
overall randomness 𝑋 ∼ 𝑝𝑋.

Example: 𝑋 is a cat picture. 𝑍 encodes information about the body position, fur color, and facial 
expression of a cat. Latent variable 𝑍 encodes the overall content of the image, but 𝑋 does 
contain details not specified in 𝑍.

Specification VAE’s model: VAEs implements a latent variable model with a NN that generates 𝑋
given 𝑍. More precisely, NN is a deterministic function that outputs the conditional distribution 
𝑝𝜃 𝑥|𝑍 , and 𝑋 is randomly generated according to this distribution. This structure may 
effectively learn the latent structure from data if the assumption on data is accurate.
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Latent variable model

Sampling process:

Usually 𝑝𝑍 is a Gaussian (fixed) and 𝑝𝜃 𝑥|𝑧 is a NN 

parameterized by 𝜃.

Evaluating density (likelihood):

Training via MLE:
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Latent variable model

When 𝑝𝑍 is a discrete:

When 𝑝𝑍 is a continuous:

To clarify, specification of 𝑝𝑍 𝑧 and 𝑝𝜃 𝑥|𝑧 fully determines 𝑝𝜃 𝑥 (as above) and
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Latent variable model: Training

Training 

requires evaluation 𝔼𝑍.

Scenario 1: If 𝑍 is discrete and takes a few of values, then compute σ𝑧 exactly.

Scenario 2: If 𝑍 takes many values or if it is a continuous, then σ𝑧 or 𝔼𝑍 is impractical to 

compute. In this case, approximate expectation with Monte Carlo and importance sampling.
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Example latent variable model:
Mixture of Gaussians
Mixture of 3 Gaussians in ℝ2, uniform prior over components. (We can make the mixture 

weights a trainable parameter.)

Training objective:



Example: 2D mixture of Gaussians
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VAE outline

Train latent variable model with MLE

Outline of variational autoencoder (VAE):

1. Approximate intractable objective with a single 𝑍 sample

2. Improve accuracy of approximation by sampling 𝑍𝑖 with importance sampling

3. Optimize approximate objective with SGD.

D. Kingma and M. Welling, VAE: Auto-encoding variational Bayes, ICLR, 2014. 68



IWAE outline

Importance weighted autoencoders (IWAE) approximates intractable with 𝐾 samples of 𝑍:

More on this in hw 9.

69Y. Burda, R. Grosse, and R. Salakhutdinov, Importance weighted autoencoders, ICLR, 2016.



Why does VAE need IS?

Sampling 𝑍𝑖 ∼ 𝑝𝑍 results in a high-variance estimator:

In the Gaussian mixture example, only 1/3 of the 𝑍 samples meaningfully contribute to the 

estimate. More specifically, if 𝑋𝑖 is near 𝜇𝐴 but is far from 𝜇𝐵 and 𝜇𝐶, then 𝑝𝜃 𝑋𝑖|𝑍 = 𝐴 ≫ 0
but 𝑝𝜃 𝑋𝑖|𝑍 = 𝐵 ≈ 0 and 𝑝𝜃 𝑋𝑖|𝑍 = 𝐶 ≈ 0.

The issue worsens as the observable and latent variable dimension increases.
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Naïvely using IS for each 𝑋𝑖

To improve estimation of                              , consider importance sampling (IS) with 

sampling distribution 𝑍𝑖 ∼ 𝑞𝑖 𝑧 :

Optimal IS sampling distribution 

To clarify, optimal sampling distribution depends on 𝑋𝑖. To clarify, 𝑝𝜃 𝑋𝑖 is the unkown 

normalizing factor so 𝑝𝜃 𝑧|𝑋𝑖 is also unkown. We call 𝑞𝑖
⋆ 𝑧 = 𝑝𝜃 𝑧|𝑋𝑖 the true posterior 

distribution and we will soon consider the approximation 𝑞𝜙 𝑧 𝑥 ≈ 𝑝𝜃 𝑧|𝑥 , which we call 

the approximate posterior.
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Naïvely using IS for each 𝑋𝑖

For each 𝑋𝑖, consider

Note, 𝑞𝑖 𝑧 , 𝑝𝑍 𝑧 , and 𝑝𝜃 𝑥|𝑧 are tractable/known while 𝑝𝜃 𝑋𝑖 and 𝑝𝜃 𝑧|𝑋𝑖 are 

intractable/unknown. Since log 𝑝𝜃 𝑋𝑖 does not depend on 𝑞𝑖, all quantities needed in the 

optimization problems are tractable. However, solving this minimization problem to obtain 

each 𝑞𝑖 for each data point 𝑋𝑖 is computationally too expensive.
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Non-amortized inference

Individual inference (not amortized): For each 𝑋1, … , 𝑋𝑁, find corresponding optimal 𝑞1, … , 𝑞𝑁
by solving

This is expensive as it requires solving 𝑁 separate optimization problems.

We need variational approach and amortized inference.
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Variational approach and amortized 
inference
General principle of variational approach: We can’t directly use the 𝑞 we want. So, instead, we 
propose a parameterized distribution 𝑞𝜙 that we can work with easily (in this case, sample from 
easily), and find a parameter setting that makes it as good as possible. 

Parametrization of VAE:

Amortized inference: Train a neural network 𝑞𝜙( ⋅ |𝑥) such that 𝑞𝜙( ⋅ |𝑋𝑖) approximates the 

optimal 𝑞𝑖 ⋅ .

Approximation 𝑞𝜙 𝑧|𝑋𝑖 ≈ 𝑝𝜃 𝑧 𝑋𝑖 is often less precise than that of individual inference 𝑞𝑖 𝑧 ≈
𝑝𝜃 𝑧 𝑋𝑖 , but amortized inference is often significantly faster.
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Encoder 𝑞𝜙 optimization

In analogy with autoencoders, we call 𝑞𝜙 the encoder.

Optimization problem for encoder
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Decoder 𝑝𝜃 optimization

In analogy with autoencoders, we call 𝑝𝜃 the decoder. Perform approximate MLE with

The     step replaces expectation inside the log with an estimate with 𝑍𝑖. The     step replaces the 
random variable with the expectation. These steps take 𝔼𝑍 outside of the log. More on this later.
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VAE optimization

The optimization objectives for the encoder and decoder are the same.

Simultaneously train 𝑝𝜃 and 𝑞𝜙 by solving 

We refer to the optimization objective as the variational lower bound (VLB) or evidence 

lower bound (ELBO) for reasons that will be explained soon.
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VAE standard instance

A standard VAE setup:

𝜇𝜙 𝑥 , Σ𝜙
2 𝑥 , and 𝑓𝜃 𝑧 are deterministic NN. The training objective

becomes

78

Remember from hw6 that



With reparameterization trick

The standard instance of VAE

can be equivalently written with the reparameterization trick

where Σ𝜙
1/2

is diagonal with ⋅ of the diagonal elements of Σ𝜙. (Remember, Σ𝜙 is diagonal.)

To clarify                                          , where     denotes equality in distribution.

We now have an objective amenable to stochastic optimization.
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VAE standard instance architecture: 
Training

Encoder

Sample

Decoder

Encoder

Decoder

Sample         

With reparameterization trickWithout reparameterization trick

⋅

+
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VAE standard instance architecture: 
Sampling

Sample

Decoder

During sampling, only the decoder network is used.

Sample
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Discussions

Review of terminology

• Likelihood 𝑝𝜃 𝑥 (exact evaluation intractable)

• Prior 𝑝𝑍 𝑧

• Conditional distribution 𝑝𝜃 𝑥|𝑧

• True posterior 𝑝𝜃 𝑧|𝑥 (exact evaluation intractable)

• Approximate posterior 𝑞𝜙 𝑧|𝑥

Conditional distribution 𝑝𝜃 𝑥|𝑧 and prior 𝑝𝑍 𝑧 determines the posterior 𝑝𝜃 𝑧|𝑥 . 

There is no easy way to evaluate 𝑝𝜃 𝑥 , but we can sample 𝑋 ∼ 𝑝𝜃 𝑥 easily: 𝑍 ∼ 𝑝𝑍 𝑧 then 𝑋 ∼ 𝑝𝜃 𝑥|𝑍 .

NN in VAE do not directly generate random output. NN outputs parameters for random sampling.
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Training VAE with RT

To obtain stochastic gradients of the VAE objective

select a data 𝑋𝑖, sample 𝜀𝑖 ∼ 𝒩 0, 𝐼 , evaluate

and backprop on VLB𝜃,𝜙 𝑋𝑖 , 𝜀𝑖 .

Usually, batch of 𝑋𝑖 is selected.

One can sample multiple 𝑍𝑖,1, … , 𝑍𝑖,𝐾 (equivalently 𝜀𝑖,1, … , 𝜀𝑖,𝐾) for each 𝑋𝑖.
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Training VAE with log-derivative trick

Computing stochastic gradients without the reparameterization trick.

To obtain unbiased estimates of 𝛻𝜃, compute

and backprop with respect to 𝜃.
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Training VAE with log-derivative trick

We differentiate the VLB objectives (cf. hw 8 problem 8)

To obtain unbiased estimates of 𝛻𝜙, compute
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Why variational “autoencoder”?

VAE loss (VLB) contains a reconstruction loss resembling that of an autoencoder.

VLB also contains a regularization term on the output of the encoder, which is not present in 
standard autoencoder losses.

The choice of 𝜎 determines the relative weight between the reconstruction loss and the 
regularization.
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How tight is the VLB?

How accurate is the approximation?

This turns out that log 𝑝𝜃 𝑋𝑖 ≥ VLB𝜃,𝜙 𝑋𝑖 . So we are maximizing a lower bound of the log 

likelihood. How large is the gap?



Log-likelihood ≥ VLB: Derivation 1

Derivation via Jensen:

Does not explicitly characterize gap.
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Log-likelihood ≥ VLB: Derivation 2

Derivation via KL divergence:

and

This derivation explicitly characterizes the gap as                                          .
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VLB is tight if encoder infinitely powerful

If the encoder 𝑞𝜙 is powerful enough such that there is a 𝜙⋆ achieving

or equivalently 

Then

This follows from

and hw 8 problem 2.

90



VQ-VAE

91A. van den Oord, O. Vinyals, and K. Kavukcuoglu, Neural discrete representation learning, NeurIPS, 2017.



VQ-VAE

92A. van den Oord, O. Vinyals, and K. Kavukcuoglu, Neural discrete representation learning, NeurIPS, 2017.



VQ-VAE-2

93A. Razavi, A. van den Oord, and O. Vinyals, Generating diverse high-fidelity images with VQ-VAE-2, NeurIPS, 2019.



VQ-VAE-2

94A. Razavi, A. van den Oord, and O. Vinyals, Generating diverse high-fidelity images with VQ-VAE-2, NeurIPS, 2019.



β-VAE

Uses the loss

when 𝛽 = 1,                                     , i.e., β-VAE coincides with VAE when 𝛽 = 1.

With 𝛽 > 1, authors observed better feature disentanglement.

95
I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and A. Lerchner, β-VAE: Learning basic visual concepts with a 

constrained variational framework, ICLR, 2017.



Minimax optimization

In a minimax optimization problem we minimize with respect to one variable and maximize 

with respect to another:

We say 𝜃⋆, 𝜙⋆ is a solution* to the minimax problem if 𝜃⋆ ∈ Θ, 𝜙⋆ ∈ Φ, and

In other words, unilaterally deviating from 𝜃⋆ ∈ Θ increases the value of ℒ 𝜃, 𝜙 while 

unilaterally deviating from 𝜙⋆ ∈ Φ decreases the value of ℒ 𝜃, 𝜙 . In yet other words, the 

solution is defined as a Nash equilibrium in a 2-player zero-sum game.

96*There are other broader definitions of a “solution” in minimax optimization problems. Our definition is, in a sense, the strictest definition.



Minimax optimization

So far, we trained NN by solving minimization problems.

However, GANs are trained by solving minimax problems. Since the advent of GANs, 

minimax training has become more widely used in all areas of deep learning.

Examples:

• Adversarial training to make NN robust against adversarial attacks.

• Domain adversarial networks to train NN to make fair decisions (e.g. not base its 

decision on a persons race or gender).
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Minimax vs. maximin

When a solution (as we defined it) does not exist, then min-max is not the same as max-min:

This is a technical distinction that we will not explore in this class.
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Minimax optimization algorithm

First, consider deterministic gradient setup. Let 𝛼 and 𝛽 be the stepsizes (learning rates) for 

the descent and ascent steps respectively.

Simultaneous gradient ascent-descent:

Alternating gradient ascent-descent:
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Minimax optimization algorithm

Gradient multi-ascent-single-descent:

(𝑛dis stands for number of discriminator updates.) When 𝑛dis = 1, this algorithm reduces to 

alternating ascent-descent.

100



Stochastic minimax optimization

In deep learning, however, we have access to stochastic gradients.

Stochastic gradient simultaneous ascent-descent

Stochastic gradient alternating ascent-descent

Stochastic gradient multi-ascent-single-descent
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Minimax optimization in PyTorch

To perform minimax optimization in PyTorch, we maintain two separate optimizers, one for 

the ascent, one for the descent. The OPTIMIZER can be anything like SGD or Adam.

Simultaneous ascent-descent:

102

Evaluate D_loss
D_loss.backward()
Evaluate G_loss
G_loss.backward()

D_optimizer.step()
G_optimizer.step()

G = Generator(...).to(device)
D = Discriminator(...).to(device)

D_optimizer = optim.OPTIMIZER(D.parameters(), lr = beta)
G_optimizer = optim.OPTIMIZER(G.parameters(), lr = alpha)



Minimax optimization in PyTorch

Alternating ascent-descent
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Evaluate D_loss
D_loss.backward()
D_optimizer.step()

Evaluate G_loss
G_loss.backward()
G_optimizer.step()



Minimax optimization in PyTorch

Multi-ascent-single-descent

104

for _ in range(ndis) :
Evaluate D_loss
D_loss.backward()
D_optimizer.step()

Evaluate G_loss
G_loss.backward()
G_optimizer.step()



Generative adversarial networks (GAN)

These are synthetic (fake) images.

105A. Brock, J. Donahue, and K. Simonyan, Large scale GAN training for high fidelity natural image synthesis, ICLR, 2019.



GAN

Given data 𝑋1, … , 𝑋𝑁 ∼ 𝑝true. GAN aims to learn 𝑝𝜃 ≈ 𝑝true.

Generator aims to generate fake data similar to training data.

Discriminator aims to distinguish the training data from fake data.

Analogy: Criminal creating fake money vs. police distinguishing fake money from real.

106
I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, Generative adversarial networks, NeurIPS, 

2014.

In generative adversarial networks (GAN) 

a generator network and a discriminator 

network compete adversarially.



Generator network

The generator 𝐺𝜃 ∶ ℝ
𝑘 → ℝ𝑛 is a neural network parameterized by 𝜃 ∈ Θ. The generator 

takes a random latent vector 𝑍 ∼ 𝑝𝑍 as input and outputs generated (fake) data ෨𝑋 = 𝐺𝜃(𝑍). 
The latent distribution is usually 𝑝𝑍 = 𝒩 0, 𝐼 .

Write 𝑝𝜃 for the probability distribution of ෨𝑋 = 𝐺𝜃(𝑍). Although we can’t evaluate the density 

𝑝𝜃 𝑥 , neither exactly nor approximately, we can sample from ෨𝑋 ∼ 𝑝𝜃.
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Discriminator network

The discriminator 𝐷𝜙 ∶ ℝ𝑛 → 0,1 is a neural network parameterized by 𝜙 ∈ Φ. The 

discriminator takes an image 𝑋 as input and outputs whether 𝑋 is a real or fake.#

• 𝐷𝜙 𝑋 ≈ 1: discriminator confidently predicts 𝑋 is real.

• 𝐷𝜙 𝑋 ≈ 0: discriminator confidently predicts 𝑋 is fake.

• 𝐷𝜙 𝑋 ≈ 0.5: discriminator is unsure whether 𝑋 is real or fake.

108#Real: 𝑋 comes from a data set, i.e., 𝑋 ∼ 𝑝true. Fake: generated by 𝐺𝜃, i.e., 𝑋 ∼ 𝑝𝜃.



Discriminator loss

Cost of incorrectly classifying real as fake (type I error):

Cost of incorrectly classifying fake as real (type II error):

Discriminator solves

which is equivalent to
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Discriminator loss

We can view

as an instance of the reparameterization technique.

The loss

puts equal weight on type I and type II errors. Alternatively, one can use the loss

where 𝜆 > 0 represents the relative significance of a type II error over a type I error.
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Generator loss

Since the goal of the generator is to deceive the discriminator, the generator minimizes the 

same loss.

(The generator and discriminator operate under a zero-sum game.)

Note, only the second term depend on 𝜃, while the both terms depend on 𝜙.
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Empirical risk minimization

In practice, we have finite samples 𝑋1, … , 𝑋𝑁, so we instead use the loss

Since ෨𝑋 = 𝐺𝜃 𝑍 is generated with 𝑍 ∼ 𝑝𝑍, we have unlimited ෨𝑋 samples. So we replace 

𝔼𝑋 ≈
1

𝑁
σ while leaving 𝔼𝑍 as is.
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Minimax training (zero-sum game)

Train generator and discriminator simultaneously by solving

where

It remains to specify the architectures for 𝐺𝜃 and 𝐷𝜙.
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GAN demo

PyTorch demo
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DCGAN

The original GAN was also deep and convolutional. However, Radford et al.’s Deep 

Convolutional Generative Adversarial Networks (DCGAN) paper proposed the following 

architectures, which crucially utilize batchnorm.

115A. Radford, L. Metz, and S. Chintala, Unsupervised representation learning with deep convolutional generative adversarial networks, ICLR, 2016.

Use batchnorm in both the 

generator and the 

discriminator after transposed 

conv and conv layers.



Math review: f-divergence

The f-divergence of 𝑝 from 𝑞 , where 𝑓 is a convex function such that 𝑓 1 = 0, is

This includes the KL divergence:

• If 𝑓 𝑢 = 𝑢 log𝑢, then 𝐷𝑓(𝑝‖q) = 𝐷KL(𝑝‖q).

• If 𝑓 𝑢 = − log𝑢, then 𝐷𝑓(𝑝‖q) = 𝐷KL(𝑞‖p).
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Math review: JS-divergence

Jensen–Shannon-divergence (JS-divergence) is

With,                                                                                  we have 𝐷𝑓 = 𝐷JS.

With,                                                                                             we have 𝐷𝑓 = 2𝐷JS.
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GAN ≈ JSD minimization

Let us understand the minimax problem

via the minimization problem

where

For simplicity, assume the discriminator is infinitely powerful, i.e., 𝐷𝜙 𝑥 can represent any 

arbitrary function. 
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GAN ≈ JSD minimization

Note

Since

The integral is maximized by 
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GAN ≈ JSD minimization

If we plug in the optimal discriminator,

we get

Therefore,
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f-GAN

With GANs, we started from a minimax formulation and later reinterpreted it as minimizing 

the JS-divergence.

Let us instead the start from an f-divergence minimization

and then variationally approximate 𝐷𝑓 to obtain a minimax formulation.

Variational approach: Evaluating 𝐷𝑓 directly is difficult, so we pose it as a maximization 

problem and parameterize the maximizing function as a “discriminator” neural network.

121S. Nowozin, B. Cseke, and R. Tomioka, f-GAN: Training generative neural samplers using variational divergence minimization, NeurIPS, 2016.



f-GAN

For simplicity, however, we only consider the order

However, one can also consider

to obtain similar results. 

(During our coverage of f-GANs, we will have notational conflict between 𝐷𝑓, the f-

divergence, and 𝐷𝜙, the discriminator network. Hopefully there won’t be any confusion.)
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Convex conjugate

Let 𝑓 ∶ ℝ → ℝ ∪ ∞ . Define the convex conjugate of 𝑓 as

𝑓∗ 𝑡 = sup
𝑢∈ℝ

𝑡𝑢 − 𝑓(𝑢)

where 𝑓∗ ∶ ℝ → ℝ ∪ ∞ . This is also referred to as the Legendre transform.

If 𝑓 is a nice# convex function, then 𝑓∗ is convex and 𝑓∗∗ = 𝑓, i.e., the conjugate of the 

conjugate is the original function.% So

𝑓 𝑢 = sup
𝑡∈ℝ

𝑡𝑢 − 𝑓∗(𝑡)

123
#Closed and proper.
%So conjugacy is an involution in the space of convex functions.



Convex conjugate: Examples

The following are some examples. Computation of 𝑓∗ uses basic calculus.

(Keeping track of the ∞ output is necessary.)

KL=KL, LK=reverse-KL, SH=squared Hellinger distance, JS=JS
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Convex conjugate: Examples

We get the following f-divergences:

We don’t use the following property, but it’s interesting so we mention it. If 𝑓 and 𝑓∗ are 

differentiable, then 𝑓′ −1 = 𝑓∗ ′:
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Variational formulation of f-divergence

Variational formulation of f-divergence:

where     is the set of all# functions. In particular,    contains                                                  . 

𝐷𝜙 is a neural network parameterized by 𝜙.

126#All measurable functions.



f-GAN minimax formulation

Minimax formulation of f-GANs.
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f-GAN with KL-divergence

Instantiate f-GAN with KL-divergence: 𝑓∗ 𝑡 = 𝑒𝑡−1.

Step (*) uses the substitution 𝐷𝜙 ↦ 𝐷𝜙 + 1, which is valid if the final layer of 𝐷𝜙 has a 

trainable bias term. (𝐷𝜙 ∶ ℝ𝑛 → ℝ.)
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Instantiate f-GAN with squared Hellinger distance#: 𝑓∗ 𝑡 = ൝
1

1/𝑡−1
if 𝑡 < 1

∞ otherwise

When the constraint is violated, the 𝑓∗ 𝑡 = ∞ case makes the maximization objective −∞.

However, directly enforcing the neural networks to satisfy 𝐷𝜙 𝐺𝜃 𝑧 < 1 is awkward.

f-GAN with squared Hellinger 

129#The Hellinger distance is a symmetric distance between two probability distributions. Here, we simply use it as yet another distance measure. 



Solution: Output activation 𝜌

When 𝐷𝜙 ∶ ℝ𝑛 → ℝ and 𝑡 | 𝑓∗ 𝑡 < ∞ ≠ ℝ, then 𝑓∗ 𝐷𝜙 ෨𝑋 = ∞ is possible. To prevent this,

substitute 𝑇 𝑥 ↦ 𝜌 ෨𝑇 𝑥 , where 𝜌 ∶ ℝ → 𝑡 | 𝑓∗ 𝑡 < ∞ is a one-to-one function:

(*) We can restrict the search over 𝑇 since if 𝑓∗ 𝑇(𝑥) = ∞, then the objective becomes −∞.#

(**) With 𝑇 = 𝜌 ∘ ෨𝑇, have [𝑇 ∈ 𝒯 and 𝑓∗ 𝑇 𝑥 < ∞] ⟺ [ ෨𝑇 ∈ 𝒯] since 𝜌 is one-to-one.

130#The precise justification of this step requires more analytical details since the distribution 𝑞 may not have full support.



f-GAN with output activation 

Formulate f-GAN with output activation function 𝜌:
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f-GAN with squared Hellinger

Instantiate f-GAN with squared Hellinger distance using 𝜌 𝑟 = 1 − 𝑒−𝑟 and 

𝑓∗ 𝑡 = ቐ

1

1/𝑡 − 1
if 𝑡 < 1

∞ otherwise

Note that 𝑓∗ 𝜌 𝑟 = −1 + 𝑒𝑟.
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f-GAN with reverse KL

Instantiate f-GAN with reverse KL using 𝜌 𝑟 = −𝑒𝑟 and 

𝑓∗ 𝑡 = ቊ
−1 − log −𝑡 if 𝑡 < 0
∞ otherwise

Note that 𝑓∗ 𝜌 𝑟 = −1 − 𝑟.
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Recovering standard GAN

We recover standard GAN with 

Note that 𝜎 is the familiar sigmoid and 

where 𝐷𝜙 ∶ ℝ𝑛 → ℝ.

(Standard GAN has 𝐷𝜙 ∶ ℝ𝑛 → 0,1 . Here, 𝜎 ∘ 𝐷𝜙 ∶ ℝ𝑛 → 0,1 serves the same purpose.)
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WGAN

The Wasserstein GAN (WGAN) minimizes the Wasserstein distance:

The 𝑊 𝑝, 𝑞 is a distance (metric) on probability distributions defined as

where the infimum is taken over joint probability distributions 𝑓 with marginals 𝑝 and 𝑞, i.e.,

(The mathematics of 𝑊 𝑝, 𝑞 exceeds the scope of this class, but I still want to give you a 

high-level exposure to WGANs.)

135M. Arjovsky, S. Chintala, and L. Bottou, Wasserstein GAN, ICML, 2017.



𝑊 𝑝, 𝑞 by optimal transport

Another equivalent formulation of the Wasserstein 

distance is by the theory of optimal transport. Given 

distributions 𝑝 and 𝑞 (initial and target)

where 𝑇 is a transport plan that transports 𝑝 to 𝑞.%

Figuratively speaking, we are transporting grains of 

sand from one pile to another, and we wan to minimize 

the aggregate transport distance.

136
%In measure theoretic language, 𝑞 = 𝑓#𝑝.

Image from W. Li, E. K. Ryu, S. Osher, W. Yin, and W. Gangbo, A parallel method for earth mover’s distance, J. Sci. Comput., 2018.



Minimax via KR duality

Kantorovich–Rubinstein duality# establishes:

Minimax formulation of WGAN:

137
#L.V. Kantorovich and G. Rubinstein, On a space of completely additive functions, Vestnik Leningradskogo Universiteta, 1958.

The Kantorovich–Rubinstein dual as the convex (Lagrange) dual of a “flux” formulation of the optimal transport.



Spectral normalization

How do we enforce the constraint that 𝐷𝜙 is 1-Lipschitz? Consider an MLP:

where 𝜎 is a 1-Lipschitz continuous activation function, such as ReLU and tanh. If

𝐴𝑖 op = 𝜎max 𝐴𝑖 ≤ 1

for 𝑖 = 1,… , 𝐿, where 𝜎max denotes the largest singular value, then each layer is 1-Lipschitz 
continuous and the entire mapping 𝑥 ↦ 𝑦𝐿 is 1-Lipschitz. (A sufficient, but not a necessary, 
condition.)

138
T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, Spectral normalization for generative adversarial networks, ICLR, 2018.



Spectral normalization

Replace Lipschitz constraint with a singular-value constraint

Constraint is handled with a projected gradient method. (Note that 𝐴1, … , 𝐴𝐿 are part of the 

discriminator parameters 𝜙.)

(Specifically, one performs an (approximate) projection after the ascent step in the 

stochastic gradient ascent-descent methods. The approximate projection involves 

computing the largest singular with the power iteration.)

139
T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, Spectral normalization for generative adversarial networks, ICLR, 2018.



Conclusion

We discussed the following unsupervised learning techniques:

• Autoencoders

• Flow models

• Variational autoencoders

• GANs

Unsupervised learning techniques, particularly generative models, tend to utilize more math 

in their formulations. This chapter provided a brief and gentle introduction to the 

mathematical foundations of these formulations.
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