
Appendix A:
Basics of Monte Carlo

Mathematical Foundations of Deep Neural Networks

Fall 2022

Department of Mathematical Sciences

Ernest K. Ryu

Seoul National University

1

Monte Carlo

We quickly cover some basic notions of Monte Carlo simulations.

These concepts will be used with VAEs.

These ideas are also extensively used in reinforcement learning (although not a topic of this

course).

2

Monte Carlo estimation

Consider IID data 𝑋1, … , 𝑋𝑁~𝑓. Let 𝜙 𝑋 ≥ 0 be some function*. Consider the problem of

estimating

𝐼 = 𝔼𝑋∼𝑓 𝜙(𝑋) = න𝜙 𝑥 𝑓 𝑥 𝑑𝑥

One commonly uses

መ𝐼𝑁 =
1

𝑁
෍

𝑖=1

𝑁

𝜙 𝑋𝑖

to estimate 𝐼. After all, 𝔼 መ𝐼𝑁 = 𝐼 and መ𝐼𝑁 → 𝐼 by the law of large numbers.#

3
*The assumption 𝜙 𝑋 ≥ 0 can be relaxed.
#Convergence in probability by weak law of large numbers and almost sure convergence by strong law of large numbers.

Monte Carlo estimation

We can quantify convergence with variance:

Var𝑋~𝑓 መ𝐼𝑁 =෍

𝑖=1

𝑁

Var𝑋𝑖~𝑓
𝜙 𝑋𝑖
𝑁

=
1

𝑁
Var𝑋~𝑓 𝜙 𝑋

In other words

𝔼 መ𝐼𝑁 − 𝐼
2
=
1

𝑁
Var𝑋~𝑓 𝜙 𝑋

and

𝔼 መ𝐼𝑁 − 𝐼
2
→ 0

as 𝑁 → ∞.#

4#So መ𝐼𝑛 → 𝐼 in 𝐿2 provided that Var𝑋~𝑓 𝜙 𝑋 < ∞.

Empirical risk minimization

In machine learning and statistics, we often wish to solve

minimize
𝜃∈Θ

ℒ 𝜃

where the objective function

ℒ 𝜃 = 𝔼𝑋∼𝑝𝑋 ℓ(𝑓𝜃 𝑋 , 𝑓⋆ 𝑋)

Is the (true) risk. However, the evaluation of 𝔼𝑋∼𝑝𝑋 is impossible (if 𝑝𝑋 is unknown) or

intractable (if 𝑝𝑋 is known but the expectation has no closed-form solution). Therefore, we

define the proxy loss function

ℒ𝑁 𝜃 =
1

𝑁
෍

𝑖=1

𝑁

ℓ(𝑓𝜃 𝑋𝑖 , 𝑓⋆ 𝑋𝑖)

which we call the empirical risk, and solve

minimize
𝜃∈Θ

ℒ𝑁 𝜃

5

Empirical risk minimization

This is called empirical risk minimization (ERM). The idea is that

ℒ𝑁 𝜃 ≈ ℒ 𝜃

with high probability, so minimizing ℒ𝑁 𝜃 should be similar to minimizing ℒ 𝜃 .

Technical note) The law of large numbers tells us that

ℙ ℒ𝑁 𝜃 − ℒ 𝜃 > 𝜀 = small

for any given 𝜃, but we need

ℙ sup
𝜃∈Θ

ℒ𝑁 𝜃 − ℒ 𝜃 >𝜀 = small

for all compact Θ in order to conclude that the argmins of the two losses to be similar. These

types of results are established by a uniform law of large numbers.

6

Importance sampling

Importance sampling (IS) is a technique for reducing the variance of a Monte Carlo estimator.

Key insight of important sampling:

𝐼 = න𝜙 𝑥 𝑓 𝑥 𝑑𝑥 = න
𝜙 𝑥 𝑓 𝑥

𝑔 𝑥
𝑔 𝑥 𝑑𝑥 = 𝔼𝑋~𝑔

𝜙 𝑋 𝑓 𝑋

𝑔 𝑋

(We do have to be mindful of division by 0.) Then

መ𝐼𝑁 =
1

𝑁
෍

𝑖=1

𝑁

𝜙 𝑋𝑖
𝑓 𝑋𝑖
𝑔 𝑋𝑖

with 𝑋1, … , 𝑋𝑁 ∼ 𝑔 is also an estimator of 𝐼. Indeed, 𝔼 መ𝐼𝑁 = 𝐼 and መ𝐼𝑁 → 𝐼. The weight
𝑓 𝑥

𝑔 𝑥
is called the

likelihood ratio or the Radon–Nikodym derivative.

So we can use samples from 𝑔 to compute expectation with respect to 𝑓.

7

IS example: Low probability events

Consider the setup of estimating the probability

ℙ 𝑋 > 3 = 0.00135

where 𝑋 ∼ 𝒩 0,1 . If we use the regular Monte Carlo estimator

መ𝐼𝑁 =
1

𝑁
෍

𝑖=1

𝑁

𝟏 𝑋𝑖>3

where 𝑋𝑖 ∼ 𝒩 0,1 , if 𝑁 is not sufficiently large, we can have መ𝐼𝑁 = 0. Inaccurate estimate.

If we use the IS estimator

መ𝐼𝑁 =
1

𝑁
෍

𝑖=1

𝑁

𝟏 𝑌𝑖>3 exp
𝑌𝑖 − 3 2 − 𝑌𝑖

2

2

where 𝑌𝑖 ∼ 𝒩 3,1 , having መ𝐼𝑁 = 0 is much less likely. Estimate is much more accurate.

8

Importance sampling

Benefit of IS quantified by with variance:

Var𝑋~𝑔 መ𝐼𝑁 =෍

𝑖=1

𝑁

Var𝑋~𝑔
𝜙 𝑋𝑖 𝑓 𝑋𝑖
𝑛𝑔 𝑋𝑖

=
1

𝑁
Var𝑋~𝑔

𝜙 𝑋 𝑓 𝑋

𝑔 𝑋

If Var𝑋~𝑔
𝜙 𝑋 𝑓 𝑋

𝑔 𝑋
< Var𝑋~𝑓 𝜙 𝑋 , then IS provides variance reduction.

We call 𝑔 the importance or sampling distribution. Choosing 𝑔 poorly can increase the

variance. What is the best choice of 𝑔?

9

Optimal sampling distribution

The sampling distribution

𝑔 𝑥 =
𝜙 𝑥 𝑓 𝑥

𝐼

makes Var𝑋~𝑔
𝜙 𝑋 𝑓 𝑋

𝑔 𝑋
= Var𝑋~𝑔 𝐼 = 0 and therefore is optimal. (𝐼 serves as the

normalizing factor that ensures the density 𝑔 integrates to 1.)

Problem: Since we do not know the normalizing factor 𝐼, the answer we wish to estimate,

sampling from 𝑔 is usually difficult.

10

Optimized/trained sampling distribution

Instead, we consider the optimization problem

minimize
𝑔∈𝒢

𝐷KL 𝑔‖
𝜙𝑓

𝐼

and compute a suboptimal, but good, sampling distribution within a class of sampling distributions 𝒢. (In ML,
𝒢 = 𝑔𝜃|𝜃 ∈ Θ is parameterized by neural networks.)

Importantly, this optimization problem does not require knowledge of 𝐼.

How do we compute stochastic gradients?

11

Log-derivative trick

Generally, consider the setup where we wish to solve

with SGD.

(Previous slide had 𝜃-dependence both on and inside the expectation. For now, let’s

simplify the problem so that 𝜙 does not depend on 𝜃.)

Incorrect gradient computation:

12

Log-derivative trick

Correct gradient computation:

Therefore, with is a stochastic gradient of the loss function.

This technique is called the log-derivative trick, the likelihood ratio gradient#, or

REINFORCE*.

Formula with the log-derivative (∇𝜃 log ⋅) is convenient when dealing with Gaussians, or

more generally exponential families, since the densities are of the form

𝑓𝜃 𝑥 = ℎ 𝑥 exp function of 𝜃

#P. W. Glynn, Likelihood ratio gradient estimation for stochastic systems, Communications of the ACM, 1990.
*R. J. Williams, Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine Learning, 1992. 13

Log-derivative trick example

Learn to minimize the objective below.

Then the loss function is

And, using 𝑋1, … , 𝑋𝐵 ∼ 𝒩 𝜇, 𝐼 , we have stochastic gradients

These stochastic gradients have large variance and thus SGD is slow.

14

Log-derivative trick example

15

Reparameterization trick

The reparameterization trick (RT) or the pathwise derivative (PD) relies on the key insight.

Gradient computation:

RT is less general than log-derivative trick, but it usually produces stochastic gradients with

lower variance.

16

Reparameterization trick example

Consider the same example as before

Gradient computation:

These stochastic gradients have smaller variance and thus SGD is faster.

17

Reparameterization trick example

18

