Appendix A:
Basics of Monte Carlo

Mathematical Foundations of Deep Neural Networks
Fall 2022
Department of Mathematical Sciences
Ernest K. Ryu
Seoul National University



Monte Carlo

We quickly cover some basic notions of Monte Carlo simulations.
These concepts will be used with VAEs.

These ideas are also extensively used in reinforcement learning (although not a topic of this
course).



Monte Carlo estimation

Consider IID data X4, ..., Xy~f. Let ¢(X) = 0 be some function®. Consider the problem of
estimating

[ = By [¢(X)] = j HOOF (%) dx

One commonly uses

N
“ 1
Iy = NE ¢(Xi)
i=1

to estimate [. After all, E|[Iy| = I and Iy - I by the law of large numbers.*

"The assumption ¢(X) = 0 can be relaxed.
#Convergence in probability by weak law of large numbers and almost sure convergence by strong law of large numbers.



Monte Carlo estimation

We can quantify convergence with variance:

N
) x)\ 1
Varx~f(IN) = 2 Vary . r <¢(IV )> = NVarXNf(qb(X))
i=1

In other words

E|(iv-1)°| = %VarXNf(qﬁ(X))
and
E|(lv—1)°| -0
as N - oo #

#So [,, > I in L? provided that Vary. (¢ (X)) < oo.



Empirical risk minimization

In machine learning and statistics, we often wish to solve

minimize L(6)
60

where the objective function

£(8) = Expy [6(fo (X), £.(XD)]

Is the (true) risk. However, the evaluation of Ex..,,, is impossible (if px is unknown) or
Intractable (if py is known but the expectation has no closed-form solution). Therefore, we
define the proxy loss function

N
1
Ln(©) =5 ) 2(fp (XD, £.(XD)
=1

which we call the empirical risk, and solve

minimize Ly(60
lim n(6)



Empirical risk minimization

This is called empirical risk minimization (ERM). The idea is that
Ly(0) = L(6)

with high probability, so minimizing L, (8) should be similar to minimizing £(68).

Technical note) The law of large numbers tells us that
P(|Ly(8) — L(B)] > &) = small

for any given 6, but we need
P (sup|£N(9) — L(6)] >e) = small
eI
for all compact 0 in order to conclude that the argmins of the two losses to be similar. These
types of results are established by a uniform law of large numbers.



Importance sampling

Importance sampling (I1S) is a technique for reducing the variance of a Monte Carlo estimator.

Key insight of important sampling:

= j(/)(x)f(x) dx =

¢ (x)f (x) B d(X)f (X)

(We do have to be mindful of division by 0.) Then

RSPV 160
i=1 !

with Xy, ..., Xy ~ g is also an estimator of I. Indeed, E[Iy]| = I and [y - I. The weight I is called the

g(x)
likelihood ratio or the Radon—Nikodym derivative.

So we can use samples from g to compute expectation with respect to f.



IS example: Low probability events

Consider the setup of estimating the probability
P(X > 3) = 0.00135

where X ~ N (0,1). If we use the regular Monte Carlo estimator

N
“ 1
Iy = Nz 1{Xl->3}
=1

where X; ~ N (0,1), if N is not sufficiently large, we can have [y = 0. Inaccurate estimate.

If we use the IS estimator

N
;1 (v, = 3)° = V7
Iy = Nz 1(y,>33 €xp 5

=1
where Y; ~ N (3,1), having Iy = 0 is much less likely. Estimate is much more accurate.



Importance sampling

Benefit of IS quantified by with variance:

N
R XDf X))\ 1 (X)f(X)
Varx~(Iv) = 2 Yarkg (¢ ng(];(-) ) TN e ((p g()]; ) )
i=1 ‘

If Vary., (qb(;(z)];)(x)) < Vary.s(¢(X)), then IS provides variance reduction.

We call g the importance or sampling distribution. Choosing g poorly can increase the
variance. What is the best choice of g?



Optimal sampling distribution

The sampling distribution
_pOf ()

g(x) i

(X)) f(X)
9(X)
normalizing factor that ensures the density g integrates to 1.)

makes Vary._ ( ) = Vary..,(I) = 0 and therefore is optimal. (I serves as the

Problem: Since we do not know the normalizing factor I, the answer we wish to estimate,
sampling from g is usually difficult.
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Optimized/trained sampling distribution

Instead, we consider the optimization problem

minimize Dgp{ || ¢—f
JEG I

and compute a suboptimal, but good, sampling distribution within a class of sampling distributions G. (In ML,
G =1{gy|0 € 0} is parameterized by neural networks.)

Importantly, this optimization problem does not require knowledge of 1.

Dxr(gol|¢f /1) = Ex~g, |log (¢(I)€’G)g“)8€ ))

- X 5
=Ex~g, log(gb(gg ) ) + log I

P 5
) ) + constant independent of ¢

= EXNgg log (
How do we compute stochastic gradients? ]



Log-derivative trick

Generally, consider the setup where we wish to solve

minimize Ex~f,[¢(X)]

with SGD.

(Previous slide had 6-dependence both on and inside the expectation. For now, let’s
simplify the problem so that ¢ does not depend on 6.)

Incorrect gradient computation:
?
Vol x~f, [¢(X)] =Ex~f, [quﬁ(X)] =Ex~r, [O] =0
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Log-derivative trick

Correct gradient computation:

VoExp, [6(X)] = Vs / b(2)fo() di = / &(2)Vofs() do
= [ 6 ) e = By, [0 VLA

fo(X
= EXNfe [(b( )VH log(fG(X))]

Therefore, ¢(X)Vylog(fe(X)) with X ~ f, Is a stochastic gradient of the loss function.
This technique is called the log-derivative trick, the likelihood ratio gradient?, or
REINFORCE".

Formula with the log-derivative (V4 log(-)) is convenient when dealing with Gaussians, or
more generally exponential families, since the densities are of the form
fo(x) = h(x) exp(function of 8)

#P. W. Glynn, Likelihood ratio gradient estimation for stochastic systems, Communications of the ACM, 1990.
'R. J. Williams, Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine Learning, 1992.
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Log-derivative trick example

Learn u € R* to minimize the objective below. 5]

minimize [Ex . I

5
= (3)
Then the loss function is
2
5 5
@) =] 6)

And, using X3, ..., Xg ~ NV (u, 1), we have stochastic gradients

2 B
5) 1 2 1 5)
L= (5) Vi (_5 |z — pl ) ~ B E_l X; — ( 5

These stochastic gradients have large variance and thus SGD is slow.

2

E(VJ) — EXNN(M,I) o

ViL(p) = Exq, [

2 =l

1 1
L. (—5 o —u||2) o

(X5 — )
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Log-derivative trick example

6 -

5_

g -

log derivative trick

reparametrization trick

5 -

4_
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Reparameterization trick

The reparameterization trick (RT) or the pathwise derivative (PD) relies on the key insight.

EXNN(,LL,O'Q) [P(X)] = ]EYNN(O,I) (¢ (pn+oY)]

Gradient computation:

Vo Bxan(po2) [0(X)] = By n0,1) [Vio @+ 0Y)] = By ono,1) [qb’(” to¥) [11/”

B
1 1
%E E @’(M—I—nyz) [Y:|a Yla"'JYBNN(()?I)
i=1 !

RT is less general than log-derivative trick, but it usually produces stochastic gradients with
lower variance.
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Reparameterization trick example

Consider the same example as before
5 || 5
() ven=(3)
Gradient computation:
5\ || 5
Y+p—1{¢ = 2By non | Y +u— {5

B
2 5!
%Eé_l (}/;+/'L_(5))7 Yla"'aYBNN(()?I)

These stochastic gradients have smaller variance and thus SGD is faster.

2

L(p) =Exnun = Ey~n0,1)

Vi L(p) =By a0, Vi
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Reparameterization trick example

6_
5_

g -

log derivative trick

reparametrization trick

5 -

4_
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