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Problem 1: Log-derivative trick for VAE. Let Z € R be a random variable. Let g,(2) be
a probability density function for all ¢ € RP. Assume g4(z) is differentiable in ¢ for all fixed
z € RF. Let h: R¥ — R satisfy h(z) > 0 for all z € R¥. Assume that the order of integration
and differentiation can be swapped. Show

5 g [0 (2] =B [Fotoasnton (12)].

Hint. Since gg(z) is a probability density function,
/V¢q¢(z) dz = V¢/q¢(z) dz=Vsl =0.

Problem 2: Projected gradient method. Consider the optimization problem

minimize f(z)

subject to = € C,

where C' C R"™. Constrained optimization problems of this type can be solved with the projected
gradient method
M =Tlo(z" — aVf(2b)),

where Il is the projection onto C. The projection of y € R™ onto C' C R" is defined as the
point in C' that is closest to y:
o (y) = argmin ||z — y|°.
zeC
For the particular set
C={rcR?|z;=0a,0<ay <1},

where a € R, show that
a

He(y) = min{max{ys, 0}, 1} |’

where y = (y1,92).
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Figure 1: The original, corrupted, and inpainted MNIST image.

Problem 3: Image inpainting with flow models. Assume we have a trained flow model that
we use to evaluate the likelihood function p. (Since we will not further train or update the
flow model, we supress the network parameter § and write p rather than py.) The starter
code flow_inpainting.py loads a NICE flow model pre-trained on the MNIST dataset saved
in nice.pt. Let Xiue € R28%28 he an MNIST image with pixel intensities normalized to be
in [0,1]. Let M = {0,1}?®*28 be a binary mask. We measure M ® Xue, where ® denotes
elementwise multiplication, and the goal is to inpaint the missing information (1 — M) ® Xye,
where 1 — M € {0, 1}2*28 is the inverted mask. (See Figure 1.) Perform inpainting by solving
the following constrained maximum likelihood estimation problem

winimize  —logp(X)
subject to M © X = M © Xirue

0< X <1,

where 0 < X < 1 is enforced elementwise. Use the projected gradient method with learning
rate 1072 and 300 iterations.

Hint. Represent the optimization variable with

X = image.clone().requires_grad_(True)

while preserving image, the tensor containing the corrupted image. When manipulating X in
the projection step, manipulate X.data rather than X itself so that the computation graph is
not altered by the projection step. Use clamp(...) to enforce the 0 < X < 1 constraint.

Remark. The optimization problem can be interpreted as finding the most likely reconstruction
consistent with the measurements.

Remark. The NICE paper [2] obtains better inpainting results by using a learning rate scheduler
(iteration-dependent stepsize) and adding noise to escape from local minima.



Problem 4: Ingredients of Glow [1]. Let
A= PL(U + diag(s)) € RE*¢,

where P € RE*C is a permutation matrix, L € RE*¢ is a lower triangular matrix with unit
diagonals, U € RE*C is upper triangular with zero diagonals, and s € R¢. To clarify, L;; = 1
fori=1,...,C, Lij=0for1<i<j<C,and Uj; =0for 1 <j<:<C.

(a) Let fi(z) = Az. Show
of
Ox

c
= log|sil.
i=1

log ‘

(b) Given h: RexbX¢ _ Raxbxc define

)

‘8h(X)' B ‘a(h(X).reshape(abc))
0X | | O(X.reshape(abc))

i.e., we define the absolute value of the Jacobian determinant with the input and output
tensors vectorized. Note that the reshape operation, which maps elements from the tensor

in R9*¥*¢ to the elements of the vector in R%¢, is not unique. Show that the definition of

a}é()?) ‘ does not depend on the specific choice of reshape.

(c) Let fo(X | P,L,U,s) be the 1 x 1 convolution from REXMX" to REX™MX" with filter w €
REXCXIXL defined as

wi7j’1’1:Ai7j, forizl,...,C’,jzl,...,C’.

So X € REX™ ™ and fo(X | P,L,U, s) € REX™*"  (Assume the batch size is 1.) Show

C
lo :ngIOg|si|.
i=1

8fa(X | P,L,U, s)
& X

(d) Consider the following coupling layer from X € R2CXmxn o 7 ¢ R2Cxmxn,

ZI:C,:,: = XI:C,:,:
ZC+1:2C,:,: = f2(X0+1:20,:,:|P> L(XI:C,:,:)a U(XI:C,:,:>1 S(XI:C,:,:))a

where P is a fixed permutation matrix, L(-) outputs lower triangular matrices with unit
diagonals in RE*® | U(-) outputs upper triangular matrices with zero diagonals in RE*¢,
and s(-) € R®. Show

C
VA
log SX‘ = mniz;logm\.

Remark. Given any A € R"*" a decomposition A = PL(U + diag(s)) can be computed via the
so-called PLU factorization, which performs steps analogous to Gaussian elimination.



Problem 5: Gambler’s ruin. You are a gambler at a casino with a starting balance of 100$.
You will play a game in which you bet 1$ every game. With probability 18/37, you win and
collect 2§ (so you make a 1$ profit). With probability 19/37, you lose and collect no money.
You play until you reach a balance of 0% or 200$ or until you play 600 games. Write a Monte
Carlo simulation with importance sampling to estimate the probability that you leave the casino
with 2008. Specifically, simulate playing up to 600 games until you reach the balance of 0$ or
200% and repeat this N = 3000 times.

Hint. Regardless of the outcome, simulate K = 600 games. The outcomes of the games form a
sequence of Bernoulli random variables with probability mass function

K
f(Xl, - ,XK) — HpX¢(1 _p)(lei)
=1

and p = 18/37. For the sampling distribution, also use a sequence of Bernoulli random variables
with probability mass function

g(Yia' . "YK) = Hin(l - Q)(I_Yi)

but with ¢ > p. Try using ¢ = 0.55.
Hint. The answer is approximately 2 x 1076, Submit Python code that produces this answer.

Problem 6: Solve

ce . 1 9
mininize Ex A (uo2) [ X sin(X)] + 5(p —1)* + 0 —logo
subject to o >0

using SGD combined with
(a) the log-derivative trick and

(b) the reparameterization trick.

Hint. Use the change of variables o = €7 to remove the constraint ¢ > 0.

Clarification. Implement SGD in Python and submit the code.
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