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Problem 1: VLB for IWAE. The standard variational lower bound (VLB) of VAE is

log(pθ(x)) ≥ VLBθ,ϕ(x) = EZ∼q(z|x)

[
log

(
pθ(x | Z)pZ(Z)

qϕ(Z | x)

)]
,

where pθ(z | x) is the true posterior and qϕ(z | x) is the approximate posterior. Define

VLB
(K)
θ,ϕ (x) = EZ1,...,ZK∼qϕ(z|x)

[
log

1

K

K∑
k=1

pθ(x | Zk)pZ(Zk)

qϕ(Zk | x)

]
,

to be the VLB for importance weighted autoencoders (IWAE) [?]. To clarify, Z1, . . . , ZK are
sampled independently from qϕ(z | x). Note that IWAE with K = 1 coincides with the standard

VAE, and VLB
(1)
θ,ϕ = VLBθ,ϕ. Show:

(a) log pθ(x) ≥ VLB
(K)
θ,ϕ (x) for all x and K ≥ 1.

(b) If K ≥ M , then VLB
(K)
θ,ϕ (x) ≥ VLB

(M)
θ,ϕ (x) for all x.

(c) Let X1, . . . , XN be data for training the IWAE. Show that if qϕ is “powerful enough”,
then

maximize
θ∈Θ

N∑
i=1

log pθ(Xi) = maximize
θ∈Θ,ϕ∈Φ

N∑
i=1

VLB
(K)
θ,ϕ (Xi).

What should be the precise meaning of “powerful enough”?

Hint. For (a), use the Jensen’s inequality. For (b), let I ⊂ {1, . . . ,K} with |I| = M be a uni-

formly distributed subset of distinct indices from {1, . . . ,K}. Then, EI={i1,...,iM}

[
ai1+···+aiM

M

]
=

a1+···+aK
K for any sequence of numbers a1, . . . , aK .

Remark. This analysis shows that VLB
(K)
θ,ϕ provides a tighter approximation of the log likelihood

than VLBθ,ϕ. However, using VLB
(K)
θ,ϕ requires more computation than VLBθ,ϕ.
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Problem 2: VAE with trainable prior. In this problem, we consider the setup of training a VAE
with a trainable prior. Specifically, we assume Z ∼ rλ(z), where λ is a trainable parameter,
and X ∼ pθ(x | Z). Let qϕ(z | X) be the approximate posterior. Let

VLBθ,ϕ,λ(Xi) = EZ∼qϕ(z|Xi)

[
log

(
pθ(Xi | Z)rλ(Z)

qϕ(Z | Xi)

)]
.

(a) Show that log pθ(Xi) ≥ VLBθ,ϕ,λ(Xi).

(b) Describe how to evaluate stochastic gradients of VLBθ,ϕ,λ(Xi) using the log-derivative
trick.

(c) Assume rλ = N (λ1, diag(λ2)), where λ1, λ2 ∈ Rk, qϕ(z | Xi) = N (µϕ(Xi),Σϕ(Xi)) with
diagonal Σϕ, and pθ(Xi | z) = N (fθ(z), σ

2I). Describe how to evaluate stochastic gradi-
ents of VLBθ,ϕ,λ(Xi) using the reparameterization trick.

Problem 3: Anomaly detection via flow models. Assume we have a trained flow model that
we use to evaluate the likelihood function pθ. In this problem, you will use this trained flow
model to perform anomaly detection between the MNIST and KMNIST datasets. In step 1,
load the MNIST and KMNIST datasets, and split the MNIST test dataset into “validation”
and “test” sets. In step 2, define the flow model. In step 3, load the trained flow model. In
step 4, calculate the mean and standard deviation of

{log pθ(Yi)}Mi=1,

where Y1, . . . , YM are the validation data. Define a threshold to be mean − 3 standard de-
viations, and define inputs with log likelihood below this threshold to be anomalies. In step
5, check how many of the MNIST images within the test set are classified as anomalies and
report the type I error rate. In step 6, check how many of the KMNIST images are classified as
non-anomalies and report the type II error rate. Download the starter code flow_anomaly.py,
which provides the implementation of steps 1–3. Complete the implementation of steps 4–6.

Remark. In this problem, we split the test data into validation and test sets because the entire
training set was already used to train the flow model. If we were to train the flow model from
scratch, it would be better to split the training set into the training and validation sets to set
aside the validation data for step 3.
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Problem 4: Rock paper scissors and minimiax optimization. Consider a game of rock paper
scissors between players A and B. Players A and B play randomized strategies with

pA =

 P(A plays rock)
P(A plays paper)
P(A plays scissors)

 , pB =

 P(B plays rock)
P(B plays paper)
P(B plays scissors)

 .

Define
∆3 = {p = (p1, p2, p3) ∈ R3 | p1, p2, p3 ≥ 0, p1 + p2 + p3 = 1}

so that pA, pB ∈ ∆3. In the game, a player receives 1 point for a win, −1 points for a loss, and
0 points for a draw. Consider the minimax problem

minimize
pA∈∆3

maximize
pB∈∆3

EpA,pB [points for B].

(a) Show that

p⋆A =

1/31/3
1/3

 , p⋆B =

1/31/3
1/3


is the unique solution to the minimax problem.

(b) Note that if pB = (1/3, 1/3, 1/3), then EpA,pB [points for B] = 0 regardless of how A plays.
Does this mean any strategy pA ∈ ∆3 is optimal for player A? (Here, the word “optimal”
is used informally. Think about whether any pA ∈ ∆3 is a best strategy for A.)

Clarification. We say (θ⋆, ϕ⋆) is a solution to the minimax problem

minimize
θ∈Θ

maximize
ϕ∈Φ

L(θ, ϕ)

if θ⋆ ∈ Θ, ϕ⋆ ∈ Φ, and
L(θ⋆, ϕ) ≤ L(θ⋆, ϕ⋆) ≤ L(θ, ϕ⋆)

for all θ ∈ Θ and ϕ ∈ Φ, i.e., unilaterally deviating from θ⋆ increases the value of L and
unilaterally deviating from ϕ⋆ decreases the value of L.

Remark. In the setup of GANs (which is what this problem is intended to prepare you for), if the
generator is perfect, the discriminator cannot do better than a 50-50 guess in detecting fakes.
However, the discriminator is still forced to learn to distinguish imperfect fakes, as otherwise,
the generator can take advantage of the discriminator.
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