AR
Mathematical Foundations of Deep Neural Networks, M1407.001200 V W . \\5”
E. Ryu \i}_'.|®%|,&’
Fall 2022 A\

Homework 2
Due 5pm, Wednesday, September 14, 2022

Problem 1: Logistic regression via SGD. Use SGD to solve the logistic regression optimization
problem

N
1
minimize z; log(1 + exp(—Y;X]0)),
1=

where X1,..., Xy € RP and Y7,...,Yy € {—1,1}. Use the data

N, p = 30, 20

np.random.seed (0)

X = np.random.randn(N,p)

Y 2%np.random.randint (2, size = N) - 1

where X[, ..., X[are the rows of X.

Problem 2: SVM via SGD. Use SGD to solve the non-differentiable SVM optimization problem

N
L 1 2
minimize g 1 max{0,1 — Y; X0} + \|6]|%,
1=

where Xi,..., Xy € R, Yy,...,Yy € {—1,1}, and A = 0.1. Use the data of Problem 1.
FEmpirically, does the SGD ever encounter a point of non-differentiability?

Problem 3: Consider the data generated by the Python code

N=30

np.random.seed (0)

X = np.random.randn(2,N)

y = np.sign(X[0,:]1**x2+X[1,:]1%%x2-0.7)
theta = 0.5

c, s = np.cos(theta), np.sin(theta)
X = np.array([[c, -s], [s, cll)eX

X = X + np.array ([[1],[1]1])

Observe (by plotting) that the data is not linearly separable. Consider the transformation

(- F

2}2

[\

Using the logistic regression or SVM, show that the data ¢(X1),...,¢(Xy) € R® with labels
Y1,...,Yny € {—1,+1} is linearly separable. Visualize in R? the data and the decision boundary.

Hint. Visualize the decision boundary given by
0 == wlO]+w[1]l*x+w[2]*(x*x*2)+w[3]*y+w[4]*(y**x2)
with the code

xx = np.linspace (-4, 4, 1024)

yy = np.linspace(-4, 4, 1024)

XX, yy = np.meshgrid(xx, yy)

Z = wl0] + (w[1] * xx + w([2] * xx*%2) + (w[3] * yy + w[4] * yy*x2)
plt.contour(xx, yy, Z, 0)

Remark. This is the basis of kernel methods.

Problem 4: Nonnegativity of KL-divergence. A set C C R™ is said to be convex if
x1,00€ C = nri+(1—nxzyeC, Vne(0,1).
A function ¢: C — R is said to be convex if C' C R™ is convex and
p(nz1 + (1 =n)z2) < ne(x1) + (L —n)e(rz), Vay,z2 € ne(0,1)
Jensen’s inequality [1] states that if X € C' is a random variable and ¢ is convex, then
¢(E[X]) < E[p(X)].

Use this to show that
Dkuw(pllg) > 0

for any probability mass functions p, ¢ € R™.
Hint. First show that —log(z) is a convex function.

Problem 5: Positivity of KL-divergence. A function ¢: C' — R is said to be strictly convex if
C C R™ is convex and

w1 + (1 —n)z2) < np(r1) + (1 —n)p(z2), Vai,ze € C, ne(0,1).

Strict Jensen’s inequality states that if X € C is a non-constant random variable and ¢ is
strictly convex, then
p(E[X]) <E[p(X)].

Use this to show that
Dxw(pllg) > 0

for any probability mass functions p,q € R™ such that p # q.

Problem 6: Differentiating 2-layer neural networks. Consider the 2-layer neural network
fo(x) =uTo(ax +b) = Zu] o(ajx + b)),

where a,b,u € RP and 6 = (a1,...,ap,0b1,.. .,bp,ul, coUp) € R3. Assume the univariate
function o: R — R is differentiable. The notation o(ax + b) means o is applied elementwise to
the vector in RP. Show that

Vufo(z) = o(az +b)
Vi fo(z) = o' (ax + b) ® u = diag(o’(az + b))u
Vafo(x) = (¢/(ax + b) © v)x = diag(o’(ax + b))uz

where ¢’(az + b) means the univariate function ¢’ is applied elementwise to the vector az + b,
© denotes the element-wise product, and diag(-) denotes the diagonal matrix with the diagonal
elements equal to the elements of the input vector.

Problem 7: SGD with 2-layer neural networks. Consider the univariate function
fi(z) = (x — 2) cos(4x).
Let

p
x) = Zuja(ajx +bj),
j=1

be the same 2-layer neural network as in the previous problem. For this problem, use the
sigmoid activation function, i.e., o(z) = (1 + e~*)~!. Given data X; generated as IID unit
Gaussians and corresponding labels Y; = f,(X;) for i = 1,..., N, define loss functions

L
= D (X, Y)
i=1
and

1
((X,Y) = 5(fo(X) = Y)*.
Consider the minimization problem

minimize £(6).
HeR3P

Without using PyTorch (so using NumPy), implement

i(k) ~ Uniform{1,...,N}

gF+1 — gk avgze(ik Yitk))-
Use the parameters K = 10000, @ = 0.007, N = 30, and p = 50 and use independent initial-
izations with distributions ag ~ N(0,4?), bg-) ~ N(0,4?%), and u? ~ N(0,0.05%) for j =1,...,p

(These parameters and initializations are implemented in the starter code twolayerSGD.py.)
Plot the final trained function with fyx (x) as a function of z. How does it compare with fy(x)?

Remark. In order to fit the nonlinear function f,, it is essential that we use the nonlinear
activation function o; without it,

ajas—l—b

i M@

will be linear in z, and a linear function cannot approximate the nonlinear function f,(x) well.

References

[1] J. L. W. V. Jensen, Sur les fonctions convexes et les inégalités entre les valeurs moyennes,
Acta Mathematica, 1906.

