
Mathematical Foundations of Deep Neural Networks, M1407.001200
E. Ryu
Fall 2022

Homework 5
Due 5pm, Wednesday, October 05, 2022

Problem 1: Implementing backprop for MLP. Consider the multi-layer perceptron

yL = ALyL−1 + bL

yL−1 = σ(AL−1yL−2 + bL−1)

...

y2 = σ(A2y1 + b2)

y1 = σ(A1x+ b1),

where x ∈ Rn0 , Aℓ ∈ Rnℓ×nℓ−1 , bℓ ∈ Rnℓ , and nL = 1. Let σ(z) = (1 + e−z)−1 be the sigmoid
activation function. Let fθ(x) = yL and consider the loss function

ℓ(θ) =
1

2
(fθ(Xdata)− Ydata)

2.

Download the starter code mlp_backprop.py and implement backprop using the gradient com-
putation of homework 4 problem 6. Your code should roughly be of the form:

forward pass

y_list = [X_data]

y = X_data

for ell in range(L):

S = sigma if ell <L-1 else lambda x: x

y = S(A_list[ell]@y+b_list[ell])

y_list.append(y_next)

backward pass

dA_list = []

db_list = []

dy = y-Y_data

for ell in reversed(range(L)):

S = sigma_prime if ell <L-1 else lambda x: torch.ones(x.shape)

A, b, y= A_list[ell], b_list[ell], y_list[ell]

db = ... # dloss/db

dA = ... # dloss/dA

dy = ... # dloss/dy

dA_list.insert(0,dA)

db_list.insert(0,db)

The starter code provides code that performs gradient computation using autograd. Compare
your results against the autograd results.

1

Problem 2: Vanishing gradients. When training very deep neural networks, one often en-
counters the problem of vanishing gradients. Consider the MLP of homework 4 problem 6.
Assume the activation function σ is the sigmoid activation function. Define ỹi = Aiyi−1+ bi for
i = 1, . . . , L. So yL = ỹL and yi = σ(ỹi) for i = 1, . . . , L− 1.

Assume the matrices A1, . . . , AL are all not too large. If Aj is small for some j ∈ {ℓ+1, . . . , L},
then

∂yL
∂bi

,
∂yL
∂Ai

for i = 1, . . . , ℓ become small. If ỹj has large absolute value for some j ∈ {ℓ+1, . . . , L−1}, then

∂yL
∂bi

,
∂yL
∂Ai

for i = 1, . . . , ℓ become small. Explain why this is the case.

Clarification. For the purpose of this problem, let’s say that a vector or a matrix is “small” if
all of its entries are small. Define “large” analogously. Also, (not too large)×(small)=(small).

Remark. Neural networks built with ReLU tend to suffer less from vanishing gradients compared
to networks built with sigmoid or tanh. This is because σ′(z) → 0 as z → ±∞ for sigmoid and
tanh, while σ′(z) → 0 only as z → −∞ for ReLU.

Problem 3: Two forms of momentum SGD. There are two forms for the (non-Nesterov) mo-
mentum SGD. Form I is

θk+1 = θk − αgk + β(θk − θk−1)

for k = 0, 1, . . . , where θ−1 = θ0. This form is more commonly invoked in mathematical
discussions as it makes the “momentum term” β(θk − θk−1) clearly visible. Form II is

vk+1 = gk + βvk

θk+1 = θk − αvk+1

for k = 0, 1, . . . , where v0 = 0. This is the form implemented in PyTorch with the option
Nesterov=false. Show that the two forms are equivalent in the sense that given a starting
point θ0 ∈ Rn and a sequence of stochastic gradients g0, g1, . . . ∈ Rn, Forms I and II produce
the same θ1, θ2, . . . sequence.

Hint. Use induction.

2

Problem 4: The receptive field of a neuron is the set of input pixels the neuron value depends
on. Consider the VGG16 network, and consider the intermediate values y1, y2, and y3, which
are respectively the outputs of the second convolutional layer, the first maxpool layer, and the
second maxpool layer. Assume the input X has a batch size 1 and otherwise has dimensions
3 × 224 × 224. For p = 1, 2, 3, describe the receptive field of yp[k, i, j], i.e., which values of
X[c,m, n] does yp[k, i, j] depend on? Here, m,n and i, j denote the spacial dimensions and c
and k denote the channels.

class VGG16(nn.Module) :

def __init__(self) :

super(VGG16 , self). __init__ ()

self.conv_layer1 = nn.Sequential(

nn.Conv2d (3,64, kernel_size =3,padding =1), #64 x224x224

nn.ReLU(),

nn.Conv2d (64 ,64 kernel_size =3,padding =1), #64 x224x224

nn.ReLU())

self.pool1 = nn.MaxPool2d(kernel_size =2,stride =2) #64 x112x112

self.conv_layer2 = nn.Sequential(

nn.Conv2d (64,128, kernel_size =3,padding =1), #128 x112x112

nn.ReLU(),

nn.Conv2d (128 ,128, kernel_size =3,padding =1), #128 x112x112

nn.ReLU())

self.pool2 = nn.MaxPool2d(kernel_size =2,stride =2) #128 x56x56

...

def forward(self , x) :

y1 = self.conv_layer1(x)

y2 = self.pool1(y1)

y3 = self.pool2(self.conv_layer2(y2))

...

224

224

6464

22
4

3x3 conv1

y1 y2

128128

11
2

3x3 conv2

y3

256 256

3x3 conv3

256

56 512 512

3x3 conv4

512

28
512 512

3x3 conv5

512

14

1

40
96

fc6

1

40
96

fc7

Dropout(0.5)

1

10
00

fc8

Dropout(0.5)

3

Problem 5: Consider the näıve inception module and the inception module with 1 × 1 “bot-
tleneck” convolutions. Assume the input has 32× 32 spatial dimensions and 256 channels. The
numbers of output channels of each convolution operation are specified in the figure. Assume
all convolutions use biases. A nonlinear activation function is applied after every convolution.

256
32

input

128
32

1x1 conv

192
32

3x3 conv
p=1

96
32

5x5 conv
p=2

3x3 maxpool
p=1

Concatenation

256
32

input

128
32

1x1 conv

64
32

1x1 conv

192
32

3x3 conv
p=1

64
32

1x1 conv

96
32

5x5 conv
p=2

3x3 maxpool
p=1

64
32

1x1 conv

Concatenation

Between the two modules, compare:

(i) the number of trainable parameters and

(ii) the number of additions, multiplications, and activation function evaluations (separately
for the three types of operations) required to forward-evaluate the module.

Remark. A more complete investigation in the spirit of part (ii) would count the arithmetic
operations of a gradient computation via a backward pass. For the sake of simplicity, we only
consider the forward pass.

Clarification. For the purpose of this problem, include the additional operations incurred due to
zero-padding. You do not need to compare operations incurred by the maxpool; not only does
maxpool not utilize any additions, multiplications, or activation evaluations, but the amount of
operations of the maxpools of two modules are identical, so there is no need to compare.

4

Problem 6: Large neural networks memorize and interpolate training data. In 2017, Zhang et
al. [1] showed that modern deep neural networks can exactly memorize and interpolate training
labels, even when the labels are completely randomized. The experiment considered a 10-class
classification problem with (unmodified) data X1, . . . , XN and completely randomized labels
Yi ∼ Uniform{1, . . . , 10} for i = 1, . . . , N . Carry out this experiment with the MNIST data on
a variation of the AlexNet architecture as provided in the starter code label_memorization.py.
Use SGD with learning rate 0.1, batchsize 64, and 150 epochs. To reduce the computation time
of this experiment, use only 10% of the MNIST training data, i.e., select a subset of 6, 000
images among the 60, 000 training images.

Clarification. Once Yi is set to a random class, it should be fixed throughout the training
epochs, i.e., do not randomize Yi again every epoch.

Remark. Of course, the “trained” neural net achieves the generalization performance of 10%.

Remark. This paper by Zhang et al. [1] was highly influential as it shattered all classical
statistical expectations. It meant neural networks generalize well despite having the capacity
to completely overfit. The insight of this work lead to the formulation of the double descent
phenomenon.

Hint. Expect the training to behave as follows:

References

[1] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, Understanding deep learning
requires rethinking generalization, ICLR, 2017.

5

