
Mathematical Foundations of Deep Neural Networks, M1407.001200
E. Ryu
Fall 2022

Homework 6
Due 5pm, Wednesday, October 12, 2022

Problem 1: Dropout-ReLU=ReLU-Dropout. Consider the following convolutional layer

class myLayer(nn.Module):

def __init__(self , input_size , output_size):

super(myLayer , self). __init__ ()

self.linear = nn.Linear(input_size ,output_size)

self.sigma = nn.ReLU()

self.sigma = nn.Sigmoid ()

self.sigma = nn.LeakyReLU ()

self.dropout= nn.Dropout(p=0.4)

def forward(self , x):

return dropout(sigma(linear))

return sigma(dropout(linear)) # Is this is equivalent?

In which of the three following cases are the operations linear-dropout-σ and linear-σ-dropout
equivalent?

(a) self.sigma = nn.ReLU()

(b) self.sigma = nn.Sigmoid()

(c) self.sigma = nn.LeakyReLU()

Problem 2: Default weight initialization. Consider the multi-layer perceptron

yL = ALyL−1 + bL

yL−1 = σ(AL−1yL−2 + bL−1)

...

y2 = σ(A2y1 + b2)

y1 = σ(A1x+ b1),

where x ∈ Rn0 , Aℓ ∈ Rnℓ×nℓ−1 , bℓ ∈ Rnℓ , and nL = 1. For the sake of simplicity, let

σ(z) = z.

Assume x1, . . . , xn0 are IID with zero-mean and unit variance. If this network is initialized with
the default weight initialization of PyTorch, what will the mean and variance of yL be?

Clarification. For this problem, you are being asked to read the PyTorch source code
https://pytorch.org/docs/stable/_modules/torch/nn/modules/linear.html

to identify the default initialization behavior and then to perform calculations.

1

Problem 3: Backprop for MLP with residual connections. Let σ : R → R be a differentiable
activation function and consider the following MLP with residual connections

yL = ALyL−1 + bL

yL−1 = σ(AL−1yL−2 + bL−1) + yL−2

...

y3 = σ(A3y2 + b3) + y2

y2 = σ(A2y1 + b2) + y1

y1 = σ(A1x+ b1),

where x ∈ Rn, A1 ∈ Rm×n, b1 ∈ Rm, Aℓ ∈ Rm×m, bℓ ∈ Rm for ℓ = 2, . . . , L−1, and AL ∈ R1×m,
bL ∈ R1. (To clarify, σ is applied element-wise.) For notational convenience, define y0 = x.

(i) Find formulae for
∂yℓ
∂yℓ−1

for ℓ = 2, . . . , L.

(ii) Find formulae for
∂yL
∂bℓ

,
∂yL
∂Aℓ

for ℓ = 1, . . . , L.

(iii) The gradients
∂yL
∂bi

,
∂yL
∂Ai

for i = 1, . . . , ℓ need not vanish when [Aj = 0 for some j ∈ {ℓ+ 1, . . . , L− 1}] or
[σ′(Ajyj−1 + bj) = 0 for some j ∈ {ℓ+ 1, . . . , L− 1}]. Explain why.

2

Problem 4: Split-transform-merge convolutions. Consider a series of 1× 1, 3× 3, 1× 1 conv-
ReLU operations with 256–128–128–256 channels:

class MyConvLayer(nn.Module):

def __init__(self):

super(MyConvLayer , self). __init__ ()

self.conv1 = nn.Conv2d (256, 128, 1,)

self.conv2 = nn.Conv2d (128, 128, 3, padding =1)

self.conv3 = nn.Conv2d (128, 256, 1)

def forward(self , x):

out = torch.nn.functional.relu(self.conv1(x))

out = torch.nn.functional.relu(self.conv2(out))

out = torch.nn.functional.relu(self.conv3(out))

return out

An issue with this construction, however, is that it has too many trainable parameters. To
reduce the number of trainable parameters, we use the following split-transform-merge structure:
[apply a series of 1× 1, 3× 3, 1× 1 conv-ReLU operations with 256–4–4–256 channels] a total
of 32 times and sum the 32 outputs. The following figure illustrates this construction.

256, 1x1, 4
(Output: Bx4xwxh)

4, 3x3, 4
(Output: Bx4xwxh)

4, 1x1, 256
(Output: Bx256xwxh)

256, 1x1, 4
(Output: Bx4xwxh)

4, 3x3, 4
(Output: Bx4xwxh)

4, 1x1, 256
(Output: Bx256xwxh)

256, 1x1, 4
(Output: Bx4xwxh)

4, 3x3, 4
(Output: Bx4xwxh)

4, 1x1, 256
(Output: Bx256xwxh)

total 32

paths

.....

Input
Bx256xwxh

Output
Bx256xwxh

To clarify, all convolutions use biases and the strides are all equal to 1. ReLU is not applied
after the sum operation.

(a) How many trainable parameters are present in both constructions?

(b) In the following page, implement this convolution with the split-transform-merge struc-
ture.

3

class STMConvLayer(nn.Module):

def __init__(self):

super(STMConvLayer , self). __init__ ()

#--

Fill in code here

#--

def forward(self , x):

[apply 1x1conv with 4 output channels

apply 3x3conv with 4 output channels (with padding =1)

apply 1x1conv with 256 output channels] X 32

Add all 32 outputs

#--

Fill in code here

#--

return out

4

Problem 5: Regularization can mitigate double descent. Assume we have labels Y1, . . . , YNtrain ∈
R generated IID as Xi ∼ N (0, Id) and Yi ∼ X⊺

i β
⋆ + N (0, σ2) for i = 1, . . . , Ntrain, where

β⋆ ∈ Rd. Use d = 35 and σ = 0.5, and Ntrain = 300. Fit the data with a 2-layer ReLU
network fθ,W (x) = θ⊺ReLU(Wx) with θ ∈ Rp and W ∈ Rp×d. Assume Wij ∼ N (0, 1/p) IID.
For simplicity, assume W is fixed (not trained) once initialized. Train θ via

minimize
θ∈Rp

Ntrain∑
i=1

1

2
(fθ,W (Xi)− Yi)

2 +
λ

2
∥θ∥2

with λ > 0. Using the notation X̃i = ReLU(WXi) for i = 1, . . . , Ntrain and

X̃ =

 X̃⊺
1
...

X̃⊺
Ntrain

 ∈ RNtrain×p, Y =

 Y1
...

YNtrain

 ∈ RNtrain ,

we can equivalently express the optimization problem as

minimize
θ∈Rp

1

2
∥X̃θ − Y ∥2 + λ

2
∥θ∥2.

Train (compute the global minimum) by using linear algebra to solve the least-squares prob-
lem. With the fixed regularization parameter λ = 0.01, we indeed observe the double descent
phenomenon when we plot the test error against the number of parameters p. Show that the
double descent phenomenon vanishes if λ is tuned. Specifically, use the training dataset to (pre-
cisely) compute θ and use the validation dataset of size Nvalidation = 60 to (roughly) tune for
λ ∈ [10−2, 102]. (You should separately tune λ for each p, as you would do in practice.) Then,
use the test dataset of size Ntest = 30 to plot the test error for each p and its corresponding
optimal λ. Use the starter code ddescent.py.

Remark. This problem was inspired by [1].

Hint. The results should look something like:

References

[1] P. Nakkiran, P. Venkat, S. Kakade, and T. Ma. Optimal regularization can mitigate double
descent, ICLR, 2021.

5

