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E. Ryu
Fall 2022

Homework 8
Due 5pm, Wednesday, November 02, 2022

Problem 1: Transpose of downsampling. Consider the downsampling operator T : Rm×n →
R(m/2)×(n/2), defined as the average pool with a 2 × 2 kernel and stride 2. For the sake of
simplicity, assume m and n are even. Describe the action of T ⊤. More specifically, describe
how to compute T ⊤(Y ) for any Y ∈ R(m/2)×(n/2).

Clarification. The downsampling operator T is a linear operator (why?). Therefore, T has a
matrix representation A ∈ R(mn/4)×(mn) such that

T (X) = (A(X.reshape(mn))).reshape(m/2, n/2)

for all X ∈ Rm×n. The adjoint T ⊤ has two equivalent definitions. One definition is

T ⊤(Y ) = (A⊤(Y.reshape(mn/4))).reshape(m,n)

for all Y ∈ R(m/2)×(n/2). Another is

m/2∑
i=1

n/2∑
j=1

Yij(T (X))ij =
m∑
i=1

n∑
j=1

(T ⊤(Y ))ij(X)ij

for all X ∈ Rm×n and Y ∈ R(m/2)×(n/2).

Hint. To spoil the suspence, T ⊤ is a constant times the nearest neighbor upsampling. Explain
why in your answer.

Problem 2: Nearest neighbor upsampling. How is the nearest neighbor upsampling operator
an instance of transpose convolution? Specifically, describe how

layer = nn.Upsample(scale_factor=r, mode=’nearest ’)

where r is a positive integer, can be equivalently represented by

layer = nn.ConvTranspose2d (...)

layer.weight.data = ...

with ... appropriately filled in.

1



Problem 3: f-divergence. Let X and Y be two continuous random variables with densities pX
and pY . The f -divergence of X from Y is defined as

Df (X∥Y ) =

∫
f

(
pX(x)

pY (x)

)
pY (x) dx,

where f is a convex function such that f(1) = 0.

(a) Show that Df (X∥Y ) ≥ 0.

(b) Show that f = − log t and f = t log t correspond to the KL divergence.

Problem 4: Generalized inverse transform sampling. Let F : R → [0, 1] be the CDF of a random
variable, and let U ∼ Uniform([0, 1]). If F is strictly increasing and therefore invertible, then
F−1(U) is a random variable with CDF F , because

P(F−1(U) ≤ t) = P(U ≤ F (t))) = F (t).

When F is not necessarily invertible, the generalized inverse of F is G : (0, 1) → R with

G(u) = inf{x ∈ R |u ≤ F (x)}.

Show that G(U) with is a random variable with CDF F .

Hint. Use the fact that F is right-continuous, i.e., limh→0+ F (x+ h) = F (x) for all x ∈ R, and
that limx→−∞ F (x) = 0.

Problem 5: Change of variables formula for Gaussians. If φ : Rn → Rn is a one-to-one differ-
entiable function, Y = φ(X), and Y is a continuous random variable with density function pY ,
then X is a continuous random variable with density function

pX(x) = pY (φ(x))

∣∣∣∣det ∂φ∂x (x)
∣∣∣∣ .

Let Y ∈ Rn be a continuous random vector with density

pY (y) =
1

(2π)n/2
e−

1
2
∥y∥2 ,

i.e., Y ∼ N (0, I). Let X = AY + b with an invertible matrix A ∈ Rn×n and a vector b ∈ Rn.
Define Σ = AA⊺. Show that X is a continuous random vector with density

pX(x) =
1√

(2π)n detΣ
e−

1
2
(x−b)⊺Σ−1(x−b).
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Problem 6: Inverse permutation. Let Sn denote the group of length n permutations. Note
that the map i 7→ σ(i) is a bijection. Define σ−1 ∈ Sn as the permutation representing the
inverse of this map, i.e, σ−1(σ(i)) = i for i = 1, . . . , n. Describe an algorithm for computing
σ−1 given σ.

Clarification. In this class, we defined σ as a list of length n containing the elements of {1, . . . , n}
exactly once. The output of the algorithm, σ−1, should also be provided as a list.

Clarification. For this problem, it is sufficient to describe the algorithm in equations or pseu-
docode. There is no need to submit a Python script for this problem.

Problem 7: Permutation matrix. Given a permutation σ ∈ Sn, the permutation matrix of σ is
defined as

Pσ =


e⊺σ(1)
e⊺σ(2)
...

e⊺σ(n)

 ∈ Rn×n,

where e1, . . . , en ∈ Rn are the standard unit vectors. Show

(a) (Pσx)i = xσ(i) for any x ∈ Rn,

(b) P ⊺
σ = P−1

σ = Pσ−1 and

(c) |detPσ| = 1.

Hint. If the rows of U ∈ Rn×n are orthonormal, we say U is an orthogonal matrix. Orthogonal
matrices satisfy UU⊺ = U⊺U = I.
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