
Mathematical Foundations of Deep Neural Networks, M1407.001200
E. Ryu
Fall 2022

Homework 9
Due 5pm, Wednesday, November 09, 2022

Problem 1: Anomaly detection via AE. In this problem, you will use an autoencoder to per-
form anomaly detection between the MNIST and the Kuzushiji(崩し字)-MNIST (KMNIST)
[1] datasets. KMNIST contains handwritten Japanese characters. Download the starter code
anomaly_detection.py and implement the following steps. In step 1, load the MNIST and
KMNIST datasets, and split the MNIST training dataset into “training” and “validation” set.
(Together with the “test” set you will have three datasets in total.) In step 2, define the AE
model. In step 3, instantiate the model and select the Adam optimizer. In step 4, train the AE
with the training data X1, . . . , XN with loss

ℓ(θ, φ) =

N∑
i=1

∥Xi −Dφ(Eθ(Xi))∥2,

where Eθ is the encoder and Dφ is the decoder. Do not use the validation set in this stage. In
step 5, define the score function

s(X) = ∥X −Dφ(Eθ(X))∥2

and calculate the mean and standard deviation of

{s(Yi)}Mi=1

where Y1, . . . , YM are the validation data. Define a threshold to be mean + 3 standard devia-
tions, and define inputs with score function value exceeding this threshold to be anomalies. In
step 6, check how many of the MNIST images within the test set are classified as anomalies and
report the type I error rate. In step 7, check how many of the KMNIST images are classified
as non-anomalies and report the type II error rate.

Figure 1: KMNIST images
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Problem 2: 1D flow to Gaussian. Consider the flow

fθ(x) =
n∑

i=1

ewi(Φµi,exp(τi)(x)− 0.5),

where θ = (w1, . . . , wn, µ1, . . . , µn, τ1, . . . , τn) and

Φµ,σ(x) =
1

σ
√
2π

∫ x

−∞
exp

(
−1

2

(
s− µ

σ

)2
)

ds.

Note that fθ : R → R. Download the starter code normalizingFlow1d.py and fit the flow
model with n = 5 and pZ ∼ N (0, 1).

Remark. Since pZ is an unbounded distribution, we do not require w1, . . . , wn to be normalized.

Problem 3: Affine coupling layer with permutations. Consider the affine coupling layer defined
as follows. Let Ω ⊆ {1, . . . , n} and 0 < |Ω| < n. Define Ω∁ = {1, . . . , n}\Ω. For x ∈ Rn, define

xΩ ∈ R|Ω|, xΩ∁ ∈ Rn−|Ω|

to be the sub-vectors of x with the indices within Ω and Ω∁ selected. Define zΩ and zΩ∁

analogously for z ∈ Rn. The affine coupling layer is

zΩ = xΩ

zΩ∁ = esθ(xΩ) ⊙ xΩ∁ + tθ(xΩ),

where sθ : R|Ω| → Rn−|Ω| and tθ : R|Ω| → Rn−|Ω|. Show that

log

∣∣∣∣∂z∂x
∣∣∣∣ = 1⊺n−|Ω|sθ(xΩ).

Clarification. We are not assuming |Ω| = n/2.

Hint. Find a permutation σ such that

∂z

∂x
= Pσ−1

[
I 0

∗ diag(esθ(xΩ))

]
Pσ.
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Problem 4: DKL of continuous random variables. The KL-divergence between continuous
random variables X ∼ f and Y ∼ g, where f and g are probability density functions in Rd, is

DKL (X∥Y ) =

∫
Rd

f(x) log

(
f(x)

g(x)

)
dx.

(a) Show that
DKL (X∥Y ) ≥ 0.

(b) Show that if X = (X1, . . . , Xd) is a continuous random variable such that X1, . . . , Xd are
independent and Y = (Y1, . . . , Yd) is a continuous random variable such that Y1, . . . , Yd
are independent, then

DKL(X∥Y ) = DKL(X1∥Y1) + · · ·+DKL(Xd∥Yd).

Problem 5: DKL of Gaussian random variables. Let N (µ,Σ) denote the Gaussian distribution
with mean µ and covariance Σ. So if X ∼ N (µ,Σ), then

E[X] = µ, E[(X − µ)(X − µ)⊺] = Σ.

Show that

DKL (N (µ0,Σ0)∥N (µ1,Σ1)) =
1

2

(
tr
(
Σ−1
1 Σ0

)
+ (µ1 − µ0)

⊺Σ−1
1 (µ1 − µ0)− d+ log

(
detΣ1

detΣ0

))
,

where d is the underlying dimension of the random variables N (µ0,Σ0) and N (µ1,Σ1). Assume
Σ0 and Σ1 are positive definite.

Problem 6: When maximizing a lower bound is tight. Consider the optimization problem

maximize
θ∈Θ

f(θ).

Informally assume f is an intractable function, i.e., evaluating f(θ) is difficult. However, assume
there exists a decomposition

f(θ) = g(θ, ϕ) + h(θ, ϕ) ∀ϕ ∈ Φ,

where g is tractable, i.e., evaluating g(θ, ϕ) is easy, h(θ, ϕ) ≥ 0 for all θ ∈ Θ and ϕ ∈ Φ, and for
any θ ∈ Θ there exists a ϕ ∈ Φ such that h(θ, ϕ) = 0, i.e., for any θ ∈ Θ,

min
ϕ∈Φ

h(θ, ϕ) = 0

and the minimum is attained. Now we consider the following problem with the tractable objec-
tive function

maximize
θ∈Θ, ϕ∈Φ

g(θ, ϕ).

Show that the two optimization problems are equivalent in the sense that

argmax f = {θ | (θ, ϕ) ∈ argmax g}.

Hint. Use the fact that

sup
θ,ϕ

g(θ, ϕ) = sup
θ

(
sup
ϕ

g(θ, ϕ)

)
.

Remark. Training variational autoencoders involves maximizing the variational lower bound
(VLB/ELBO). If the encoder network is infinitely expressive (if the encoder network can rep-
resent any function), maximizing the VLB is equivalent to maximizing the log-likelihood. This
problem abstracts the explanation of why that is the case.
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