
Chapter 1:
Optimization and Stochastic

Gradient Descent
Mathematical Foundations of Deep Neural Networks

Spring 2024

Department of Mathematical Sciences

Ernest K. Ryu

Seoul National University

1

Optimization problem

In an optimization problem, we minimize or

maximize a function value, possibly subject to

constraints.

Decision variable: 𝜃

Objective function: 𝑓

Equality constraint: ℎ𝑖 𝜃 = 0 for 𝑖 = 1,… ,𝑚

Inequality constraint: 𝑔𝑗 𝜃 ≤ 0 for 𝑗 = 1,… , 𝑛

2

Minimization vs. maximization

In machine learning (ML), we often minimize a “loss”, but sometimes we maximize the

“likelihood”.

In any case, minimization and maximization are equivalent since

maximize 𝑓(𝜃) minimize – 𝑓(𝜃)

3

Feasible point and constraints

𝜃 ∈ ℝ𝑝 is a feasible point if it satisfies all constraints:

ℎ1 𝜃 = 0 𝑔1 𝜃 ≤ 0
⋮ ⋮

ℎ𝑚 𝜃 = 0 𝑔𝑛 𝜃 ≤ 0

Optimization problem is infeasible if there is no feasible point.

An optimization problem with no constraint is called an unconstrained optimization problem.

Optimization problems with constraints is called a constrained optimization problem.

4

Optimal value and solution

Optimal value of an optimization problem is

𝑝⋆ = inf 𝑓 𝜃 | 𝜃 ∈ ℝ𝑛, 𝜃 feasible

• 𝑝⋆ = ∞ if problem is infeasible

• 𝑝⋆ = −∞ is possible

• In ML, it is often a priori clear that 0 ≤ 𝑝⋆ < ∞.

If 𝑓 𝜃⋆ = 𝑝⋆, we say 𝜃⋆ is a solution or 𝜃⋆ is optimal.

• A solution may or may not exist.

• A solution may or may not be unique.

5

Example: Curve fitting

Consider setup with data 𝑋1, … , 𝑋𝑁 and corresponding labels 𝑌1, … , 𝑌𝑁 satisfying the

relationship

𝑌𝑖 = 𝑓⋆ 𝑋𝑖 + error

for 𝑖 = 1,… ,𝑁. Hopefully, “error” is small. True function 𝑓⋆ is unknown.

Goal is to find a function (curve) 𝑓 such that 𝑓 ≈ 𝑓⋆.

6

Example: Least-squares

In least-squares minimization, we solve

minimize
𝜃∈ℝ𝑝

1

2
𝑋𝜃 − 𝑌 2

where 𝑋 ∈ ℝ𝑁×𝑝 and Y ∈ ℝ𝑁. Equivalent to

minimize
𝜃∈ℝ𝑝

1

2

𝑖=1

𝑁

𝑋𝑖
⊤𝜃 − 𝑌𝑖

2

where 𝑋 =
𝑋1
⊤

⋮
𝑋𝑁
⊤

and 𝑌 =
𝑌1
⋮
𝑌𝑁

.

7

Example: Least-squares

To solve

minimize
𝜃∈ℝ𝑝

1

2
𝑋𝜃 − 𝑌 2

take grad and set it to 0:

𝑋⊤ 𝑋𝜃⋆ − 𝑌 = 0
𝜃⋆ = 𝑋⊤𝑋 −1𝑋⊤𝑌

Here, we assume 𝑋⊤𝑋 is invertible.

Make sure you understand why

𝛻𝜃
1

2
𝑋𝜃 − 𝑌 2 = 𝑋⊤ 𝑋𝜃 − 𝑌

8

LS is an instance of curve fitting

How is LS curve fitting? Define 𝑓𝜃 𝑥 = 𝑥⊤𝜃. Then LS becomes

minimize
𝜃∈ℝ𝑝

1

2

𝑖=1

𝑁

𝑓𝜃(𝑋𝑖) − 𝑌𝑖
2

and the solution hopefully satisfies

𝑌𝑖 = 𝑓𝜃 𝑋𝑖 + small.

Since 𝑋𝑖 and 𝑌𝑖 is assumed to satisfy

𝑌𝑖 = 𝑓⋆ 𝑋𝑖 + error

we are searching over linear functions (linear curves) 𝑓𝜃 that best fit (approximate) 𝑓⋆.

9

Local vs. global minima

𝜃⋆ is a local minimum if 𝑓 𝜃 ≥ 𝑓 𝜃⋆ for all feasible 𝜃

within a small neighborhood.

𝜃⋆ is a global minimum if 𝑓 𝜃 ≥ 𝑓 𝜃⋆ for all feasible 𝜃.

In the worst case, finding the global minimum of an

optimization problem is difficult*.

However, in deep learning, optimization problems are

often “solved” without any guarantee of global optimality.

10*The class of smooth non-convex optimization problems is NP-hard.

Gradient descent

Consider the unconstrained optimization problem

minimize
𝜃∈ℝ𝑝

𝑓(𝜃)

where 𝑓 is differentiable.

Gradient Descent (GD) algorithm:

𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝑘𝛻𝑓 𝜃𝑘 for 𝑘 = 0,1, … ,

where 𝜃0 ∈ ℝ𝑝 is the initial point and 𝛼𝑘 > 0 is the learning rate or the stepsize.

The terminology learning rate is common the machine learning literature while stepsize is

more common in the optimization literature.

11

Definition of “differentiability”

In math, a function is “differentiable” if its derivative exists

everywhere.

In deep learning (DL), a function is often said to be differentiable if its

derivative exists almost everywhere and the function is nice*. ReLU

activation functions are said to be differentiable.

We won’t be too concerned with this distinction.

12
*So no weird functions like the Cantor function. Absolute continuity probably captures the DL scholars’ working

definition of “differentiability”.

Why does GD converge?

𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝑘𝛻𝑓 𝜃𝑘

Taylor expansion of 𝑓 about 𝜃𝑘:

𝑓 𝜃 = 𝑓 𝜃𝑘 + 𝛻𝑓 𝜃𝑘
⊤
𝜃 − 𝜃𝑘 + 𝒪 𝜃 − 𝜃𝑘

2

Plug in 𝜃𝑘+1:

𝑓 𝜃𝑘+1 = 𝑓 𝜃𝑘 − 𝛼𝑘 𝛻𝑓 𝜃𝑘
2
+ 𝒪 𝛼𝑘

2

−𝛻𝑓 𝜃𝑘 is steepest descent direction. For small (cautious) 𝛼𝑘, GD step reduces function

value.

13

Is GD a “descent method”?

𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝑘𝛻𝑓 𝜃𝑘

Without further assumptions, −𝛻𝑓 𝜃𝑘 only gives you directional

information. How far should you go? How large should 𝛼𝑘 be?

A step of GD need not result in descent, i.e., 𝑓 𝜃𝑘+1 > 𝑓 𝜃𝑘 is

possible.

We need an assumption that ensures the first-order Taylor expansion

is a good approximation within a sufficiently large neighborhood.

14

What can we prove?

Without further assumptions, there is no hope of finding the global minimum.

We cannot prove the function value converges to global optimum. We instead prove

𝛻𝑓 𝜃𝑘 → 0. Roughly speaking, this is similar, but weaker than proving that 𝜃𝑘 converges

to a local minimum.*

15
*Without further assumptions, we cannot show that 𝜃𝑘 converges to a limit, and even 𝜃𝑘 does converge to a limit, we cannot guarantee that that limit is

not a saddle point or even a local maximum. Nevertheless, people commonly use the argument that 𝜃𝑘 usually converges and that it is unlikely that the

limit is a local maximum or a saddle point.

Convergence of GD

Theorem) Assume 𝑓:ℝ𝑝 → ℝ is differentiable, 𝛻𝑓 is 𝐿-Lipschitz continuous, and

inf
𝜃∈ℝ𝑝

𝑓(𝜃) > −∞. Then

𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝛻𝑓 𝜃𝑘

with 𝛼 ∈ 0,
2

𝐿
satisfies 𝛻𝑓 𝜃𝑘 → 0.

16

Lipschitz gradient lemma

We say 𝛻𝑓:ℝ𝑝 → ℝ𝑝 is 𝐿-Lipschitz if

𝛻𝑓 𝑥 − 𝛻𝑓(𝑦) ≤ 𝐿 𝑥 − 𝑦 ∀𝑥, 𝑦 ∈ ℝ𝑝.

Roughly, this means 𝛻𝑓 does not change rapidly. As a consequence, we can trust the first-order Taylor
expansion on a non-infinitesimal neighborhood.

Lemma) Let 𝑓:ℝ𝑝 → ℝ be differentiable and 𝛻𝑓:ℝ𝑝 → ℝ𝑝 be 𝐿-Lipschitz. Then

𝑓 𝜃 + 𝛿 ≤ 𝑓 𝜃 + 𝛻𝑓 𝜃 ⊤ 𝛿 +
𝐿

2
𝛿 2 ∀𝜃, 𝛿 ∈ ℝ𝑝.

𝑓 𝜃 + 𝛻𝑓 𝜃 ⊤ 𝛿 −
𝐿

2
𝛿 2 ≤ 𝑓 𝜃 + 𝛿 is also true, but we do not need this other direction. Together the

inequalities imply

𝑓 𝜃 + 𝛿 − (𝑓 𝜃 + 𝛻𝑓 𝜃 ⊤ 𝛿) ≤
𝐿

2
𝛿 2 ∀𝜃, 𝛿 ∈ ℝ𝑝.

17

(I don’t think this proof is important enough to cover in class, but I provide it here for
completeness.)

Proof) Define 𝑔:ℝ → ℝ as 𝑔 𝑡 = 𝑓(𝜃 + 𝑡𝛿). Then 𝑔 is differentiable and

𝑔′ 𝑡 = 𝛻𝑓 𝜃 + 𝑡𝛿 ⊤𝛿.

Note 𝑔′ is (𝐿 𝛿 2)-Lipschitz continuous since

𝑔′ 𝑡1 − 𝑔′(𝑡0) = 𝛻𝑓 𝜃 + 𝑡1𝛿 − 𝛻𝑓 𝜃 + 𝑡0𝛿
⊤
𝛿

≤ 𝛻𝑓 𝜃 + 𝑡1𝛿 − 𝛻𝑓 𝜃 + 𝑡0𝛿 𝛿
≤ 𝐿 𝑡1𝛿 − 𝑡0𝛿 𝛿
= 𝐿 𝛿 2 𝑡1 − 𝑡0

Finally, we conclude with

𝑓 𝜃 + 𝛿 = 𝑔 1 = 𝑔 0 +න
0

1

𝑔′ 𝑡 d𝑡

≤ 𝑓 𝜃 + න
0

1

𝑔′ 0 + 𝐿 𝛿 2𝑡 d𝑡

= 𝑓 𝜃 + 𝛻𝑓 𝜃 ⊤𝛿+
𝐿

2
𝛿 2

∎

18

Summability Lemma

Lemma) Let 𝑉0, 𝑉1, … ∈ ℝ and 𝑆0, 𝑆1, … ∈ ℝ be nonnegative sequences satisfying

𝑉𝑘+1 ≤ 𝑉𝑘 − 𝑆𝑘

for 𝑘 = 0, 1, 2, …. Then 𝑆𝑘 → 0.

Key idea. 𝑆𝑘 measures progress (decrease) made in iteration 𝑘. Since 𝑉𝑘 ≥ 0, 𝑉𝑘 cannot
decrease forever, so the progress (magnitude of 𝑆𝑘) must diminish to 0.

Proof) Sum the inequality from 𝑖 = 0 to 𝑘

𝑉𝑘+1 +

𝑖=0

𝑘

𝑆𝑖 ≤ 𝑉0

Let 𝑘 → ∞

𝑖=0

∞

𝑆𝑖 ≤ 𝑉0 − lim
𝑘→∞

𝑉𝑘 ≤ 𝑉0

Since σ𝑖=0
∞ 𝑆𝑖 < ∞, 𝑆𝑖 → 0 ∎

19

Convergence of GD: Proof

Theorem) Under the assumptions, if 𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝛻𝑓 𝜃𝑘 and 𝛼 ∈ 0,
2

𝐿
, then

𝛻𝑓 𝜃𝑘 → 0.

Proof) Use Lipschitz gradient lemma with 𝜃 = 𝜃𝑘 and 𝛿 = −𝛼𝛻𝑓 𝜃𝑘 to get

𝑓 𝜃𝑘+1 ≤ 𝑓 𝜃𝑘 − 𝛼 1 −
𝛼𝐿

2
𝛻𝑓 𝜃𝑘

2

and

𝑓 𝜃𝑘+1 − inf
𝜃
𝑓(𝜃) ≤ 𝑓 𝜃𝑘 − inf

𝜃
𝑓 𝜃 − 𝛼 1 −

𝛼𝐿

2
𝛻𝑓 𝜃𝑘

2

By the summability lemma, 𝛻𝑓 𝜃𝑘
2
→ 0 and thus 𝛻𝑓 𝜃𝑘 → 0.

∎
20

≥ 0 ≥ 0
> 0 for 𝛼 ∈ 0,

2

𝐿

Purpose of GD convergence analysis

In deep learning, the condition that 𝛻𝑓 is 𝐿-Lipschitz is usually not true*.

Rather, the purpose of these mathematical analyses is to obtain qualitative insights; this

convergence proof and the exercises of hw1 are meant to provide you with intuition on the

training dynamics of GD and SGD.

Because analyzing deep learning systems as is rigorously is usually difficult, people usually

• analyze modified (simplified) setups rigorously or

• analyze the full setup heuristically.

In both cases, the goal is to obtain qualitative insights, rather than theoretical guarantees.

21*Due to the use of ReLU activation functions.

Finite-sum optimization problems

A finite-sum optimization problem has the structure

minimize
𝜃∈ℝ𝑝

1

𝑁

𝑖=1

𝑁

𝑓𝑖(𝜃) ≔ 𝐹 𝜃

Finite-sum is ubiquitous in ML. 𝑁 usually corresponds to the number of data points.

Using GD

𝜃𝑘+1 = 𝜃𝑘 −
𝛼𝑘
𝑁

𝑖=1

𝑁

𝛻𝑓𝑖 𝜃
𝑘

is impractical when 𝑁 is large since
1

𝑁
σ𝑖=1
𝑁 ⋅ takes too long to compute.

22

Finite-sum ≅ Expectation

Although the finite-sum optimization problem has no inherent randomness, we can

reformulate this problem with randomness:

minimize
𝜃∈ℝ𝑝

𝔼𝐼 𝑓𝐼(𝜃)

where 𝐼~Uniform 1,… ,𝑁 . To see the equivalence,

𝔼𝐼 𝑓𝐼(𝜃) =

𝑖=1

𝑁

𝑓𝑖(𝜃)ℙ 𝐼 = 𝑖 =
1

𝑁

𝑖=1

𝑁

𝑓𝑖(𝜃) = 𝐹 𝜃

23

Stochastic gradient descent (SGD)

Stochastic gradient descent (SGD)

𝑖(𝑘)~Uniform{1,… ,𝑁}
𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝑘𝛻𝑓𝑖(𝑘)(𝜃

𝑘)

for 𝑘 = 0,1, … , where 𝜃0 ∈ ℝ𝑝 is the initial point and 𝛼𝑘 > 0 is the learning rate.

𝛻𝑓𝑖 𝑘 𝜃𝑘 is a stochastic gradient of 𝐹 at 𝜃𝑘, i.e.,

𝔼 𝛻𝑓𝑖 𝑘 𝜃𝑘 = 𝛻𝔼 𝑓𝑖 𝑘 𝜃𝑘 = 𝛻𝐹 𝜃𝑘

24

GD vs. SGD

GD uses all indices 𝑖 = 1,… ,𝑁 every iteration

𝜃𝑘+1 = 𝜃𝑘 −
𝛼𝑘
𝑁

𝑖=1

𝑁

𝛻𝑓𝑖 𝜃
𝑘

SGD uses only a single random index 𝑖(𝑘) every iteration

𝑖(𝑘)~Uniform{1,… ,𝑁}
𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝑘𝛻𝑓𝑖(𝑘)(𝜃

𝑘)

When size of the data 𝑁 is large, SGD is often more effective than GD.

25

Digression: Randomized algorithms

A randomized algorithm utilizes artificial randomness to solve an otherwise deterministic

problem.

There are problems* for which a randomized algorithm is faster than the best known

deterministic algorithm.

The most famous example of this is SGD in deep learning.

26* The second most famous example is testing whether a given number is prime.

Why does SGD converge?

Plug 𝜃𝑘+1 into Taylor expansion of 𝐹 about 𝜃𝑘:

𝐹 𝜃𝑘+1 = 𝐹 𝜃𝑘 − 𝛼𝑘𝛻𝐹 𝜃𝑘
⊤
𝛻𝑓𝑖 𝑘 𝜃𝑘 + 𝒪 𝛼𝑘

2

Take expectation on both sides:

𝔼𝑘 𝐹 𝜃𝑘+1 = 𝐹 𝜃𝑘 − 𝛼𝑘 𝛻𝐹 𝜃𝑘
2
+ 𝒪 𝛼𝑘

2

(𝔼𝑘 is expectation conditioned on 𝜃𝑘)

−𝛻𝑓𝑖 𝑘 𝜃𝑘 is descent direction in expectation. For small (cautious) 𝛼𝑘, SGD step reduces

function value in expectation.

27

Variants of SGD for finite-sum problems

Consider

minimize
𝜃∈ℝ𝑝

1

𝑁

𝑖=1

𝑁

𝑓𝑖(𝜃)

SGD can be generalized to

𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝑘𝑔
𝑘,

where 𝑔𝑘 is a stochastic gradient. The choice 𝑔𝑘 = 𝛻𝑓𝑖(𝑘) 𝜃
𝑘 is just one option.

28

Sampling with replacement lemma

Lemma) Let 𝑋1, … , 𝑋𝑁 ∈ ℝ𝑝 be given (non-random) vectors. Let
1

𝑁
σ𝑖=1
𝑁 𝑋𝑖 = 𝜇. Let

𝑖 1 , … , 𝑖 𝐵 ⊆ 1,… ,𝑁 be random indices. Then

𝔼
1

𝐵

𝑏=1

𝐵

𝑋𝑖 𝑏 = 𝜇

Proof)

𝔼
1

𝐵

𝑏=1

𝐵

𝑋𝑖 𝑏 =
1

𝐵

𝑏=1

𝐵

𝔼𝑋𝑖 𝑏 =
1

𝐵

𝑏=1

𝐵

𝜇 = 𝜇

∎

29

Minibatch SGD with replacement

Minibatch SGD with replacement

𝑖 𝑘, 1 , … , 𝑖 𝑘, 𝐵 ~Uniform 1,… , 𝑁

𝜃𝑘+1 = 𝜃𝑘 −
𝛼𝑘
𝐵

𝑏=1

𝐵

𝛻𝑓𝑖 𝑘,𝑏 𝜃𝑘

To clarify, we sample 𝐵 out of 𝑁 indices with replacement, i.e., the same index can be

sampled multiple times.

By previous lemma,
1

𝐵
σ𝑏=1
𝐵 𝛻𝑓𝑖 𝑘,𝑏 𝜃𝑘 is a stochastic gradient of 𝐹 at 𝜃𝑘

30

Random permutations

A permutation 𝜎 is a list of length 𝑁 containing integers 1,… ,𝑁 all exactly once. We write 𝑆𝑛
for the set of permutations of length 𝑁.

There are 𝑁! possible permutations of length 𝑁.

A random permutation is a permutation chosen randomly with uniform probability; each of

the 𝑁! permutations are chosen with probability
1

𝑁!
.

31The 𝑁! count comes from a basic counting argument. A random permutation can be efficiently sampled using the Fisher–Yates–Knuth shuffle algorithm.

Digression: 0-based indexing and
random permutations in Python
In Python, generate random permutations with

np.random.permutation(np.arange(N))

In Python, array indices start at 0, although in math and in human language, counting starts

at 1. We use permutations containing 0,1, … ,𝑁 − 1 in our Python code.

32

Sampling without replacement lemma

Lemma) Let 𝑋1, … , 𝑋𝑁 ∈ ℝ𝑝 be given (non-random) vectors. Let
1

𝑁
σ𝑖=1
𝑁 𝑋𝑖 = 𝜇. Let 𝜎 be a

random permutation. Then

𝔼
1

𝐵

𝑏=1

𝐵

𝑋𝜎(𝑏) = 𝜇

Proof)

𝔼
1

𝐵

𝑏=1

𝐵

𝑋𝜎(𝑏) =
1

𝐵

𝑏=1

𝐵

𝔼𝑋𝜎(𝑏) =
1

𝐵

𝑏=1

𝐵

𝜇 = 𝜇

∎

33

Minibatch SGD without replacement

Minibatch SGD without replacement

𝜎𝑘~permutation 𝑁

𝜃𝑘+1 = 𝜃𝑘 −
𝛼𝑘
𝐵

𝑏=1

𝐵

𝛻𝑓𝜎𝑘 𝑏 𝜃𝑘

We assume 𝐵 ≤ 𝑁. To clarify, we sample 𝐵 out of 𝑁 indices without replacement, i.e., the

same index cannot be sampled multiple times.

By previous lemma,
1

𝐵
σ𝑏=1
𝐵 𝛻𝑓𝜎𝑘 𝑏 𝜃𝑘 is a stochastic gradient of 𝐹 at 𝜃𝑘.

34

How to choose batch size 𝐵?

Note 𝐵 = 1 minibatch SGD becomes SGD.

Mathematically (measuring performance per iteration)

• Use large batch is when noise/randomness is large.

• Use small batch is when noise/randomness is small.

Practically (measuring performance per unit time)

• Large batch allows more efficient computation on GPUs.

• Often best to increase batch size up to the GPU memory limit.

35

GD and SGD without differentiability

In DL, SGD is applied to nice continuous but non-differentiable* functions that are

differentiable almost everywhere.

In this case, if we choose 𝜃0 ∈ ℝ𝑛 randomly and run

𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝑘𝛻𝑓(𝜃
𝑘)

the algorithm is usually well-defined, i.e., 𝜃𝑘 never hits a point of non-differentiability.

With a proof or not, GD and SGD are applied to non-differentiable minimization in ML. The

absence of differentiability* does not seem to cause serious problems.

*So these are neural networks built with ReLU activation functions. 36

Cyclic SGD

Consider the sequence of indices

mod 𝑘,𝑁 + 1 𝑘=0,1,… = 1, 2, … ,𝑁, 1, 2, … , 𝑁,…

Here, mod 𝑘,𝑁 is the remainder of 𝑘 when divided by 𝑁. In Python, this is written with k%N.

Cyclic SGD:

𝜃𝑘+1 = 𝜃𝑘 − 𝛼k𝛻𝑓mod 𝑘,𝑁 +1(𝜃
𝑘)

To clarify, this samples the indices in a (deterministic) cyclic order.

37

Cyclic (mini-batch) SGD

Strictly speaking, cyclic SGD is not an instance of SGD as unbiased estimation property lost.

Advantage:

• Uses all indices (data) every 𝑁 iterations.

Disadvantage:

• Worse than SGD in some cases, theoretically and empirically.

• In DL, neural networks can learn to anticipate cyclic order.

38

Shuffled Cyclic SGD

Shuffled Cyclic SGD:

𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝑘𝛻𝑓
𝜎

𝑘
𝑁 mod 𝑘,𝑁 +1

(𝜃𝑘)

where 𝜎0, 𝜎1, … is a sequence of random permutations, i.e., we shuffle the order every cycle.

Again, strictly speaking, shuffled cyclic SGD is not an instance of SGD as unbiased estimation

property lost.

Advantages :

• Uses all indices (data) every 𝑁 iterations.

• Neural network cannot learn to anticipate data order.

• Empirically best performance.

Disadvantages:

• Theory not as strong as regular SGD.

39

Which variant of SGD to use?

Theoretical comparison of SGD variants:

• Not that easy.

• Result does not strongly correlate with practical performance in DL.

In DL, the most common choice is

• shuffled cyclic minibatch SGD (without replacement) and

• batchsize 𝐵 is as large as possible within the GPU memory limit.

One can generally consider this to be the default option.

40

Epoch in finite-sum optimization and
machine learning training
An epoch is loosely defined as the unit of optimization or training progress of processing all

indices or data once.

• 1 iteration of GD constitutes an epoch.

• 𝑁 iterations of SGD, cyclic SGD, or shuffled cyclic SGD constitute an epoch.

• 𝑁/𝐵 iterations of minibatch SGD constitute an epoch.

Epoch is often a convenient unit for counting iterations compared to directly counting the

iteration number.

41

SGD with general expectation

Consider an optimization problem with its objective defined with a general expectation

minimize
𝜃∈ℝ𝑝

𝔼𝜔 𝑓𝜔(𝜃) ≔ 𝐹 𝜃

Here, 𝜔 is a random variable. We will encounter these expectations (non-finite sum) when we talk about
generative models.

For this setup, the SGD algorithm is

𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝑘𝛻𝑓𝜔𝑘(𝜃𝑘)

where 𝜔0, 𝜔1, … are IID random samples of 𝜔. If 𝛻𝜃𝔼𝜔 𝑓𝜔 𝜃 = 𝔼𝜔 𝛻𝜃𝑓𝜔 𝜃 , then 𝛻𝑓𝜔𝑘(𝜃𝑘) is a stochastic
gradient of 𝐹 𝜃 at 𝜃𝑘. (Make sure you understand why the previous SGD for the finite-sum setup is a
special case of this.)

GD for this setup is

𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝑘𝔼𝜔 𝛻𝜃𝑓𝜔 𝜃𝑘

However, if the expectation is difficult to compute GD is impractical and SGD is preferred.

42

