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Supervised learning setup
We have data 𝑋!, … , 𝑋" ∈ 𝒳 and corresponding labels 𝑌!, … , 𝑌" ∈ 𝒴.

Example) 𝑋# is the 𝑖th email and 𝑌# ∈ {−1,+1} denotes whether 𝑋# is a spam email.
Example) 𝑋# is the 𝑖th image and 𝑌# ∈ {0, … , 9} denotes handwritten digit.

Assume there is a true unknown function
𝑓⋆: 𝒳 → 𝒴

mapping data to its label. In particular, 𝑌# = 𝑓⋆ 𝑋# for 𝑖 = 1,… , 𝑁.

The goal of supervised learning is to use 𝑋!, … , 𝑋" and 𝑌!, … , 𝑌" to find 𝑓 ≈ 𝑓⋆.
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Formulating the right objective
The goal of “finding 𝑓 ≈ 𝑓⋆” must be further quantified.

Assume a loss function such that ℓ 𝑦!, 𝑦% = 0 if 𝑦! = 𝑦% and ℓ 𝑦!, 𝑦% > 0 if 𝑦! ≠ 𝑦%.

Attempt 1)
minimize

&
sup
'∈𝒳

ℓ(𝑓 𝑥 , 𝑓⋆ 𝑥 )

Problems:
• There is a trivial solution 𝑓 = 𝑓⋆.
• Minimization over all functions 𝑓 is in general algorithmically intractable1. How would one 

represent a 𝑓 on a computer?

31The space of all functions is an infinite-dimensional space. We want our optimization variable to be a finite-dimensional vector.



Formulating the right objective
Attempt 2) Restrict search to a class of parametrized functions 𝑓*(𝑥) where 𝜃 ∈ Θ ⊆ ℝ+, i.e., 
only consider 𝑓 ∈ {𝑓* | 𝜃 ∈ Θ} where Θ ⊆ ℝ+. Then solve

minimize
&∈{&!|*∈.}

sup
'∈𝒳

ℓ(𝑓 𝑥 , 𝑓⋆ 𝑥 )

which is equivalent to
minimize

*∈.
sup
'∈𝒳

ℓ(𝑓* 𝑥 , 𝑓⋆ 𝑥 )

Problems:
• The supremum sup

'∈𝒳
is computationally inconvenient to deal with.

• Objective is too pessimistic. We do not need to do well all the time, we just need to do 
well on average.
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Formulating the right objective
Attempt 3) Take a finite sample* 𝑋!, … , 𝑋" ∈ 𝒳 and corresponding labels 𝑌!, … , 𝑌" ∈ 𝒴. Then 
solve

minimize
*∈.

1
𝑁
J
#0!

"

ℓ(𝑓* 𝑋# , 𝑓⋆ 𝑋# )

which is equivalent to

minimize
*∈.

1
𝑁
J
#0!

"

ℓ(𝑓* 𝑋# , 𝑌#)

This is the standard form of the optimization problem (except regularizers) we consider in 
the supervised learning. We will talk about regularizers later.

5*It is common to assume 𝑋!, … , 𝑋" are IID samples from a certain probability distribution. Instead of this statistical view, we take the curve-fitting view.



Aside: Minimum vs. infimum
We clarify terminology.
• “Minimize”: Used to specify an optimization problem.
• “Minimizer”: A solution to a minimization problem.
• “Minimum”: Used to specify the smallest objective value and asserts a minimizer exists.
• “Infimum”: Used to specify the limiting smallest objective value, but a minimizer may not 

exist.

Analogous definitions with “maximize”, “maximizer”, “maximum”, and “supremum”
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Training is optimization
In machine learning, the anthropomorphized word “training” refers to solving an optimization 
problem such as

minimize
*∈.

1
𝑁
J
#0!

"

ℓ(𝑓* 𝑋# , 𝑌#)

In most cases, SGD or variants of SGD are used.

We call 𝑓* the machine learning model or the neural network.
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Least-squares regression

In LS, 𝒳 = ℝ+, 𝒴 = ℝ, Θ = ℝ+, 𝑓* 𝑥 = 𝑥1𝜃, and ℓ 𝑦!, 𝑦% = !
%
𝑦! − 𝑦% %.

So we solve

minimize
*∈ℝ%

1
𝑁
J
#0!

"
1
2
𝑓* 𝑋# − 𝑌# % =

1
𝑁
J
#0!

"
1
2
𝑋#1𝜃 − 𝑌#

% =
1
2𝑁

𝑋𝜃 − 𝑌 %

where 𝑋 =
𝑋!1
⋮
𝑋"1

and 𝑌 =
𝑌!
⋮
𝑌"

.

The model 𝑓* 𝑥 = 𝑥1𝜃 is a shallow neural network. (The terminology will makes sense 
when contrasted with deep neural networks.)
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Binary classification and linear 
separability
In binary classification, we have 𝒳 = ℝ+ and 𝒴 = {−1,+1}.

The data is linearly separable if there is a hyperplane defined by (𝑎3456, 𝑏3456) such that

𝑦 = O 1 if 𝑎34561 𝑥 + 𝑏3456 > 0
−1 otherwise.

9
separating 
hyperplanenot linearly separable
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Linear classification
Consider linear (affine) models

𝑓7,9 𝑥 = O+1 if 𝑎1𝑥 + 𝑏 > 0
−1 otherwise.

Consider the loss function 

ℓ 𝑦!, 𝑦% =
1
2
|1 − 𝑦!𝑦%| = O0 if 𝑦! = 𝑦%

1 if 𝑦! ≠ 𝑦%

The optimization problem

minimize
7∈ℝ%, 9∈ℝ

1
𝑁
J
#0!

"

ℓ(𝑓7,9 𝑋# , 𝑌#)

has a solution with optimal value 0 when the data is linearly separable.
Problem: Optimization problem is discontinuous and thus cannot be solved with SGD.
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Relaxing into continuous formulation
Even if the underlying function or phenomenon to approximate is discontinuous, the model 
needs to be continuous* in its parameters. The loss function also needs to be continuous. 
(The prediction need not be continuous.)

We consider a relaxation, is a continuous proxy of the discontinuous thing. Specifically, 
consider

𝑓7,9 𝑥 = 𝑎1𝑥 + 𝑏
Once trained, 𝑓7,9 𝑥 > 0 means the neural network is predicting 𝑦 = +1 to be “more likely”, 
and 𝑓7,9 𝑥 < 0 means the neural network is predicting 𝑦 = −1 to be “more likely”. 

Therefore, we train the model to satisfy
𝑌#𝑓7,9 𝑋# > 0 for 𝑖 = 1,… , 𝑁.

11*There are advanced deep learning techniques for learning discontinuous models, but we will not cover them in this course.



Relaxing into continuous formulation
Problem with strict inequality 𝑌#𝑓7,9 𝑋# > 0:

• Strict inequality has numerical problems with round-off error.

• The magnitude 𝑓7,9 𝑥 can be viewed as the confidence* of the prediction, but having a 
small positive value for 𝑌#𝑓7,9 𝑋# indicates small confidence of the neural network.

We modify our model’s desired goal to be 𝑌#𝑓7,9 𝑋# ≥ 1.

12
*This “confidence” is related to the classifier’s margin in the standard SVM derivation. The standard derivation is more principled, but it does not extend to 
the general setup of deep neural networks. We instead consider the presented heuristic argument as it is more general.



Support vector machine (SVM)
To train the neural network to satisfy 

0 ≥ 1 − 𝑌#𝑓7,9 𝑋# for 𝑖 = 1,… , 𝑁.

we minimize the excess positive component of the RHS

minimize
7∈ℝ%,9∈ℝ

1
𝑁
J
#0!

"

max{0, 1 − 𝑌#𝑓7,9 𝑋# }

which is equivalent to

minimize
7∈ℝ%,9∈ℝ

1
𝑁
J
#0!

"

max{0, 1 − 𝑌# 𝑎1𝑋# + 𝑏 }

If the optimal value is 0, then the data is linearly separable.
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Support vector machine (SVM)
This formulation is called the support vector machine (SVM)*

minimize
7∈ℝ%,9∈ℝ

1
𝑁
J
#0!

"

max{0, 1 − 𝑌# 𝑎1𝑋# + 𝑏 }

It is also common to add a regularizer

minimize
7∈ℝ%,9∈ℝ

1
𝑁
J
#0!

"

max{0, 1 − 𝑌# 𝑎1𝑋# + 𝑏 } +
𝜆
2
𝑎 %

We will talk about regularizers later.

14*Cortes and Vapnik, Support-vector networks, Machine Learning, 1995.



Prediction with SVM
Once the SVM is trained, make predictions with

sign 𝑓7,9 𝑥 = sign 𝑎1𝑥 + 𝑏

when 𝑓7,9 𝑥 = 0, we assign sign 𝑓7,9 𝑥 arbitrarily.

Note that the prediction is discontinuous, but predictions are in −1,+1  so it must be 
discontinuous.

If ∑#0!" max{0, 1 − 𝑌#𝑓7,9 𝑋# } = 0, then sign 𝑓7,9 𝑋# = 𝑌# for 𝑖 = 1,… , 𝑁, i.e., the neural 
network predicts the known labels perfectly. (Make sure you understand this.) Of course, it 
is a priori not clear how accurate the prediction will be for new unseen data.
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SVM is a relaxation
Directly minimizing the prediction error on the data is

minimize
7∈ℝ%, 9∈ℝ

1
𝑁
J
#0!

"
1
2
1 − 𝑌# sign 𝑓7,9 𝑋#

The optimization we instead solve is

minimize
7∈ℝ%,9∈ℝ

1
𝑁
J
#0!

"

max{0, 1 − 𝑌#𝑓7,9 𝑋# }

Let the optimal values be 𝑝!⋆ and 𝑝%⋆. Again, SVM is of as a relaxation of the first. The two 
are not equivalent. (An equivalent formulation is not referred to as a relaxation.)
• It is possible to show* that 𝑝!⋆ = 0 if and only if 𝑝%⋆ = 0.
• If 𝑝!⋆ > 0 and 𝑝%⋆ > 0, a solution to the first problem need not correspond to a solution to 

the second problem, i.e., there solutions may be completely different.

16*The proof relies on the fact that 𝑌#𝑓$,& 𝑋# is linear in (𝑎, 𝑏). 



Relaxed supervised learning setup
We relax the supervised learning setup to predict probabilities, rather than make point 
predictions*. So, labels are generated based on data, perhaps randomly. Consider data 
𝑋!, … , 𝑋" ∈ 𝒳 and labels 𝑌!, … , 𝑌" ∈ 𝒴. Assume there exists a function

𝑓⋆: 𝒳 → 𝒫(𝒴)
where 𝒫(𝒴) denotes the set of probability distributions on 𝒴.
Assume the generation of 𝑌$ given 𝑋$ is independent of 𝑌% and 𝑋% for 𝑗 ≠ 𝑖.

Example) 𝑓 𝑋 = 0.8
0.2 in dog vs. cat classifier.

Example) An email saying “Buy this thing at our store!” may be spam to some people, but it may 
not be spam to others.

The relaxed SL setup is more general and further realistic.

17*By point prediction, I mean predicting a single label, rather than a distribution of labels.



KL-divergence
Let 𝑝, 𝑞 ∈ ℝ: represent probability masses, i.e., 𝑝# ≥ 0 for 𝑖 = 1,… , 𝑛 and ∑#0!: 𝑝# = 1 and the 
same for 𝑞. The Kullback-Leibler-divergence (KL-divergence) from q to 𝑝 is

𝐷;<(𝑝‖q)=J
#0!

:

𝑝#log
𝑝#
𝑞#

= −J
#0!

:

𝑝#log 𝑞# +J
#0!

:

𝑝#log 𝑝#

Properties:
• Not symmetric, i.e., 𝐷;<(𝑝‖q) ≠ 𝐷;<(𝑞‖p).
• 𝐷;<(𝑝‖q)>0 if 𝑝 ≠ 𝑞 and 𝐷;<(𝑝‖q)=0 if 𝑝 = 𝑞.
• 𝐷;<(𝑝‖q)=∞ is possible. (Further detail on the next slide.)

Often used as a “distance” between 𝑝 and 𝑞 despite not being a metric.
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= 𝐻(𝑝, 𝑞)
cross entropy of 𝑞

relative to 𝑝

= −𝐻(𝑝)
entropy of 𝑝



KL-divergence

𝐷&'(𝑝‖q)=:
$(!

)

𝑝$log
𝑝$
𝑞$

Clarification: Use the convention

• 0log *
*
= 0 (when 𝑝$ = 𝑞$ = 0)

• 0log *
+!

= 0 if 𝑞$ > 0

• 𝑝$log
,!
*

= ∞ if 𝑝$ > 0

Probabilistic interpretation:
𝐷&'(𝑝‖q)=𝔼- log

𝑝-
𝑞-

with the random variable 𝐼 such that ℙ 𝐼 = 𝑖 = 𝑝$.
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Empirical distribution for binary 
classification
In basic binary classification, define the empirical distribution

𝒫 𝑦 =
1
0 if 𝑦 = −1
0
1 if 𝑦 = +1

More generally, the empirical distribution describes the data we have seen. In this context, 
we have only seen one label per datapoint, so our empirical distributions are one-hot 
vectors.

(If there are multiple annotations per data point 𝑥 and they don’t agree, then the empirical 
distribution may not be one-hot vectors. For example, given the same email, some users 
may flag it as spam while others consider it useful information.)
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Logistic regression
Logistic regression (LR), is another model for binary classification:
1. Use the model

𝑓7,9 𝑥 =

1
1 + 𝑒7,'=9
𝑒7,'=9

1 + 𝑒7,'=9

=

1
1 + 𝑒7,'=9

1
1 + 𝑒>(7,'=9)

2. Minimize KL-Divergence (or cross entropy) from the model 𝑓7,9 𝑋# output probabilities to 
the empirical distribution 𝒫 𝑌# .

minimize
7∈ℝ%,9∈ℝ

J
#0!

"

𝐷;<(𝒫(𝑌#)‖𝑓7,9(𝑋#))
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= ℙ(𝑦 = −1)

= ℙ(𝑦 = +1)



Logistic regression
Note:

minimize
-∈ℝ!,0∈ℝ

&
123

4

𝐷56(𝒫(𝑌1)‖𝑓-,0(𝑋1))

⇕

minimize
-∈ℝ!,0∈ℝ

&
123

4

𝐻(𝒫(𝑌1), 𝑓-,0(𝑋1)) + (terms independent of 𝑎, 𝑏)

⇕

minimize
-∈ℝ!,0∈ℝ

&
123

4

log 1 + exp −𝑌1 𝑎7𝑋1 + 𝑏

⇕

minimize
-∈ℝ!,0∈ℝ

1
𝑁
&
123

4

ℓ 𝑌1 𝑎7𝑋1 + 𝑏

where ℓ 𝑧 = log(1 + 𝑒89).
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Point prediction with logistic regression
When performing point prediction with LR, 𝑎1𝑥 + 𝑏 > 0 means ℙ 𝑦 = +1 > 0.5 and vice 
versa.

Once the LR is trained, make predictions with
sign 𝑎1𝑥 + 𝑏

when 𝑎1𝑥 + 𝑏 = 0, we assign sign 𝑎1𝑥 + 𝑏 arbitrarily. This is the same as SVM.

Again, it is a priori not clear how accurate the prediction will be for new unseen data.
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SVM vs. LR
Both support vector machine and logistic regression can be written as

minimize
7∈ℝ%,9∈ℝ

1
𝑁
J
#0!

"

ℓ 𝑌# 𝑎1𝑋# + 𝑏

• SVM uses ℓ 𝑧 = max{0, 1 − 𝑧} . Obtained from relaxing the discontinuous prediction loss.
• LR uses ℓ 𝑧 = log(1 + 𝑒>A). Obtained from relaxing the supervised learning setup from 

predicting the label to predicting the label probabilities.
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SVM vs. LR
SVM and LR are both “linear” classifiers:
• Decision boundary 𝑎1𝑥 + 𝑏 = 0 is linear.
• Model completely ignores information perpendicular to 𝑎.

LR naturally generalizes to multi-class classification via softmax regression. Generalizing 
SVM to multi-class classification is trickier and less common.
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Estimation vs. Prediction
Finding 𝑓 ≈ 𝑓⋆ for unknown

𝑓⋆: 𝒳 → 𝒫(𝒴)

is called estimation*. When we consider a parameterized model 𝑓*, finding 𝜃 is the 
estimation. However, estimation is usually not the end goal.

The end goal is prediction. It is to use 𝑓* ≈ 𝑓⋆ on new data 𝑋!B , … , 𝑋CB ∈ 𝒳 to find labels 
𝑌!B, … , 𝑌CB ∈ 𝒴.

*The word inference is sometimes, but not always, used as a synonym of estimation. In machine learning and statistics, the words estimation, inference, 
and prediction are used wildly inconsistently to the point that one must always ask for the definition to be clarified. In any case, what is most important is 
that you understand the distinction between the two concepts, regardless of which two of the three words are used to describe them.
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Is prediction possible?
In the worst hypotheticals, prediction is impossible.

• Even though smoking is harmful for every other human being, how can we be 100% sure that this one 
person is not a mutant who benefits from the chemicals of a cigarette?

• Water freezes at 0°, but will the same be true tomorrow? How can we be 100% sure that the laws of 
physics will not suddenly change tomorrow?

Of course, prediction is possible in practice.

Theoretically, prediction requires assumptions on the distribution of 𝑋 and the model of 𝑓⋆ is needed. This is 
in the realm of statistics of statistical learning theory.

For now, we will take the view that if we predict known labels of the training data, we can reasonably hope 
to do well on the new data. (We will discuss the issue of generalization and overfitting later.)
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Training data vs. test data
When testing a machine learning model, it is essential that one separates the training data 
with the test data.

In other classical disciplines using data, one performs a statistical hypothesis test to obtain 
a 𝑝-value. In ML, people do not do that.

The only sure way to ensure that the model is doing well is to assess its performance on 
new data.

Usually, training data and test data is collected together. This ensures that they have the 
same statistical properties. The assumption is that this test data will be representative of the 
actual data one intends to use machine learning on.
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Aside: Maximum likelihood estimation ≅
minimizing KL divergence
Consider the setup where you have IID discrete random variables 𝑋3, … , 𝑋4 that can take values 1,… , 𝑘. We model 
the probability masses with ℙ< 𝑋 = 1 ,… , ℙ< 𝑋 = 𝑘 . The maximum likelihood estimation (MLE) is obtained by 
solving

maximize
<

1
𝑁
0
123

4

log ℙ< 𝑋1

Next, define 

𝑓< =
ℙ< 𝑋 = 1

⋮
ℙ< 𝑋 = 𝑘

,         𝒫 𝑋3, … , 𝑋4 = 3
4

# 𝑋1 = 1
⋮

# 𝑋1 = 𝑘
.

Then MLE is equivalent to minimizing the KL divergence from the model to the empirical distribution.
MLE
⇕

minimize
<

𝐻(𝒫 𝑋3, … , 𝑋4 , 𝑓<)
⇕

minimize
<

𝐷56(𝒫 𝑋3, … , 𝑋4 ‖𝑓<)
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Aside: Maximum likelihood estimation ≅
minimizing KL divergence
One can also derive LR equivalently as the MLE.

Generally, one can view the MLE as minimizing the KL divergence between the model and 
the empirical distribution. (For continuous random variables like the Gaussian, this requires 
extra work, since we haven’t defined the KL divergence for continuous random variables.)

In deep learning, the distance measure need not be KL divergence.
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Dataset: MNIST
Images of hand-written digits with 
28×28 = 784 pixels and integer-
valued intensity between 0 and 255. 
Every digit has a label in {0,1, … , 8,9}.

70,000 images (60,000 for training 
10,000 testing) of 10 almost 
balanced classes.

One of the simplest data set used in 
machine learning.

31



32



33



Dataset: MNIST
The USA government needed a standardized test to 
assess handwriting recognition software being sold 
to the government. So the NIST (National Institute 
of Standards and Technology) created the dataset 
in the 1990s. In 1990, NIST Special Database 1 
distributed on CD-ROMs by mail. NIST SD 3 (1992) 
and SD 19 (1995) were improvements.

Humans were instructed to fill out handwriting 
sample forms.
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Dataset: MNIST
However, humans cannot be trusted to 
follow instructions, so a lab technician 
performed “human ground truth 
adjudication”.

In 1998, Yann LeCun, Corinna Cortes, 
Christopher J. C. Burges took the NIST 
dataset and modified it to create the 
MNIST dataset.
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Role of Datasets in ML Research
An often underappreciated contribution.

Good datasets play a crucial role in driving progress in ML research.

Thinking about the dataset is the essential first step of understanding the feasibility of a ML 
task.

Accounting for the cost of producing datasets and leveraging freely available data as much 
as possible (semi-supervised learning) is a recent trend in machine learning.
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Dataset: CIFAR10
60,000 32×32 color images in 10 
(perfectly) balanced classes.

(There is no overlap between 
automobiles and trucks. “Automobile” 
includes sedans, SUVs, things of that 
sort. “Truck” includes only big trucks. 
Neither includes pickup trucks.)
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Dataset: CIFAR10
In 2008, a MIT and NYU team created the 80 million 
tiny images data set by searching on Google, Flickr, 
and Altavista for every non-abstract English noun 
and downscaled the images to 32×32. The search 
term provided an unreliable label for the image. This 
dataset was not very easy to use since the classes 
were too numerous.
In 2009, Alex Krizhevsky published the CIFAR10, by 
distilling just a few classes and cleaning up the 
labels. Students were paid to verify the labels.
The dataset was named CIFAR-10 after the funding 
agency Canadian Institute For Advanced Research. 
There is also a CIFAR-100 with 100 classes.
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Shallow learning with PyTorch
PyTorch demo

We follow the following steps

1. Load data
2. Define model
3. Miscellaneous setup

• Instantiate model
• Choose loss function
• Choose optimizer

4. Train with SGD
• Clear previously computed gradients
• Compute forward pass
• Compute gradient via backprop
• SGD update

5. Evaluate trained model

6. Visualize results of trained model
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LR as a 1-layer neural network
In LR, we solve

minimize
7∈ℝ%,9∈ℝ

1
𝑁
J
#0!

"

ℓ 𝑓* 𝑋# , 𝑌#

where ℓ 𝑦!, 𝑦% = log(1 + 𝑒>D=D>) and 𝑓* is linear.

We can view 𝑓* 𝑥 = 𝑂 = 𝑎1𝑥 + 𝑏 as a
1-layer (shallow) neural network.
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Linear deep networks make no sense
What happens if we stack multiple linear layers?
Problem: This is pointless because composition of linear functions is linear.

𝑂 = 𝑊%ℎ = 𝑊%(𝑊!𝑥) = (𝑊%𝑊!)𝑥 ← linear in 𝑥! 
1×5

ℎ = 𝑊!𝑥
5×4

ℎ# = 𝑊! #𝑥 𝑖 = 1,… , 5
1×4
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Deep neural networks with nonlinearities
Solution: use a nonlinear activation function 𝜎 to inject nonlinearities.

42

𝑂 = 𝑊%ℎ = 𝑊%𝜎 𝑊!𝑥 ← nonlinear in 𝑥
1×5

ℎ = 𝜎 𝑊!𝑥 ← nonlinear function applied elementwise
5×4



Common activation functions

43

Rectified Linear Unit (ReLU)
ReLU 𝑧 = max(𝑧, 0)

Sigmoid
Sigmoid 𝑧 =

1
1 + 𝑒./

Hyperbolic tangent

tanh 𝑧 =
1 − 𝑒>%A

1 + 𝑒>%A



Multilayer perceptron (MLP)
The multilayer perceptron, also called fully connected neural network, has the form

where                                                                                To clarify, 𝜎 is applied element-wise.
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MLP for CIFAR10 binary classification

activation function 𝜎 = ReLU

PyTorch demo

∈ ℝEFG

∈ ℝHIF

∈ ℝ!JEI

∈ ℝ

384×768

1×384

768×1536

1536×3072
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Linear layer: Formal definition
Input tensor: 𝑋 ∈ ℝK×:, 𝐵 batch size, 𝑛 number of indices.
Output tensor: 𝑌 ∈ ℝK×M, 𝐵 batch size, 𝑚 number of indices.

With weight 𝐴 ∈ ℝM×:, bias 𝑏 ∈ ℝM, 𝑘 = 1,…𝐵, and 𝑖 = 1,… ,𝑚:

𝑌N,# =J
O0!

:

𝐴#,O𝑋N,O + 𝑏#

Operation is independent across elements of the batch.

If bias=False, then 𝑏 = 0.
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Weight initialization
Remember, SGD is

𝜃:;! = 𝜃: − 𝛼𝑔:

where 𝜃* ∈ ℝ, is an initial point.

In nice (convex) optimization problems, the initial point 𝜃* is not important; you converge to the 
global solution no matter how you initialize.

In deep learning, it is very important to initialize 𝜃* well. In fact, 𝜃* = 0 is a terrible idea.

Example) With an MLP with ReLU activations functions, if all weights and biases are initialized 
to be zero, then only the output layer’s bias is trained and all other parameters do not move. So 
the training is stuck at a trivial network setting with 𝑓< 𝑥 = constant.
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Weight initialization
PyTorch layers have default initialization schemes. (The default is not to initialize everything 
to 0.) Sometimes this default initialization scheme is sufficient (eg. Chapter 2 code.ipynb) 
sometimes it is not sufficient (eg. Hw3 problem 1).

How to initialize weights is tricky. More on this later.
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Gradient computation via backprop
PyTorch and other deep learning libraries allows users to specify how to evaluate a function 
then compute derivatives (gradients) automatically.
No need to work out gradient computation by hand (even though I make you do it in 
homework assignments). 
This feature is called, automatic differentiation, back propagation, or just the chain rule. This 
is implemented in the torch.autograd module.

More on this later.
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Multi-class classification problem
Consider supervised learning with data 𝑋!, … , 𝑋" ∈ ℝ: and labels 𝑌!, … , 𝑌" ∈ {1, … , 𝑘}. (A 𝑘-
class classification problem.) Assume there exists a function 𝑓⋆ ∶ ℝ: → ΔN mapping from 
data to label probabilities. Here, ΔN ⊂ ℝN denotes the set of probability mass functions on 
{1, … , 𝑘}. 

Define the empirical distribution 𝒫 𝑦 ∈ ℝN as the one-hot vector:

𝒫 𝑦 # = O1 if 𝑦 = 𝑖
0 otherwise

for 𝑖 = 1,… , 𝑘.
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Softmax function
Softmax function 𝜇 ∶ ℝN → ΔN is defined by

𝜇# 𝑧 = 𝜇 𝑧 # =
𝑒A?

∑O0!
N 𝑒A@

for 𝑖 = 1,… , 𝑘, where 𝑧 = (𝑧!, … , 𝑧N) ∈ ℝN.  Since

J
#0!

N

𝜇# 𝑧 = 1, 𝜇 > 0

Name “softmax” is a misnomer. “Softargmax” would be more accurate
• 𝜇 𝑧 ≉ max 𝑧

• 𝜇(𝑧) ≈ argmax 𝑧
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Examples:

𝜇
1
2
3

=
0.09
0.24
0.67

𝜇
999
0
−2

≈
1
0
0

𝜇
−2
−2
−99

≈
0.5
0.5
0



Softmax regression
In softmax regression (SR):
1. Choose the model

𝜇 𝑓P,9 𝑥 = !

∑?A=
B RC?

,DEF?

𝑒7=,'=9=
𝑒7>,'=9>

⋮
𝑒7B

,'=9B

, 𝑓P,9 𝑥 = 𝐴𝑥 + 𝑏, 𝐴 =

𝑎!1

𝑎%1
⋮
𝑎N1

∈ ℝN×:, 𝑏 =

𝑏!
𝑏%
⋮
𝑏N

∈ ℝN.

2. Minimize KL-Divergence (or cross entropy) from the model 𝜇 𝑓P,9 𝑋# output 
probabilities to the empirical distribution 𝒫 𝑌# .

minimize
P∈ℝB×H,9∈ℝB

∑#0!" 𝐷;< 𝒫 𝑌# ‖𝜇 𝑓P,9 𝑋# ⇔ minimize
P∈ℝB×H,9∈ℝB

∑#0!" 𝐻 𝒫 𝑌# , 𝜇 𝑓P,9 𝑋#
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Softmax regression

minimize
I∈ℝ"×$,0∈ℝ"

&
123

4

𝐻 𝒫 𝑌1 , 𝜇 𝑓I,0 𝑋1

⇕

minimize
I∈ℝ"×$,0∈ℝ"

1
𝑁&

123

4

− log 𝜇J% 𝑓I,0 𝑋1

⇕

minimize
I∈ℝ"×$,0∈ℝ"

1
𝑁&

123

4

− log
exp 𝑎J%

7 𝑋1 + 𝑏J%
∑K23L exp 𝑎K7𝑋1 + 𝑏K

⇕

minimize
I∈ℝ"×$,0∈ℝ"

1
𝑁&

123

4

− 𝑎J%
7 𝑋1 + 𝑏J% + log &

K23

L

exp 𝑎K7𝑋1 + 𝑏K
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Cross entropy loss
So 

minimize
P∈ℝB×H,9∈ℝB

J
#0!

"

𝐻 𝒫 𝑌# , 𝜇 𝑓P,9 𝑋#

⇕

minimize
P∈ℝB×H,9∈ℝB

1
𝑁
J
#0!

"

ℓST 𝑓P,9 𝑋# , 𝑌#

where

ℓST 𝑓, 𝑦 = − log
exp 𝑓D

∑O0!N exp 𝑓O

is the cross entropy loss.
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Classification with deep networks
SR = linear model 𝑓P,9 with cross entropy loss:

minimize
P∈ℝB×H,9∈ℝB

!
"
∑#0!" ℓST 𝑓P,9 𝑋# , 𝑌# ⇔ minimize

P∈ℝB×H,9∈ℝB
∑#0!" 𝐷;< 𝒫 𝑌# ‖𝜇 𝑓P,9 𝑋#

(Note ℓST 𝑓, 𝑦 > 0. More on homework 3.)

The natural extension of SR is to consider

minimize
*∈ℝ%

!
"
∑#0!" ℓST 𝑓* 𝑋# , 𝑌# ⇔ minimize

*∈ℝ%
∑#0!" 𝐷;< 𝒫 𝑌# ‖𝜇 𝑓* 𝑋#

where 𝑓* is a deep neural network.
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History of GPU Computing

Rendering graphics involves computing many small tasks in parallel. Graphics cards 
provide many small processors to render graphics.
In 1999, Nvidia released GeForce 256 and introduced programmability in the form of vertex 
and pixel shaders. Marketed as the first ‘Graphical Processing Unit (GPU)’.
Researchers quickly learned how to implement linear algebra by mapping matrix data into 
textures and applying shaders.

56To be precise, the GPU is the chip that goes inside the graphics card. The graphics card is the complete unit with the physical encasing, monitor port, and 
other supporting electronic circuits.



General Purpose GPUs (GPGPU)
In 2007, Nvidia released ‘Compute Unified Device Architecture (CUDA)’, which enabled 
general purpose computing on a CUDA-enabled GPUs.
Unlike CPUs which provide fast serial processing, GPUs provide massive parallel 
computing with its numerous slower processors.
The 2008 financial crisis hit Nvidia very hard as GPUs were luxury items used for games. 
This encouraged Nvidia to invest further in GPGPUs and create a more stable consumer 
base.
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CPU computing model

memory

CPU

Hard Disk Drive
Sold-State Drive

Primary storage
Stores variables (arrays) in programs

Secondary Storage
Long-term storage

Several ≈ 12 processors
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GPU computing model

Device

SM

SP
GPU

SM SM SM SM

SM SM SM SM

Global Memory

SP SP SP SP

Register

Shared Memory

Warp Scheduler

FP Unit

INT UnitHost PCI/Express
Bus

CPU GPU

Thousands of processors

Data transfer
Outsourcing computation to GPU
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GPUs for machine learning
Raina et al.’s 2009* paper demonstrated that GPUs can be used to train large neural 
networks. (This was not the first to use of GPUs in machine learning, but it was one of the 
most influential.)
Modern deep learning is driven by big data and big compute, respectively provided by the 
internet and GPUs.
Krizhevsky et al.’s 2012* landmark paper introduced AlexNet trained on GPUs and 
kickstarted the modern deep learning boom.

60
*R. Raina, A. Madhavan, and A. Y. Ng , Large-scale Deep Unsupervised Learning using Graphics Processors, ICML, 2009.
A. Krizhevsky, I. Sutskever, G. E. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, NeurIPS, 2012.



Example: Power iteration with GPUs
Computing 𝑥!UU = 𝐴!UU𝑥U with a GPU:

In this example and deep learning, GPU accelerates computation since:
Amount of computation ≫ data communication.
Large information resides in the GPU, and CPU issues commands to perform computation 
on the data. (𝐴 in this example, neural network architecture in deep learning.)

PyTorch demo

send A from host (CPU) to device (GPU)
send x=x0 from host (CPU) to device (GPU)
for _ in range(100):
tell GPU to compute x=A*x

send x from device (GPU) to host (CPU)
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Deep learning on GPUs
Steps for training neural network on GPU:
1. Create the neural network on CPU and send it to GPU. Neural network parameters stay on GPU.

• Sometimes you load parameters from CPU to GPU.
2. Select data batch (image, label) and send it to GPU every iteration

• Data for real-world setups is large, so keeping all data on GPU is infeasible.
3. On GPU, compute network output (forward pass)
4. On GPU, compute gradients (backward pass)
5. On GPU, perform gradient update
6. Once trained, perform prediction on GPU.

• Send test data to GPU.
• Compute network output.
• Retrieve output on CPU.
• Alternatively, neural network can be loaded on CPU and prediction can be done on CPU.

PyTorch demo
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