
Chapter 3:
Convolutional Neural

Networks
Mathematical Foundations of Deep Neural Networks

Spring 2024

Department of Mathematical Sciences

Ernest K. Ryu

Seoul National University

1

Fully connected layers

Advantages of fully connected layers:

• Simple.

• Very general, in theory. (Sufficiently large MLPs can learn any function, in theory.)

Disadvantage of fully connected layers:

• Too many trainable parameters.

• Does not encode shift equivariance/invariance and therefore has poor inductive bias.

(More on this later.)

2

Shift equivariance/invariance in vision

Many tasks in vision are equivariant/invariant with respect shifts/translations.

Roughly speaking, equivariance/invariance means shifting the object does not change the

meaning (it only changes the position).

3

Cat Still a Cat

Shift equivariance/invariance in vision

Logistic regression (with a single fully connected layer) does not encode shift invariance.

Since convolution is equivariant with respect to translations, constructing neural network

layers with them is a natural choice.

4

9
@

Inner

product

𝑎

+ 𝑏

9 Translating digit

changes output

significantly

pixel-by-pixel

information

Loss

Convolution

Convolve a filter with an image: slide the filter

spatially over the image and compute dot

products.

5

3

32

32

3 × 32 × 32
image

3 × 5 × 5 filter

3

5

5

3

32

32

(i+4, j+4) corner

(i, j) corner

Take a 3 × 5 × 5 chunk of the image

and take the inner product with 𝑤 and

add bias 𝑏.

= w.reshape(-1)@image[:,i:i+5,j:j+5].reshape(-1)+b

w

6

3

32

32

feature map

1

28

28

Multiple filters

each 3 × 5 × 5

4 = depth or channels of feature map

28

28

image

convolved

with

1 filter

3 × 32 × 32

3 × 5 × 5

image

convolved

with

4 filters

Multiple filters

2D convolutional layer: Formal definition

Input tensor: 𝑋 ∈ ℝ𝐵×𝐶in×𝑚×𝑛, 𝐵 batch size, 𝐶in # of input channels, 𝑚, 𝑛 # of vertical and
horizontal indices.

Output tensor: 𝑌 ∈ ℝ𝐵×𝐶out× 𝑚−𝑓1+1 × 𝑛−𝑓2+1 , 𝐵 batch size, 𝐶out # of output channels.

With filter 𝑤 ∈ ℝ𝐶out×𝐶in×𝑓1×𝑓2, bias 𝑏 ∈ ℝ𝐶out, 𝑘 = 1,…𝐵, ℓ = 1,… , 𝐶out, 𝑖 = 1,… ,𝑚 − 𝑓1 + 1,
and 𝑗 = 1,… , 𝑛 − 𝑓2 + 1:

𝑌𝑘,ℓ,𝑖,𝑗 = ෍

𝛾=1

𝐶in

෍

𝛼=1

𝑓1

෍

𝛽=1

𝑓2

𝑤ℓ,𝛾,𝛼,𝛽𝑋𝑘,𝛾,𝑖+𝛼−1,𝑗+𝛽−1 + 𝑏ℓ

Operation is independent across elements of the batch. The vertical and horizontal indices
are referred to as spatial dimensions. If bias=False, then 𝑏 = 0.

7

Notes on convolution

Mind the indexing. In math, indices start at 1. In Python, indices start at 0.

1D conv is commonly used with 1D data, such as audio.

3D conv is commonly used with 3D data, such as video.

1D and 3D conv are defined analogously.

8

Zero padding

(𝐶 × 7 × 7 image) ⊛ (𝐶 × 5 × 5 filter) = (1 × 3 × 3 feature map).

Spatial dimension 7 reduced to 3.

9

7x7

⊛

3x3

=

5x5

We write ⊛ to denote convolution.

Zero padding
(𝐶 × 7 × 7 image with zero padding = 2) ⊛ (𝐶 × 5 × 5 filter) = (1 × 7 × 7 feature map).

Spatial dimension is preserved.

10

0 0 0 0 0 0 0
Padding=2

11x11

7x7

7x7

⊛ =

5x5

Stride
(7x7 image) ⊛ (3x3 filter with stride 2) = (output 3x3).

(With stride 1, output is 5x5.)

11

If stride 3, dimensions don’t fit.

7x7 image with zero padding of 1 becomes 9x9 image.

(7x7 image, padding of 1) ⊛ (3x3 filter) with stride 3 does fit.

Convolution summary
Input 𝐶in ×𝑊in × 𝐻in

Conv layer parameters

• 𝐶out filters

• 𝐹 spatial extent (𝐶in × 𝐹 × 𝐹 filters)

• 𝑆 stride

• 𝑃 padding

Output 𝐶out ×𝑊out ×𝐻out

𝑊out =
𝑊in − 𝐹 + 2𝑃

𝑆
+ 1

𝐻out =
𝐻in − 𝐹 + 2𝑃

𝑆
+ 1

12

filters biases

⋅ denotes the floor (rounding down)

operation. To avoid the complication of this

floor operation, it is best to ensure the

formula inside evaluates to an integer.

Number of trainable parameters:

𝐹2𝐶in𝐶out + 𝐶out

Make sure you are able to derive these

formulae yourself.

Aside: Geometric deep learning

More generally, given a group 𝒢 encoding a symmetry or invariance, one can define

operations “equivariant” with respect 𝒢 and construct equivariant neural networks.

This is the subject of geometric deep learning, and its formulation utilizes graph theory and

group theory.

Geometric deep learning is particularly useful for non-Euclidean data. Examples include as

protein molecule data and social network service connections.

13

Pooling

Primarily used to reduce spatial dimension. Similar to conv.

Operates over each channel independently.

14

4x28x28

4x14x14 feature map

Pool

2x2 pool

with stride 2

Pooling

15

For each

channel

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Max Pool

Average Pool

2x2 filters and stride 2

2x2 filters and stride 2

6 8

3 4

3.25 5.25

2 2

Not an instance of conv.

Effect is subsampling

(lowering image resolution)

Instance of conv.

with fixed

(untrainable) weights.

torch.nn.MaxPool2D
torch.nn.AvgPool2D

LeNet5

16

1 × 28 × 28 MNIST image

with 𝑝 = 2⇒ 1 × 32 × 32

f=5, k=6

𝜎 = modification of tanh

Applied after C1, S2, C3, S4, C5, F6

f=5, k=16

Outdated technique

Replace with

full connection

Something like

average pool

f=2, s=2

full connection from 16 × 5 × 5 to 120

⇔conv. with f=5, k=120

Modern instances of LeNet5 use

• 𝜎 = ReLu

• MaxPool instead of AvgPool

• No 𝜎 after S2, S4 (Why?)

• Full connection instead of

Gaussian connections

• Complete C3 connections

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE, 1998.

LeNet5

PyTorch demo

17

Architectural contribution: LeNet

One of the earliest demonstration of using a deep CNN to learn a nontrivial task.

Laid the foundation of the modern CNN architecture.

18

Weight sharing

In neural networks, weight sharing is a way to reduce the number of parameters by reusing

the same parameter in multiple operations. Convolutional layers are the primary example.

If we consider convolution with filter 𝑤 as a linear operator, the components of 𝑤 appear

may times in the matrix representation. This is because the same 𝑤 is reused for every

patch in the convolution. Weight sharing in convolution may now seem obvious, but it was a

key contribution back when the LeNet architecture was presented.

Some models (not studied in this course) use weight sharing more explicitly in other ways.

19

Data augmentation

20

Invariances

• Translation

• Horizontal flip

• Vertical flip

• Color change (?)

Invariances

• Translation

• Horizontal flip

• Vertical flip

• Color change

Translation invariance encoded in convolution, but other invariances are harder to encode (unless

one uses geometric deep learning). Therefore encode invariances in data and have neural networks

learn the invariance.

Data augmentation

Data augmentation (DA) applies transforms to the data while preserving meaning and label.

Option 1: Enlarge dataset itself.

• Usually cumbersome and unnecessary.

Option 2: Use randomly transformed data in training loop.

• In PyTorch, we use Torchvision.transforms.

PyTorch demo

21

Spurious correlation

Hypothetical: A photographer prefers to take pictures with cats looking to the left and dogs

looking to the right. Neural network learns to distinguish cats from dogs by which direction it

is facing. This learned correlation will not be useful for pictures taken by another

photographer.

This is a spurious correlation, a correlation between the data and labels that does not

capture the “true” meaning. Spurious correlations are not robust in the sense that the

spurious correlation will not be a useful predictor when the data changes slightly.

Removing spurious correlations is another purpose of DA.

22

Data augmentation

We use DA to:

• Inject our prior knowledge of the structure of the data and force the neural network to learn it.

• Remove spurious correlations.

• Increase the effective data size. In particular, we ensure neural network never encounters the
exact same data again and thereby prevent the neural network from performing exact
memorization. (Neural network can memorize quite well.)

Effects of DA:

• DA usually worsens the training error (but we don’t care about training error).

• DA often, but not always, improves the test error.

• If DA removes a spurious correlation, then the test error can be worsened.

• DA usually improves robustness.

23

Data augmentation on test data?

DA is usually applied only on training data.

DA is usually not applied on test data, because we want to ensure test scores are

comparable. (There are many different DAs, and applying different DAs on test data will

make the metric different.)

However, one can perform “test-time data augmentation” to improve predictions without

changing the test. More on this later.

24

ImageNet dataset

ImageNet contains more 14 million hand-annotated images in more than 20,000 categories.

Many classes, higher resolution, non-uniform image size, multiple objects per image.

25

History

• Fei-Fei Li started the ImageNet project in 2006 with the goal of expanding and improving

the data available for training AI algorithms.

• Images were annotated with Amazon Mechanical Turk.

• The ImageNet team first presented their dataset in the 2009 Conference on Computer

Vision and Pattern Recognition (CVPR).

• From 2010 to 2017, the ImageNet project ran the ImageNet Large Scale Visual

Recognition Challenge (ILSVRC).

• In the 2012 ILSVRC challenge, 150,000 images of 1000 classes were used.

• In 2017, 29 teams achieved above 95% accuracy. The organizers deemed task complete

and ended the ILSVRC competition.

26

ImageNet-1k

Commonly referred to as “the

ImageNet dataset”. Also called

ImageNet2012

However, ImageNet-1k is really a

subset of full ImageNet dataset.

ImageNet-1k has 150,000 images

of 1000 roughly balanced classes.

List of categories:

https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a

27

ImageNet-1k

Data has been removed from the ImageNet website. Downloading peer-to-peer via torrent

is now the most convenient way to access the data.

Privacy concerns: Although dataset is about recognizing objects, rather than humans, many

human faces are in the images. Troublingly, identifying personal information is possible.

NSFW concerns: Sexual and non-consensual content.

Creating datasets while protecting privacy and other social values is an important challenge

going forward.

28
V. U. Prabhu and A. Birhane, Large image datasets: A pyrrhic win for computer vision?, WACV , 2020.

K. Yang, J. Yau, L. Fei-Fei, J. Deng, and O. Russakovsky, A Study of Face Obfuscation in ImageNet, arXiv, 2021.

Top-1 vs. top-5 accuracy

Classifiers on ImageNet-1k are often assessed by their top-5 accuracy, which requires the 5

categories with the highest confidence to contain the label.

In contrast, the top-1 accuracy simply measures whether the network's single prediction is

the label.

For example, AlexNet had a top-5 accuracy of 84.6% and a top-1 accuracy of 63.3%.

Nowadays, accuracies of classifiers has improved, so the top 1 accuracy is becoming the

more common metric.

29You can find the state-of-the-art results on ImageNet-1k classification at: https://paperswithcode.com/sota/image-classification-on-imagenet

Classical statistics: Over vs. underfitting

Given separate train and test data

• When (training loss) ≪ (testing loss)

you are overfitting. What you have

learned from the training data does

not carry over to test data.

• When (training loss) ≈ (testing loss)

you are underfitting. You have the

potential to learn more from the

training data.

30

Classical statistics: Over vs. underfitting

The goal of ML is to learn patterns that generalize to data you have not seen. From each

datapoint, you want to learn enough (don’t underfit) but if you learn too much you

overcompensate for an observation specific to the single experience.

31

In classical

statistics,

underfitting vs.

overfitting (bias vs.

variance tradeoff)

is characterized

rigorously.

Modern deep learning: Double descent

In modern deep learning, you can overfit, but the state-of-the art neural networks do not

overfit (or “benignly overfit”) despite having more model parameters than training data.

32M. Belkin, D. Hsu, S. Ma, and S. Mandal, Reconciling modern machine-learning practice and the classical bias-variance trade-off, PNAS, 2019.

We do not yet

have clarity

with this new

phenomenon.

When

overfitting

happens and

when it does

not is unclear.

Double descent on 2-layer neural
network on MNIST
Belkin et al. experimentally demonstrates

the double descent phenomenon with an

MLP trained on the MNIST dataset.

33M. Belkin, D. Hsu, S. Ma, and S. Mandal, Reconciling modern machine-learning practice and the classical bias-variance trade-off, PNAS, 2019.

Double descent example: 2-layer ReLU
NN with fixed hidden layer weights

PyTorch Demo

P. Nakkiran, P. Venkat, S. Kakade, and T. Ma, Optimal regularization can mitigate double descent, ICLR, 2021.
34

How to avoid overfitting

Regularization is loosely defined as mechanisms to prevent overfitting.

When you are overfitting, regularize with:

• Smaller NN (fewer parameters) or larger NN (more parameters).

• Improve data by:

• using data augmentation

• acquiring better, more diverse, data

• acquiring more of the same data

• Weight decay

• Dropout

• Early stopping on SGD or late stopping on SGD

35

How to avoid underfitting

When you are underfitting, use:

• Larger NN (if computationally feasible)

• Less weight decay

• Less dropout

• Run SGD longer (if computationally feasible)

36

Weight decay ≅ ℓ2-regularization

ℓ2-regularization augments the loss function with

minimize
𝜃∈ℝ𝑝

1

𝑁
෍

𝑖=1

𝑁

ℓ 𝑓𝜃 𝑥𝑖 , 𝑦𝑖 +
𝜆

2
𝜃 2

SGD on the augmented loss is usually implemented by changing SGD update rather than

explicitly changing the loss since

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 𝑔𝑘 + 𝜆𝜃𝑘

= (1 − 𝛼𝜆)𝜃𝑘 − 𝛼𝑔𝑘

Where 𝑔𝑘 is stochastic gradient of original (unaugmented) loss.

In classical statistics, this is called ridge regression or maximum a posteriori (MAP)

estimation with Gaussian prior.

37

Weight decay ≅ ℓ2-regularization

In Pytorch, you can use SGD + weight decay by:

augmenting the loss function

or by using weight_decay in the optimizer

torch.optim.SGD(model.parameters(), lr=... , weight_decay=lamda)

For plain SGD, weight decay and ℓ2-regularization are equivalent. For other optimizers, the two

are similar but not the same. More on this later.

38

for param in model.parameters():
loss += (lamda/2)*param.pow(2.0).sum()

torch.optim.SGD(model.parameters(), lr=... , weight_decay=0)

Dropout

Dropout is a regularization technique that

randomly disables neurons.

Standard layer,

ℎ2 = 𝜎(𝑊1ℎ1 + 𝑏1).

Dropout with drop probability 𝑝 defines

ℎ2 = 𝜎(𝑊1ℎ1
′ + 𝑏1)

with

ℎ1
′
𝑗 = ൞

0 with probability 𝑝

ℎ1 𝑗

1 − 𝑝
otherwise.

Note, ℎ1
′ is defined so that 𝔼 ℎ1

′ = ℎ1.

39N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: A Simple Way to Prevent Neural Networks from Overfitting, JMLR, 2014.

Why is dropout helpful?

“A motivation for dropout comes from a theory of the role of sex in evolution (Livnat et al.,
2010).”

Sexual reproduction, compared to asexual reproduction, creates the criterion for natural
selection mix-ability of genes rather than individual fitness, since genes are mixed in a more
haphazard manner.

“Since a gene cannot rely on a large set of partners to be present at all times, it must learn
to do something useful on its own or in collaboration with a small number of other genes. …
Similarly, each hidden unit in a neural network trained with dropout must learn to work with
a randomly chosen sample of other units. This should make each hidden unit more robust
and drive it towards creating useful features on its own without relying on other hidden units
to correct its mistakes.

40N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: A Simple Way to Prevent Neural Networks from Overfitting, JMLR, 2014.

Why is dropout helpful?

The analogy to evolution is very interesting, but it is ultimately a heuristic argument. It also

shifts the burden to the question: “why is sexual evolution more powerful than asexual

evolution?”

However, dropout can be shown to be loosely equivalent to ℓ2-regularization. However, we

do not yet have a complete understanding of the mathematical reason behind dropout’s

performance.

41
S. Wang and C. Manning, Fast dropout training, ICML, 2013.

S. Wager, S. Wang, and P. Liang, Dropout training as adaptive regularization, NeurIPS, 2013.

Dropout in PyTorch

Dropout simply multiplies the neurons with a random 0 −
1

1−𝑝drop
mask.

A direct implementation in PyTorch:

PyTorch provides an implementation of dropout through torch.nn.Dropout.

42

def dropout_layer(X, p_drop):
mask = (torch.rand(X.shape) > p_drop).float()
return mask * X / (1.0 - p_drop)

Dropout in training vs. test

Typically, dropout is used during training and turned off during prediction/testing.

(Dropout should be viewed as an additional onus imposed during training to make training

more difficult and thereby effective, but it is something that should be turned off later.)

In PyTorch, activate the training mode with

model.train()

and activate evaluation mode with

model.eval()

dropout (and batchnorm) will behave differently in these two modes.

43

When to use dropout

Dropout is usually used on linear layers but not on convolutional layers.

• Linear layers have many weights and each weight is used only once per forward pass.
(If 𝑦 = Linear𝐴,𝑏(𝑥), then 𝐴𝑖𝑗 only affect 𝑦𝑖.) So regularization seems more necessary.

• A convolutional filter has fewer weights and each weight is used multiple times in each forward pass. (If
𝑦 = Conv2D𝑤,𝑏(𝑥), then 𝑤𝑖𝑗𝑘ℓ affects 𝑦𝑖,:,:.) So regularization seems less necessary.

Dropout seems to be going out of fashion:

• Dropout’s effect is somehow subsumed by batchnorm. (This is poorly understood.)

• Linear layers are less common due to their large number of trainable parameters.

There is no consensus on whether dropout should be applied before or after the activation function.
However, Dropout-𝜎 and 𝜎-Dropout are equivalent when 𝜎 is ReLU or leaky ReLU, or, more generally, when
𝜎 is nonnegative homogeneous.

44

SGD early stopping

Early stopping of SGD refers to stopping the

training early even if you have time for more

iterations.

The rationale is that SGD fits data, so too many

iterations lead to overfitting.

A similar phenomenon (too many iterations hurt)

is observed in classical algorithms for inverse

problems.

45

Epochwise double descent

Recently, however, an epochwise double

descent has been observed.

So perhaps one should stop SGD early or

very late.

We do not yet have clarity with this new

phenomenon.

46P. Nakkiran, G. Kaplun, Y. Bansal, T. Yang, B. Barak, and I. Sutskever, Deep double descent: Where bigger models and more data hurt, ICLR, 2020.

More data (by data auagmentation)

With all else fixed, using more data usually* leads to less overfitting.

However, collecting more data is often expansive.

Think of data augmentation (DA) as a mechanism to create more data for free. You can

view DA as a form of regularization.

47*It seems that more data is not always useful. More on this when we discuss the double descent phenomenon.

Summary of over vs. underfitting

In modern deep learning, the double descent phenomenon has brought a conceptual and

theoretical crisis regarding over and underfitting. Much of the machine learning practice is

informed by classical statistics and learning theory, which do not take the double descent

phenomenon into account.

Double descent will bring fundamental changes to statistics, and researchers need more

time to figure things out. Most researchers, practitioners and theoreticians, agree that not all

classical wisdom is invalid, but what part do we keep, and what part do we replace?

In the meantime, we will have to keep in mind the two contradictory viewpoints and move

forward in the absence of clarity.

48

AlexNet

Won the 2012 ImageNet challenge by a large margin: top-5 error rate 15.3% vs. 26.2%

second place.

Started the era of deep neural networks and their training via GPU computing.

AlexNet was split into 2 as GPU memory was limited. (A single modern GPU can easily hold

AlexNet.)

49A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet classification with deep convolutional neural networks, NeurIPS, 2012.

AlexNet for ImageNet

50

Network split into 2

█ Convolution+ReLU

█ Dropout (0.5)

█ Local response normalization (preserves spatial dimension&channel #s) (outdated technique)

█ Max pool 𝑓 = 3, 𝑠 = 2 (overlapping max pool)

█ Fully connected layer+ReLU

█

█ █

█

AlexNet CIFAR10

51

█ Conv.-ReLU

Max pool 𝑓 = 3, 𝑠 = 2 (overlapping max pool)

Network not split into 2

No local response normalization

Architectural contribution: AlexNet

A scaled-up version of LeNet.

Demonstrated that deep CNNs can learn significantly complex tasks. (Some thought CNNs

could only learn simple, toy tasks like MNIST.)

Demonstrated GPU computing to be an essential component of deep learning.

Demonstrated effectiveness of ReLU over sigmoid or tanh in deep CNNs for classification.

52

SGD-type optimizers

In modern NN training, SGD and variants of SGD are usually used. There are many

variants of SGD.

The variants are compared mostly on an experimental basis. There is some limited

theoretical basis in their comparisons. (Cf. Adam story.)

So far, all efforts to completely replace SGD have failed.

53

SGD with momentum

SGD:

𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝑔𝑘

SGD with momentum:

𝑣𝑘+1 = 𝑔𝑘 + 𝛽𝑣𝑘

𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝑣𝑘+1

𝛽 = 0.9 is a common choice.

When different coordinates (parameters) have very different scalings (i.e., when the

problem is ill-conditioned, momentum can help find a good direction of progress.

54I. Sutskever, J. Martens, G. Dahl, and G. Hinton, On the importance of initialization and momentum in deep learning, ICML, 2013.

RMSProp

RMSProp:

𝑚2
𝑘+1 = 𝛽2𝑚2

𝑘 + 1 − 𝛽2 𝑔𝑘 ⊛𝑔𝑘

𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝑔𝑘 ⊘ 𝑚2
𝑘+1 + 𝜖

𝛽2 = 0.99 and 𝜖 = 10−8 are common values. ⊛ and ⊘ are elementwise mult. and div.

𝑚2
𝑘 is a running estimate of the 2nd moment of the stochastic gradients, i.e., 𝑚2

𝑘
𝑖
≈ 𝔼 𝑔𝑘

𝑖

2
.

𝛼 ⊘ 𝑚2
𝑘+1 + 𝜖 is the learning rate scaled elementwise. Progress along steep and noisy

directions are dampened while progress along flat and non-noisy directions are accelerated.

T. Tieleman, and G. Hinton, Lecture 6.5 - RMSProp, COURSERA: Neural Networks for Machine Learning, 2012. 55

Adam (Adaptive moment estimation)

Adam:

𝑚1
𝑘+1 = 𝛽1𝑚1

𝑘 + 1 − 𝛽1 𝑔𝑘, 𝑚2
𝑘+1 = 𝛽2𝑚2

𝑘 + 1 − 𝛽2 𝑔𝑘 ⊛𝑔𝑘

෥𝑚1
𝑘+1 =

𝑚1
𝑘+1

1−𝛽1
𝑘+1, ෥𝑚2

𝑘+1 =
𝑚2
𝑘+1

1−𝛽2
𝑘+1

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ෥𝑚1
𝑘+1 ⊘ ෥𝑚2

𝑘+1 + 𝜖

• 𝛽1
𝑘+1 means 𝛽1 to the (𝑘 + 1)th power.

• 𝛽1 = 0.9, 𝛽2 = 0.999, and 𝜖 = 10−8 are common values. Initialize with 𝑚1
0 = 𝑚2

0 = 0.

• 𝑚1
𝑘 and 𝑚2

𝑘 are running estimates of the 1st and 2nd moments of 𝑔𝑘.

• ෥𝑚1
𝑘 and ෥𝑚2

𝑘 are bias-corrected estimates of 𝑚1
𝑘 and 𝑚2

𝑘.

• Using ෥𝑚1
𝑘 instead of 𝑔𝑘 adds the effect of momentum.

56D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, ICLR, 2015.

Bias correction of Adam

To understand the bias correction, consider the hypothetical 𝑔𝑘 = 𝑔 for 𝑘 = 0,1, …. Then

𝑚1
𝑘 = 1 − 𝛽1

𝑘 𝑔

and

𝑚2
𝑘 = 1 − 𝛽2

𝑘 𝑔⊛ 𝑔

while 𝑚1
𝑘 → 𝑔 and 𝑚2

𝑘 → 𝑔⊛𝑔 as 𝑘 → ∞, the estimators are not exact despite there being

no variation in 𝑔𝑘.

On the other hand, there is bias-corrected estimators are exact:

෥𝑚1
𝑘 = 𝑔

and

෥𝑚2
𝑘 = 𝑔⊛ 𝑔

57

The cautionary tale of Adam

Adam’s original 2015 paper justified the effectiveness of the algorithm through experiments
training deep neural networks with Adam. After all, this non-convex optimization is what
Adam was proposed to do.

However, the paper also provided a convergence proof under the assumption of convexity.
This was perhaps unnecessary in an applied paper focusing on non-convex optimization.

The proof was later shown* to be incorrect! Adam does not always converge in the convex
setup, i.e., the algorithm, rather than the proof, is wrong.

Reddi and Kale presented the AMSGrad optimizer, which does come with a correct
convergence proof, but AMSGrad tends to perform worse than Adam, empirically.

58*S. J. Reddi, S. Kale, and S. Kumar, On the convergence of Adam and beyond, ICLR, 2018.

How to choose the optimizer

Extensive research has gone into finding the “best” optimizer. Schmidt et al.* reports that,

roughly speaking, that Adam works well most of the time.

So, Adam is a good default choice. Currently, it seems to be the best default choice.

However, Adam does not always work. For example, it seems to be that the widely used

EfficientNet model can only be trained† with RMSProp.

However, there are some setups where the LR of SGD is harder to tune, but SGD

outperforms Adam when properly tuned.#

59
*R. M. Schmidt, F. Schneider, and P. Hennig, Descending through a crowded valley — benchmarking deep learning optimizers, ICML, 2021.
†M. Tan and Q. V. Le, EfficientNet: Rethinking model scaling for convolutional neural networks, ICML, 2019.
#A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht, The marginal value of adaptive gradient methods in machine learning, NeurIPS, 2017.

How to tune parameters

Everything should be chosen by trial and error. The weight parameters and 𝛽, 𝛽1, 𝛽2 and the

weight decay parameter 𝜆, and the optimizers should be chosen based on trial and error.

The LR (the stepsize 𝛼) of different optimizers are not really comparable between the

different optimizers. When you change the optimizer, the LR should be tuned again.

Roughly, large stepsize, large momentum, small weight decay is faster but less stable, while

small stepsize, small momentum, and large weight decay is slower but more stable.

60

Using different optimizers in PyTorch

In PyTorch, the torch.optim module implements the commonly used optimizers.

Using SGD:

torch.optim.SGD(model.parameters(), lr=X)

Using SGD with momentum:

torch.optim.SGD(model.parameters(), momentum=0.9, lr=X)

Using RMSprop:

torch.optim.RMSprop(model.parameters(), lr=X)

Using Adam:

torch.optim.Adam(model.parameters(), lr=X)

Exercise: Try Homework 3 problem 1 with Adam but without the custom weight initialization.

61

Learning rate scheduler

Sometimes, it is helpful to change (usually reduce) the learning rate as the training

progresses. PyTorch provides learning rate schedulers to do this.

62

optimizer = SGD(model.parameters(), lr=0.1)
scheduler = ExponentialLR(optimizer, gamma=0.9) # lr = 0.9*lr
for _ in range(...):
for input, target in dataset:
optimizer.zero_grad()
output = model(input)
loss = loss_fn(output, target)
loss.backward()
optimizer.step()

scheduler.step() # .step() call updates (changes) the learning rate

Diminishing learning rate

One common choice is to specify a diminishing learning rate via a function (a lambda

expression). Choices like C/epoch or C/sqrt(iteration), where C is an appropriately

chosen constant, are common.

63

lr_lambda allows us to set lr with a function
scheduler = LambdaLR(optimizer, lr_lambda = lambda ep: 1e-2/ep)
for epoch in range(...):
for input, target in dataset:
optimizer.zero_grad()
output = model(input)
loss = loss_fn(output, target)
loss.backward()
optimizer.step()

scheduler.step() # lr=0.01/epoch

Cosine learning rate

The cosine learning rate scheduler, which

sets the learning rate with the cosine

function, is also commonly used.

It is also common to use only a half-period of

the cosine rather than having the learning

rate oscillate.

The 2nd case in the specification means 𝑘
and its purpose is to prevent the learning

rate from becoming 0.

64I. Loshchilov and F. Hutter, SGDR: Stochastic gradient descent with warm restarts, ICLR, 2017.

Wide vs. sharp minima

As alluded to in hw1:

• Large step makes large and rough progress towards regions with small loss.

• Small steps refines the model by finding sharper minima.

Also small steps better suppress the effect of noise. Mathematically, one can show that

SGD with small steps becomes very similar to GD with small steps.#

However, using small steps to converge to sharp minima may not always be optimal. There

is some empirical evidence that wide minima have better test error than sharp minima.*

65
#D. Davis, D. Drusvyatskiy, S. Kakade and J. D. Lee, Stochastic subgradient method converges on tame functions, Found. Comput. Math., 2020.
*Y. Jiang, B. Neyshabur, H. Mobahi, D. Krishnan, and S. Bengio, Fantastic generalization measures and where to find them, ICLR, 2020.

Weight initialization

Remember, SGD is

𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝑔𝑘

where 𝜃0 ∈ ℝ𝑝 is an initial point. Using a good initial point is important in NN training.

Prescription by LeCun et al.: “Weights should be chosen randomly but in such a way that

the [tanh] is primarily activated in its linear region. If weights are all very large then the [tanh]

will saturate resulting in small gradients that make learning slow. If weights are very small

then gradients will also be very small.” (Cf. Vanishing gradient homework 5 problem.)

“Intermediate weights that range over the [tanh’s] linear region have the advantage that (1)

the gradients are large enough that learning can proceed and (2) the network will learn the

linear part of the mapping before the more difficult nonlinear part.”

66
Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. Efficient BackProp, In: G. Montavon, G. B. Orr, and K.-R. Müller. (eds), Neural Networks: Tricks of the

Trade, 1998.

Quick math review

Using the 1st order Taylor approximation,

tanh 𝑧 ≈ 𝑧

Write 𝑋~𝒩 𝜇, 𝜎2 to denote that 𝑋 is a Gaussian (normal) random variable with mean 𝜇 and

standard deviation 𝜎.

If 𝑋 and 𝑌 are independent mean-zero random variables, then

𝔼 𝑋𝑌 = 0
Var 𝑋𝑌 = Var 𝑋 Var 𝑌

67

Weight initialization

Consider

𝑧 = 𝑤1 + 𝑤2 + 𝑤3

If 𝑤𝑖 ∼ 𝒩(0, 𝜎2) (zero-mean variance 𝜎2 Gaussian) then Var z = 3𝜎2.

If 𝜎 =
1

3
, then Var z = 1.

68

z

1 1 1

𝑤1 𝑤2
𝑤3

LeCun initialization

Consider the layer

𝑦 = tanh ෤𝑦
෤𝑦 = 𝐴𝑥 + 𝑏

where 𝑥 ∈ ℝ𝑛in and 𝑦, ෤𝑦 ∈ ℝ𝑛out. Assume 𝑥𝑗 have mean = 0 variance = 1. If we initialize

𝐴𝑖𝑗~𝒩 0, 𝜎𝐴
2 and 𝑏𝑖~𝒩 0, 𝜎𝑏

2 , IID, then

෤𝑦𝑖 = σ𝑗=1
𝑛in 𝐴𝑖𝑗𝑥𝑗 + 𝑏𝑖 has mean = 0 variance = 𝑛in𝜎𝐴

2 + 𝜎𝑏
2

𝑦𝑖 = tanh ෤𝑦𝑖 ≈ ෤𝑦𝑖 has mean ≈ 0 variance ≈ 𝑛in𝜎𝐴
2 + 𝜎𝑏

2

If we choose

𝜎𝐴
2 =

1

𝑛in
, 𝜎𝑏

2 = 0,

(so 𝑏 = 0) then we have 𝑦𝑖 mean ≈ 0 variance ≈ 1.

69
Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. Efficient BackProp, In: G. Montavon, G. B. Orr, and K.-R. Müller. (eds), Neural Networks: Tricks of the

Trade, 1998.

The mean and variance claims follow from

these calculations.

70

Here, 𝛿𝑗𝑘 is the

Kronecker delta:

LeCun initialization

By induction, with an 𝐿-layer MLP,

• if the input to has mean = 0 variance = 1,

• the weights and biases are initialized with 𝐴𝑖𝑗~𝒩 0,
1

𝑛in
and 𝑏𝑖 = 0, and

• the linear approximations tanh 𝑧 ≈ 𝑧 are valid,

then we can expect the output layer to have mean ≈ 0 variance ≈ 1.

71
Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. Efficient BackProp, In: G. Montavon, G. B. Orr, and K.-R. Müller. (eds), Neural Networks: Tricks of the

Trade, 1998.

Xavier initialization

Consider the layer

𝑦 = tanh ෤𝑦
෤𝑦 = 𝐴𝑥 + 𝑏

where 𝑥 ∈ ℝ𝑛in and 𝑦, ෤𝑦 ∈ ℝ𝑛out. Consider the gradient with respect to some loss ℓ 𝑦 . Assume
𝜕ℓ

𝜕𝑦 𝑖
have mean = 0 variance = 1. Then

𝜕𝑦

𝜕𝑥
= diag tanh′ 𝐴𝑥 + 𝑏 𝐴 ≈ 𝐴

if tanh ෤𝑦 ≈ ෤𝑦 and
𝜕ℓ

𝜕𝑥
=
𝜕ℓ

𝜕𝑦
𝐴

If we initialize 𝐴𝑖𝑗~𝒩 0, 𝜎𝐴
2 and 𝑏𝑖~𝒩 0, 𝜎𝑏

2 , IID, and assume that
𝜕ℓ

𝜕𝑦
and 𝐴 are independent*, then

𝜕ℓ

𝜕𝑥 𝑗
= σ𝑖=1

𝑛out 𝜕ℓ

𝜕𝑦 𝑖
𝐴𝑖𝑗 has mean ≈ 0 and variance ≈ 𝑛out𝜎𝐴

2

If we choose

𝜎𝐴
2 =

1

𝑛out

then
𝜕ℓ

𝜕𝑥 𝑗
have mean ≈ 0 variance ≈ 1.

72
Xavier Glorot and Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, AISTATS, 2010.
*False, but we assume it nevertheless.

Xavier initialization

𝜕ℓ

𝜕𝑦
and 𝐴 are not independent;

𝜕ℓ

𝜕𝑦
depends on the forward evaluation, which in turn depends

on 𝐴. Nevertheless, the calculation is an informative exercise and its result seems to be

representative of common behavior.

If 𝑦 = tanh 𝐴𝑥 + 𝑏 is an early layer (close to input) in a deep neural network, then the

randomness of 𝐴 is diluted through the forward and backward propagation and
𝜕ℓ

𝜕𝑦
and 𝐴 will

be nearly independent.

If 𝑦 = tanh 𝐴𝑥 + 𝑏 is an later layer (close to output) in a deep neural network, then
𝜕ℓ

𝜕𝑦
and

𝐴 will have strong dependency.

73

Xavier initialization

Consideration of forward and backward passes result in different prescriptions.

The Xavier initialization uses the harmonic mean of the two:

𝜎𝐴
2 =

2

𝑛in + 𝑛out
, 𝜎𝑏

2 = 0

In the literature, the alternate notation fanin and fanout are often used instead of 𝑛in and 𝑛out.
The fan-in and fan-out terminology originally refers to the number of electric connections

entering and exiting a circuit or an electronic device.

74Xavier Glorot and Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, AISTATS, 2010.

(Kaiming) He initialization

Consider the layer

𝑦 = ReLU 𝐴𝑥 + 𝑏

We cannot use the Taylor expansion with ReLU.

However, a similar line of reasoning with the forward pass gives rise to

𝜎𝐴
2 =

2

𝑛in

And a similar consideration with backprop gives rise to

𝜎𝐴
2 =

2

𝑛out

In PyTorch, use mode='fan_in' and mode='fan_out' to toggle between the two modes.

75Kaiming He, X. Zhang, S. Ren, and J. Sun, Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification, ICCV, 2015.

Discussions on initializations

In the original description of the Xavier and He initializations, the biases are all initialized to

0. However, the default initialization of Linear* and Conv2d# layers in PyTorch uses

initialize the biases randomly. A documented reasoning behind this choice (in the form of

papers or GitHub discussions) do not seem to exist.

Initializing weights with the proper scaling is sometimes necessary to get the network to

train, as you will see with the VGG network. However, so long as the network gets trained,

the choice of initialization does not seem to affect the final performance.

Since initializations rely on the assumption that the input to each layer has roughly unit

variance, it is important that the data is scaled properly. This is why PyTorch dataloader

scales pixel intensity values to be in [0,1], rather than [0,255].

76
*https://pytorch.org/docs/stable/_modules/torch/nn/modules/linear.html
#https://pytorch.org/docs/stable/_modules/torch/nn/modules/conv.html

Initialization for conv

Consider the layer

𝑦 = tanh ෤𝑦
෤𝑦 = Conv2D𝑤,𝑏(𝑥)

where 𝑤 ∈ ℝ𝐶out×𝐶in×𝑓1×𝑓2 and 𝑏 ∈ ℝ𝐶out. Assume 𝑥𝑗 have mean = 0 variance = 1. If we

initialize 𝑤𝑖𝑗𝑘ℓ~𝒩 0, 𝜎𝑤
2 and 𝑏𝑖~𝒩 0, 𝜎𝑏

2 , IID, then

෤𝑦𝑖 has mean = 0 variance = 𝐶in𝑓1𝑓2 𝜎𝑤
2 + 𝜎𝑏

2

𝑦𝑖 ≈ ෤𝑦𝑖 has mean ≈ 0 variance ≈ 𝐶in𝑓1𝑓2 𝜎𝑤
2 + 𝜎𝑏

2

If we choose

𝜎𝑤
2 =

1

𝐶in𝑓1𝑓2
, 𝜎𝑏

2 = 0,

(so 𝑏 = 0) then we have 𝑦𝑖 mean ≈ 0 variance ≈ 1.

77

Initialization for conv

Xavier and He initialization is usually used with

𝑛in = 𝐶in𝑓1𝑓2

and

𝑛out = 𝐶out𝑓1𝑓2

Justification of 𝑛out = 𝐶out𝑓1𝑓2 requires working through the indexing of the “transpose

convolution”. We will return to it later.

78

ImageNet after AlexNet

AlexNet won the 2012 ImageNet challenge with 8 layers.

ZFNet won the 2013 ImageNet challenge also with 8 layers but with better parameter tuning.

Research since AlexNet indicated that depth is more important than width.

VGGNet ranked 2nd in the 2014 ImagNet challenge with 19 layers.

GoogLeNet ranked 1st in the 2014 ImageNet challenge with 22 layers.

79M. D. Zeiler and R. Fergus, Visualizing and understanding convolutional networks, ECCV, 2014.

VGGNet

By the Oxford Visual Geometry Group

80K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, ICLR, 2015.

VGG16

• 16 layers with trainable parameters

• 3x3 conv. 𝑝 = 1 (spatial dimension preserved)

• No local response normalization

• Weight decay 5 × 10−4

• Dropout(0.5) used

• Max pool 𝑓 = 2, 𝑠 = 2

• ReLU activation function (except after pool and FC1000)

VGGNet

81

VGG19

• 19 layers with trainable parameters

• Slightly better than VGG16

K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, ICLR, 2015.

VGGNet-CIFAR10

13-layer modification of VGGNet for CIFAR10

82

• 3x3 conv. 𝑝 = 1

• Max pool 𝑓 = 2, 𝑠 = 2

VGGNet training

Training VGGNet was tricky. A shallower version was first trained and then additional layers

were gradually added.

Our VGGNet-CIFAR10 is much easier to train since there are fewer layers and the task is

simpler. However, good weight initialization is still necessary

Batchnorm (not available when VGGNet was published) makes training VGGNet much

easier. With Batchnorm, the complicated initialization scheme of training a smaller version

first becomes unnecessary.

PyTorch demo

83K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, ICLR, 2015.

Architectural contribution: VGGNet

Demonstrated simple deep CNNs can significantly improve upon AlexNet.

In a sense, VGGNet represents the upper limit of the simple CNN architecture. (It is the best

simple model.) Future architectures make gains through more complex constructions.

Demonstrated effectiveness of stacked 3x3 convolutions over larger 5x5 or 11x11

convolutions. Large convolutions (larger than 5x5) are now uncommon.

Due to its simplicity, VGGNet is one of the most common test subjects for testing something

on deep CNNs.

84

Backprop ⊆ autodiff

Autodiff (automatic differentiation) is an algorithm that automates gradient computation. In
deep learning libraries, you only need to specify how to evaluate the function.
Backprop (back propagation) is an instance of autodiff.

Gradient computation costs roughly 5 × the computation cost* of forward evaluation.

To clarify, backprop and autodiff are not

• finite difference or

• symbolic differentiation.

Autodiff ≈ chain rule of vector calculus

85*Depends on computational structure of function. 5X difference is mostly true for neural networks used in deep learning.

Autodiff example

This complicated gradient computation is

simplified by autodiff.

PyTorch demo

86

The power of autodiff

Autodiff is an essential yet often an underappreciated feature of the deep learning libraries.

It allows deep learning researchers to use complicated neural networks, while avoiding the

burden of performing derivative calculations by hand.

Most deep learning libraries support 2nd and higher order derivative computation, but we will

only use 1st order derivatives (gradients) in this class.

Autodiff includes forward-mode, reverse-mode (backprop), and other orders. In deep

learning, reverse-mode is most commonly used.

87

Autodiff by Jacobian multiplication

Consider 𝑔 = 𝑓𝐿 ∘ 𝑓𝐿−1 ∘ ⋯ ∘ 𝑓2 ∘ 𝑓1, where 𝑓ℓ: ℝ
𝑛ℓ−1 → ℝ𝑛ℓ for ℓ = 1,⋯ , 𝐿.

Chain rule: 𝐷𝑔 = 𝐷𝑓𝐿 𝐷𝑓𝐿−1 ⋯ 𝐷𝑓2 𝐷𝑓1

Forward-mode: 𝐷𝑓𝐿(𝐷𝑓𝐿−1(⋯(𝐷𝑓2𝐷𝑓1) ⋯))

Reverse-mode: (((𝐷𝑓𝐿 𝐷𝑓𝐿−1) 𝐷𝑓𝐿−2) ⋯) 𝐷𝑓1

Reverse mode is optimal* when 𝑛𝐿 ≤ 𝑛𝐿−1 ≤ ⋯ ≤ 𝑛1 ≤ 𝑛0. The number of neurons in each
layer tends to decrease in deep neural networks for classification. So reverse-mode is often
close to the most efficient mode of autodiff in deep learning.

88

𝑛𝐿 × 𝑛𝐿−1 𝑛𝐿−1 × 𝑛𝐿−2 𝑛2 × 𝑛1 𝑛1 × 𝑛0

*Can be proved with dynamic programming. Cf. “matrix chain multiplication”.

General backprop

Backprop in PyTorch:

1. When the loss function is evaluated, a computation graph is constructed.

2. The computation graph is a directed acyclic graph (DAG) that encodes dependencies of

the individual computational components.

3. A topological sort is performed on the DAG and the backprop is performed on the

reversed order of this topological sort. (The topological sort ensures that nodes ahead

in the DAG are processed first.)

The general form combines a graph theoretic formulation with the principles of backprop

that you have seen in the homework assignments.

89

Computation graph example

Consider 𝑓 𝑥, 𝑦 = 𝑦 log 𝑥 + 𝑦 log 𝑥. Evaluate 𝑓 with the computation graph:

The chain rule:

But in what order do you evaluate the chain rule expression?

90

x

y

a(x)=log(x)

b(a,y)=ay

c(b)= 𝑏

f(c,b)=c+b

𝜕𝑓

𝜕𝑥
=
𝜕𝑓

𝜕𝑐

𝜕𝑐

𝜕𝑏

𝜕𝑏

𝜕𝑎

𝜕𝑎

𝜕𝑥

𝜕𝑥

𝜕𝑥
+
𝜕𝑏

𝜕𝑦

𝜕𝑦

𝜕𝑥
+
𝜕𝑓

𝜕𝑏

𝜕𝑏

𝜕𝑎

𝜕𝑎

𝜕𝑥

𝜕𝑥

𝜕𝑥
+
𝜕𝑏

𝜕𝑦

𝜕𝑦

𝜕𝑥

𝜕𝑓

𝜕𝑦
=
𝜕𝑓

𝜕𝑐

𝜕𝑐

𝜕𝑏

𝜕𝑏

𝜕𝑎

𝜕𝑎

𝜕𝑥

𝜕𝑥

𝜕𝑦
+
𝜕𝑏

𝜕𝑦

𝜕𝑦

𝜕𝑦
+
𝜕𝑓

𝜕𝑏

𝜕𝑏

𝜕𝑎

𝜕𝑎

𝜕𝑥

𝜕𝑥

𝜕𝑦
+
𝜕𝑏

𝜕𝑦

𝜕𝑦

𝜕𝑦

0 0

0 0

Computation graph

Let 𝑦1, … , 𝑦𝐿 be the output values (neurons) of the computational nodes. Assume 𝑦1, … , 𝑦𝐿
follow a linear topological ordering, i.e., the computation of 𝑦ℓ depends on 𝑦1, … , 𝑦ℓ−1 and

does not depend on 𝑦ℓ+1, … , 𝑦𝐿.

Define the graph 𝐺 = 𝑉, 𝐸 , where 𝑉 = 1,… , 𝐿 and 𝑖, ℓ ∈ 𝐸, i.e., 𝑖 → ℓ, if the computation

of 𝑦ℓ directly depends on 𝑦𝑖. Write the computation of 𝑦1, … , 𝑦𝐿 as

𝑦ℓ = 𝑓ℓ 𝑦𝑖 ∶ for 𝑖 → ℓ

91

Forward pass on computation graph

In the forward pass, sequentially compute 𝑦1, … , 𝑦𝐿 via

𝑦ℓ = 𝑓ℓ 𝑦𝑖 ∶ for 𝑖 → ℓ

92

Use 1-based indexing
y[1] given
for l = 2,...,L
inputs = [y[i] for j such that (i->l)]
y[l] = f[l].eval(inputs)

end

Forward-mode autodiff

93

0. 𝑥 = 3, 𝑦 = 2,
𝜕𝑥

𝜕𝑥
= 1,

𝜕𝑥

𝜕𝑦
= 0,

𝜕𝑦

𝜕𝑥
= 0,

𝜕𝑦

𝜕𝑦
= 1

1. 𝑎 = log 𝑥 = log 3 ,
𝜕𝑎

𝜕𝑥
=

1

𝑥
·
𝜕𝑥

𝜕𝑥
=

1

3
,
𝜕𝑎

𝜕𝑦
= 0

2. 𝑏 = 𝑦𝑎 = 2 log 3 ,
𝜕𝑏

𝜕𝑥
=

𝜕𝑦

𝜕𝑥
𝑎 + 𝑦

𝜕𝑎

𝜕𝑥
=

2

3
,
𝜕𝑏

𝜕𝑦
=

𝜕𝑦

𝜕𝑦
𝑎 + 𝑦

𝜕𝑎

𝜕𝑦
= 𝑎 = log 3

3. 𝑐 = 𝑏 = 2 log 3 ,
𝜕𝑐

𝜕𝑥
=

1

2 𝑏

𝜕𝑏

𝜕𝑥
=

1

3 2 log 3
,
𝜕𝑐

𝜕𝑦
=

1

𝑏

𝜕𝑏

𝜕𝑦
=

1

2

log 3

2

4. 𝑓 = 𝑐 + 𝑏 = 2 log 3 + 2 log 3 ,
𝜕𝑓

𝜕𝑥
=

𝜕𝑐

𝜕𝑥
+

𝜕𝑏

𝜕𝑥
=

1

3
2 +

1

3 2 log 3
,
𝜕𝑓

𝜕𝑦
=

𝜕𝑐

𝜕𝑦
+

𝜕𝑏

𝜕𝑦
=

1

2

log 3

2
+ log 3

Computation does not involve 𝑥 or derivatives of 𝑥

Computation only depends on node b

Computation only depends on nodes b and c

X=3

Y=2

a(x)=log(x)

b(a,y)=ay

c(b)= 𝑏

f(c,b)=c+b

Step 4Step 3Step 2Step 1Step 0

93

Backprop on computation graph

To perform backprop#, use
𝜕𝑦𝐿
𝜕𝑦𝑖

= ෍

ℓ∶𝑖→ℓ

𝜕𝑦𝐿
𝜕𝑦ℓ

𝜕𝑓ℓ
𝜕𝑦𝑖

to sequentially compute
𝜕𝑦𝐿

𝜕𝑦𝐿
,
𝜕𝑦𝐿

𝜕𝑦𝐿−1
, … ,

𝜕𝑦𝐿

𝜕𝑦1
.

#When 𝑦𝑖 is not a leaf node in the computation graph, there is a slight ambiguity in the meaning of
𝜕𝑦𝐿

𝜕𝑦𝑖
. Roughly, define

𝜕𝑦𝐿

𝜕𝑦𝑖
by letting 𝑦𝑖 be a variable

independent of 𝑦1, … , 𝑦𝑖−1 (imagine detaching all edges entering 𝑦𝑖) and then taking the derivative.
94

Use 1-based indexing
y[1],...,y[L] already computed

g[:] = 0 // .zero_grad()

g[L] = 1 // dy[L]/dy[L]=1
for l = L,...,2
for i such that (i->l)
g[i] += g[l]*f[l].grad(i)

end
end

Reverse-mode autodiff (backprop)

95

X=3

Y=2

a(x)=log(x)

b(a,y)=ay

c(b)= 𝑏

f(c,b)=c+b

Step 0 Step 1 Step 2 Step 3 Step 4
forward pass

Step 4' Step 3' Step 2' Step 1' Step 0'

backward pass

Backward pass depends on node

values computed in forward pass.

0. 𝑥 = 3, 𝑦 = 2
1. 𝑎 = log 3
2. 𝑏 = 2 log 3

3. 𝑐 = 2 log 3

4. 𝑓 = 2 log 3 + 2 log 3

0'.
𝜕𝑓

𝜕𝑓
= 1

1'.
𝜕𝑓

𝜕𝑐
=

𝜕𝑓

𝜕𝑓

𝜕𝑓

𝜕𝑐
=

𝜕𝑓

𝜕𝑓
1 = 1

2'.
𝜕𝑓

𝜕𝑏
=

𝜕𝑓

𝜕𝑐

𝜕𝑐

𝜕𝑏
+

𝜕𝑓

𝜕𝑓

𝜕𝑓

𝜕𝑐
=

1

2 𝑏
1 + 1 =

1

2 2 log 3
+ 1

3'.
𝜕𝑓

𝜕𝑎
=

𝜕𝑓

𝜕𝑏

𝜕𝑏

𝜕𝑎
=

𝜕𝑓

𝜕𝑏
𝑦 = 2 +

1

2 log 3

4'.
𝜕𝑓

𝜕𝑥
=

𝜕𝑓

𝜕𝑎

𝜕𝑎

𝜕𝑥
=

𝜕𝑓

𝜕𝑎

1

𝑥
=

1

3
2 +

1

2 log 3

𝜕𝑓

𝜕𝑦
=

𝜕𝑓

𝜕𝑏

𝜕𝑏

𝜕𝑦
=

𝜕𝑓

𝜕𝑏
𝑎 =

1

2

log 3

2
+ log3

Backprop in PyTorch

In NN training, parameters and fixed inputs are distinguished. In PyTorch, you (1) clear the
existing gradient with .zero_grad() (2) forward-evaluate the loss function by providing the
input and label and (3) perform backprop with .backward().

The forward pass stores the intermediate neuron values so that they can later be used in
backprop. In the test loop, however, we don’t compute gradients so the intermediate neuron
values are unnecessary. The torch.no_grad() context manager allows intermediate node
values to discarded or not be stored. This saves memory and can accelerate the test loop.

96

X ℎ1 ℎ2 ⋯ ℎ𝑁 loss

Y

label

input

𝑤1, 𝑏1 𝑤2, 𝑏2 𝑤𝑁, 𝑏𝑁

Linear layers have too may parameters

AlexNet: Conv layer params: 2,469,696 (4%)

Linear layer params: 58,631,144 (96%)

Total params: 61,100,840

97

Linear layers have too may parameters

VGG19: Conv layer params: 20,024,384 (14%)

Linear layer params: 123,642,856 (86%)

Total params: 143,667,240

98

Network in Network (NiN) Network

NiN for CIFAR10.

• Remove linear layers to reduce parameters. Use global average pool instead.

• Weight decay 1 × 10−5.

• Dropout(0.5). (dropout after pool is not consistent with modern practice.)

• Maxpool 𝑓 = 3, 𝑠 = 2. Use ceil_mode=True so that
32−3

2
+ 1 = 15.5 is rounded up to 16.

Default behavior of PyTorch is to round down.

99M. Lin, Q. Chen, and S. Yan, Network In Network, arXiv, 2013.

1x1 convolution

A 1 × 1 convolution is like a fully connected layer acting independently and identically on
each spatial location.

• 96 filters act on 192 channels separately for each pixel

• 96 × 192 + 96 parameters for weights and biases

100

1x1 conv.

f=1, s=1, k=96

Regular conv. layer

Input: 𝑋 ∈ ℝ𝐶0×𝑚×𝑛

• Select an 𝑓 × 𝑓 patch ෨𝑋 = 𝑋 ∶, 𝑖 ∶ 𝑖 + 𝑓, 𝑗 ∶ 𝑗 + 𝑓 .

• Inner product ෨𝑋 and 𝑤1, … , 𝑤𝐶1 ∈ ℝ𝐶0×𝑓×𝑓 and add bias 𝑏1 ∈ ℝ𝐶1.

• Apply 𝜎. (Output in ℝ𝐶1.)

Repeat this for all patches. Output in 𝑋 ∈ ℝ𝐶1× 𝑚−𝑓+1 × 𝑛−𝑓+1 .

Repeat this for all batch elements.

101

“Network in Network”

Input: 𝑋 ∈ ℝ𝐶0×𝑚×𝑛

• Select an 𝑓 × 𝑓 patch ෨𝑋 = 𝑋 𝑖 ∶ 𝑖 + 𝑓, 𝑗 ∶ 𝑗 + 𝑓 .

• Inner product ෨𝑋 and 𝑤1, … , 𝑤𝐶1 ∈ ℝ𝐶0×𝑓×𝑓 and add bias 𝑏1 ∈ ℝ𝐶1.

• Apply 𝜎. (Output in ℝ𝐶1.)

• Apply Linear𝐴2,𝑏2(𝑥) where 𝐴2 ∈ ℝ𝐶2×𝐶1 and 𝑏2 ∈ ℝ𝐶2.

• Apply 𝜎. (Output in ℝ𝐶2.)

• Apply Linear𝐴3,𝑏3(𝑥) where 𝐴3 ∈ ℝ𝐶3×𝐶2 and 𝑏3 ∈ ℝ𝐶3.

• Apply 𝜎. (Output in ℝ𝐶3.)

Repeat this for all patches. Output in 𝑋 ∈ ℝ𝐶3× 𝑚−𝑓+1 × 𝑛−𝑓+1 . Repeat this for all batch elements.

Why is this equivalent to (3x3 conv)-(1x1 conv)-(1x1 conv)?

102

Global average pool

When using CNNs for classification, position of object is not important.

The global average pool has no trainable parameters (linear layers have many) and it is

translation invariant. Global average pool removes the spatial dependency.

103

Architectural contribution: NiN Network

Used 1x1 convolutions to increase the representation power of the convolutional modules.

Replaced linear layer with average pool to reduce number of trainable parameters.

First step in the trend of architectures becoming more abstract. Modern CNNs are built with

smaller building blocks.

104

GoogLeNet (Inception v1)

Utilizes the inception module. Structure inspired by NiN and name
inspired by 2010 Inception movie meme.

Used 1 × 1 convolutions.

• Increased depth adds representation power (improves ability to
represent nonlinear functions).

• Reduce the number of channels before the expensive 3×3 and
5×5 convolutions, and thereby reduce number of trainable weights
and computation time. (Cf. hw5)

The name GoogLeNet is a reference to the authors’ Google affiliation
and is an homage to LeNet.

105
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich,

Going deeper with convolutions, CVPR, 2015

Inception module

GoogLeNet

106

█ Local Response Normalization

█ Maxpool 𝑓 = 3, 𝑠 = 2. Use ceil_mode=True.

█ Two auxiliary classifiers used to slightly improve training. No longer necessary with batch norm.

k=384

192 384

48 128

128

k=256

160 320

32 128

128

k=112

144 288

32 64

64

k=128

128 256

24 64

64

k=160

112 224

24 64

64

k=192

96 208

16 48

64

k=128

128 192

32 96

64

k=64

96 128

16 32

32

k=256 480 512 512 512 528 832 832 1024

k=256

160 320

32 128

128

1024x1x11024x7x7

GoogLeNet for CIFAR10

107

k=384

192 384

48 128

128

k=256

160 320

32 128

128

k=256

160 320

32 128

128

k=112

144 288

32 64

64

k=128

128 256

24 64

64

k=160

112 224

24 64

64

k=192

96 208

16 48

64

k=128

128 256

24 64

64

k=64

96 128

16 32

32

k=256 480 512 512 512 528 832 832 1024

1024x1x11024x7x7

Architectural contribution: GoogLeNet

Demonstrated that more complex modular neural network designs can outperform

VGGNet’s straightforward design.

Together with VGGNet, demonstrated the importance of depth.

Kickstarted the research into deep neural network architecture design.

108

Batch normalization

The first step of many data processing algorithms is often to normalize data to have zero

mean and unit variance.

• Step 1. Compute ො𝜇 =
1

𝑁
σ𝑖=1
𝑁 𝑋𝑖, ෢𝜎

2 =
1

𝑁
σ𝑖=1
𝑁 𝑋𝑖 − ො𝜇 2

෠𝑋𝑖 =
𝑋𝑖−ෝ𝜇

෢𝜎2+𝜀

• Step 2. Run method with data ෠𝑋1, … , ෠𝑋𝑁

Batch normalization (BN) (sort of) enforces this normalization layer-by-layer. BN is an

indispensable tool for training very deep neural networks. Theoretical justification is weak.

109S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, ICML, 2015.

BN for linear layers

Underlying assumption: Each element of the batch is an IID sample.

Input: 𝑋 batch size × (# entries)

output: BN𝛽,𝛾(𝑋). shape BN𝛽,𝛾 𝑋 = shape(𝑋)

BN𝛽,𝛾 for linear layers acts independently over neurons.

ො𝜇 ∶ =
1

𝐵
෍

𝑏=1

𝐵

𝑋[𝑏, ∶]

ො𝜎2 ∶ =
1

𝐵
෍

𝑏=1

𝐵

𝑋 𝑏, ∶ − ො𝜇 ∶ 2

BN𝛾,𝛽 𝑋 [𝑏, ∶] = 𝛾 ∶
𝑋 𝑏, ∶ − ො𝜇 ∶

ො𝜎2 ∶ + 𝜀
+ 𝛽 ∶ 𝑏 = 1,… , 𝐵

where operations are elementwise. BN normalizes each output neuron. The mean and variance are
explicitly controlled through learned parameters 𝛽 and 𝛾. In Pytorch, nn.BatchNorm1d.

110

BN for convolutional layers

Underlying assumption: Each element of the batch, horizontal pixel, and vertical pixel is an IID sample.*

Input: 𝑋 batch size × channels × vertical dim × horizontal dim

output: BN𝛽,𝛾(𝑋). shape BN𝛽,𝛾 𝑋 = shape(𝑋)

BN𝛽,𝛾 for conv. layers acts independently over channels.

ො𝜇 ∶ =
1

𝐵𝑃𝑄
෍

𝑏=1

𝐵

෍

𝑖=1

𝑃

෍

𝑗=1

𝑄

𝑋[𝑏, ∶, 𝑖, 𝑗]

ො𝜎2 ∶ =
1

𝐵𝑃𝑄
෍

𝑏=1

𝐵

෍

𝑖=1

𝑃

෍

𝑗=1

𝑄

𝑋 𝑏, ∶, 𝑖, 𝑗 − ො𝜇 ∶ 2

BN𝛾,𝛽 𝑋 𝑏, ∶, 𝑖, 𝑗 = 𝛾 ∶
𝑋 𝑏, ∶, 𝑖, 𝑗 − ො𝜇 ∶

ො𝜎2 ∶ + 𝜀
+ 𝛽 ∶

𝑏 = 1,… , 𝐵
𝑖 = 1,… , 𝑃
𝑗 = 1,… , 𝑄

BN normalizes over each convolutional filter. The mean and variance are explicitly controlled through
learned parameters 𝛽 and 𝛾. In Pytorch, nn.BatchNorm2d.

111*Assuming translation invariance, one can argue that different pixels have identical distributions. The independence assumption, however, is clearly false.

BN during testing

ො𝜇 and ො𝜎 are estimated from batches during training. During testing, we don’t update the NN,

and we may only have a single input (so no batch).

There are 2 strategies for computing final values of ො𝜇 and ො𝜎:

1. After training, fix all parameters and evaluate NN on full training set to compute ො𝜇 and ො𝜎
layer-by-layer. Store this computed value. (Computation of ො𝜇 and ො𝜎 must be done

sequentially layer-by-layer. Why?)

2. During training, compute running average of ො𝜇 and ො𝜎. This is the default behavior of

PyTorch.

In PyTorch, use model.train() and model.eval() to switch BN behavior between

training and testing.

112

Discussion of BN

BN does not change the representation power of NN; since 𝛽 and 𝛾 are trained, the output

of each layer can have any mean and variance. However, controlling the mean and

variance as explicit trainable parameters makes training easier.

With BN, the choice of batch size becomes a more important hyperparameter to tune.

BN is indispensable in practice. Training of VGGNet and GoogLeNet becomes much easier

with BN. Training of ResNet requires BN.

113

BN and internal covariate shift

BN has insufficient theoretical justification.

The original paper by Ioffe and Szegedy hypothesized that BN mitigates internal covariate

shift (ICS), the shift in the mean and variance of the intermediate layer neurons throughout

the training, and that this mitigation leads to improved training.

BN ⇒ (reduced ICS) ⇒ (improved training)

However, Santukar et al. demonstrated that when experimentally measured, BN does not

mitigate ICS, but nevertheless improves the training.

BN ⇏ (reduced ICS)

Nevertheless

BN ⇒ (improved training performance)

114
S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, ICML, 2015.

S. Santurkar, D. Tsipras, A. Ilyas, and A. Mądry, How does batch normalization help optimization?, NeurIPS, 2018.

BN and internal covariate shift

Santukar et al. argues that

BN ⇒ (smoother loss landscape) ⇒ (improved training performance)

While this claim is more evidence-based than that of Ioffe and Szegedy, it is still not

conclusive. It is also unclear why BN makes the loss landscape smoother, and it is not clear

whether the smoother loss landscape fully explains the improved training performance.

This story is a cautionary tale: we should carefully distinguish between speculative

hypotheses and evidence-based claims, even in a primarily empirical subject.

115S. Santurkar, D. Tsipras, A. Ilyas, and A. Mądry, How does batch normalization help optimization?, NeurIPS, 2018.

BN has trainable parameters

BN is usually not considered a trainable layer, much like pooling or dropout, and they are

usually excluded when counting the “depth” of a NN. However, BN does have trainable

parameters. Interestingly, if one randomly initializes a CNN, freezes all other parameters,

and only train BN parameters, the performance is surprisingly good.

116
J. Frankle, D. J. Schwab, and A. S. Morcos, Training BatchNorm and only BatchNorm: On the expressive power of random features in CNNs, NeurIPS

SEDL Workshop, 2019.

Discussion of BN

BN seems to also act as a regularizer, and for some reason subsumes effect Dropout.

(Using dropout together with BN seems to worsen performance.) Since BN has been

popularized, Dropout is used less often.*

After training, functionality of BN can be absorbed into the previous layer when the previous

layer is a linear layer or a conv layer. (Cf. homework 6.)

The use of batch norm makes the scaling of weight initialization less important irrelevant.

Use bias=false on layers preceding BN, since 𝛽 subsumes the bias.

117*X. Li, S. Chen, X. Hu and J. Yang, Understanding the disharmony between dropout and batch normalization by variance shift, CVPR, 2019.

Residual Network (ResNet)
Winner of 2015 ImageNet Challenge

Observation: Excluding the issue of computation cost, more layers it not always better

Hypothesis 1: Deeper networks are harder to train.

Is there a way to train a shallow network and embed it in a deeper network?

Hypothesis 2: The deeper networks may be worse approximations of the true unknown

function. Find an architecture representing a strictly increasing function class as a function

of depth.

118Kaiming He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, CVPR, 2016.

Residual blocks

Use a residual connection so that [all weights=0] correspond to [block=identity]*

Regular block must preserve spatial dimension and number of channels.

Downsampling block halves the spatial dimension and changes the number of channels.

119

regular residual block downsampling residual block

ResNet18

Layer count excludes BN even though BN has trainable parameters.

120

“stem” layers

64x56x56 → 128x28x28 → 256x14x14 → 512x7x7

3x

512x1x1

ResNet34

A trained ResNet18 architecture can be exactly fitted into a ResNet34: copy over the

parameters and set parameters of the additional blocks to be 0. The additional blocks with

only serve to apply an additional ReLU, but this makes no difference as ReLU is idempotent.

121

𝑙 = 4 𝑙 = 6 𝑙 = 3
64x56x56 → 128x28x28 → 256x14x14 → 512x7x7

(𝑙 − 1)

3x

512x1x1

ResNet blocks for deeper ResNets

ResNet in fact goes deeper. For the deeper variants, computation cost becomes more

significant. To remedy this cost, use 1 × 1 conv to reduce number of channels, perform

costly 3x3 convolution, and use 1x1 conv to restore the number of channels. This bottleneck”

structure is adapted from GoogLeNet.

122

regular residual block with bottleneck downsampling residual block with bottleneck

ResNet50, 101, 152

123

ResNet50:

ResNet101:

ResNet152:

𝑙 = 4 𝑙 = 6 𝑙 = 3
𝑙 = 4 𝑙 = 23 𝑙 = 3
𝑙 = 8 𝑙 = 36 𝑙 = 3

64x56x56 → 128x28x28 → 256x14x14 → 512x7x7

(𝑙 − 1)

3x

ResNet18 for cifar10

ResNet{34,50,101,152} for CIFAR10. The intermediate layers are the same as before.

124

64x32x32 → 128x16x16 → 256x8x8 → 512x4x4

3x

512x1x1

ResNet v1.5

In the bottleneck blocks performing downsampling, the use of 1x1 conv with stride 2 is

suboptimal as the operation simply ignores 75% of the neurons. ResNet v1.5 replaces them

with 3x3 conv with stride 2.

125https://ngc.nvidia.com/catalog/resources/nvidia:resnet_50_v1_5_for_pytorch

downsampling residual block v1 downsampling residual block v1.5

ResNet v1.5

The fix is more important for the

deeper downsampling residual

blocks.

126https://ngc.nvidia.com/catalog/resources/nvidia:resnet_50_v1_5_for_pytorch

downsampling residual block with bottleneck v1

downsampling residual block with bottleneck v1.5

ResNet v2

Permutations of the ordering of conv,

BN, and ReLU were tested. BN-ReLU-

conv had the best performance.

Perform all operations before the

residual connection so that the identity

mapping can be learned.

K. He, X. Zhang, S. Ren, and J. Sun, Identity Mappings in Deep Residual Networks, ECCV, 2016. 127

original residual block

conv-BN-ReLU

modifies residual block

BN-ReLU-conv

Architectural contribution: ResNet

Introduced residual connections as a key architectural component.

Demonstrated that extremely deep neural networks can be trained with residual connections
and BN. ResNet152 concluded the progression of depth. ImageNet challenge winners:

• 2012. AlexNet with 8 layers.

• 2013. ZFNet with 8 layers.

• 2014. GoogLeNet with 22 layers.

• 2015. ResNet152 with 152 layers.

• 2016. Shao et al.* with 152 layers.

• 2017. SENet with 152 layers.

Residual connections and BN are very common throughout all of deep learning.

128
*J. Shao, X. Zhang, Z. Ding, Y. Zhao, Y. Chen, J. Zhou, W. Wang, L. Mei, and C. Hu, Trimps-Soushen, 2016. An ensemble model without a novel

architectural component. No paper or report was written. Video presentation: https://youtu.be/NaoVOOhVC3w

ResNext

2016 ImageNet challenge 2nd place. Introduced cardinality as another network parameter, in

addition to width (number of channels) and depth. Cardinality is the number of independent

paths in the split-transform-merge structure.

129S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, Aggregated residual transformations for deep neural networks, CVPR, 2017.

ResNext

Blocks (a) and (b) almost equivalent due to

the by the following observation.

Difference: Block (a) has 32 bias terms

which are added to serve the role of the

single bias term of block (b).

130

Ensemble learning

Let 𝑋, 𝑌 be a data-label pair. Let 𝑚1, … ,𝑚𝐾 be models estimating the 𝑌 given 𝑋.

An ensemble is a model

𝑀 = 𝜃1𝑚1 +⋯+ 𝜃𝐾𝑚𝐾

where 𝜃1, … , 𝜃𝐾 ∈ ℝ. Often 𝜃1 +⋯+ 𝜃𝐾 = 1 and 𝜃𝑖 ≥ 0 for 𝑖 = 1,… , 𝐾. (So 𝑀 is often a

nonnegative weighted average 𝑚1, … ,𝑚𝐾.)

If 𝜃1, … , 𝜃𝐾 is chosen well, then

𝔼 𝑋,𝑌 𝑀 𝑋 − 𝑌 2 ≤ min
𝑖=1,…,𝐾

𝔼 𝑋,𝑌 𝑚𝑖 𝑋 − 𝑌 2

(The ensemble can be worse if 𝜃1, … , 𝜃𝐾 is chosen poorly.)

131

2016 ImageNet Challenge ensemble

Trimps–Soushen* won the 2016 ImageNet Challenge with an ensemble of

• Inception-v3[1]

• Inception-v4[2]

• Inception-Resnet-v2[2]

• ResNet-200[3]

• WRN-68-3[4]

132

*J. Shao, X. Zhang, Z. Ding, Y. Zhao, Y. Chen, J. Zhou, W. Wang, L. Mei, and C. Hu, Trimps-Soushen, 2016.
[1]C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, Rethinking the inception architecture for computer vision, CVPR, 2016.
[2]C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, Inception-v4, Inception-ResNet and the impact of residual connections on learning, AAAI, 2017.
[3]K. He, X. Zhang, S. Ren, and J. Sun, Identity mappings in deep residual networks, ECCV, 2016.
[4]S. Zagoruyko and N. Komodakis, Wide residual networks, BMVC, 2016.

Dropout ensemble interpretation

Let 𝑚 be a model with dropout applied to 𝐾 neurons. The there are 2𝐾 possible

configurations, which we label 𝑚1, … ,𝑚2𝐾. These models share weights.

Dropout can be viewed as randomly selecting one of these models and updating it with an

iteration of SGD.

Turning off dropout at test time can be interpreted and making predictions with an ensemble

of these 2𝐾, since each neuron is scaled so that the neuron value has the same expectation

as when dropout is applied.

However, this is not a very precise connection, and I am unsure as to how much to trust it.

133K. Hara, D. Saitoh, and H. Shouno, Analysis of dropout learning regarded as ensemble learning, ICANN, 2016.

Test-time data augmentation

Test-time data augmentation is an ensemble technique to improve the prediction.
(This is not a regularization or data augmentation technique)

Given a single model 𝑀 and input 𝑋, make predictions with

1

𝐾
෍

𝑖=1

𝐾

𝑀 𝑇𝑖 𝑋

where 𝑇1, … , 𝑇𝐾 are random data augmentations.

The original AlexNet paper uses test-time data augmentation with random crops and horizontal
reflections: “At test time, the network makes a prediction by extracting five … patches … as well
as their horizontal reflections …, and averaging the predictions made by the network’s softmax
layer on the ten patches.” Most ImageNet classifiers use similar tricks.

134A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet classification with deep convolutional neural networks, NeurIPS, 2012.

SENet

2017 ImageNet challenge 1st place. Introduced the squeeze-and-excitation mechanism,

which is referred to attention in more modern papers.

Attention multiplicatively reweighs channels.

135J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, Squeeze-and-excitation networks, CVPR, 2018.

Squeeze-and-excitation

136

Squeeze is a global average pool. Excitation is a bottleneck structure with 1x1 convolutions and

outputs weights in 0,1 by passing through sigmoid. Finally, scale each channel.

Conclusion

We followed the ImageNet challenge from 2012 to 2017 and learned the foundations of the

design and training of deep neural networks.

With the advent of deep learning, research in computer vision shifted from “feature

engineering” to “network engineering”. Loosely speaking, the transition was from what to

learn to learn to how to learn.

A natural progression may be to continue studying the more recent neural network

architectures, beyond the 2017 SENet. However, we will stop here to move on to learning

about other machine learning tasks.

137

