
Chapter 4:
CNNs for Other Supervised

Learning Tasks
Mathematical Foundations of Deep Neural Networks

Spring 2024

Department of Mathematical Sciences

Ernest K. Ryu

Seoul National University

1

Inverse problem model

In inverse problems, we wish to recover a signal 𝑋true given measurements 𝑌. The unknown

and the measurements are related through

𝒜 𝑋true + 𝜀 = 𝑌,

where 𝒜 is often, but not always, linear, and 𝜀 represents small error.

The forward model 𝒜 may or may not be known. In other words, the goal of an inverse

problem is to find an approximation of 𝒜−1.

In many cases, 𝒜 is not even be invertible. In such cases, we can still hope to find an

mapping that serves as an approximate inverse in practice.

2

Gaussian denoising

Given 𝑋true ∈ ℝ𝑤×ℎ, we measure

𝑌 = 𝑋true + ε

where ε𝑖𝑗 ∼ 𝒩 0, 𝜎2 is IID Gaussian noise. For the sake of simplicity, assume we know 𝜎.

Goal is to recover 𝑋true from 𝑌.

Guassian denoising is the simplest setup in which the goal is to remove noise from the

image. In more realistic setups, the noise model will be more complicated and the noise

level 𝜎 will be unknown.

3

DnCNN

In 2017, Zhang et al. presented the denoising convolutional neural networks (DnCNNs).

They trained a 17-layer CNN 𝑓𝜃 to learn the noise with the loss

ℒ 𝜃 =෍

𝑖=1

𝑁

𝑓𝜃 𝑌𝑖 − 𝑌𝑖 − 𝑋𝑖
2

so that the clean recovery can be obtained with 𝑌𝑖 − 𝑓𝜃 𝑌𝑖 . (This is equivalent to using a

residual connection from beginning to end.)

4K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising, IEEE TIP, 2017.

17 layers of

3x3 conv.

p=1

DnCNN

Image denoising is was an area with a large

body of prior work. DnCNN dominated all

prior approaches that were not based on

deep learning.

Nowadays, all state-of-the-art denoising

algorithms are based on deep learning.

5K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising, IEEE TIP, 2017.

Inverse problems via deep learning

In deep learning, we use a neural network to approximate the inverse mapping

𝑓𝜃 ≈ 𝒜−1

i.e., we want 𝑓𝜃 𝑌 ≈ 𝑋true for the measurements 𝑋 that we care about.

If we have 𝑋1, … , 𝑋𝑁 and 𝑌1, … , 𝑌𝑁 (but no direct knowledge of 𝒜), we can solve

minimize
𝜃∈ℝ𝑝

෍

𝑖=1

𝑁

𝑓𝜃 𝑌𝑖 − 𝑋𝑖

If we have 𝑋1, … , 𝑋𝑁 and knowledge of 𝒜, we can solve

minimize
𝜃∈ℝ𝑝

෍

𝑖=1

𝑁

𝑓𝜃 𝒜 𝑋𝑖 − 𝑋𝑖

If we have 𝑌1, … , 𝑌𝑁 and knowledge of 𝒜, we can solve

minimize
𝜃∈ℝ𝑝

෍

𝑖=1

𝑁

𝒜 𝑓𝜃 𝑌𝑖 − 𝑌𝑖

6

Image super-resolution

7

Given 𝑋true ∈ ℝ𝑤×ℎ, we measure

𝑌 = 𝒜 𝑋true

where 𝒜 is a “downsampling” operator. So 𝑌 ∈ ℝ𝑤2×ℎ2 with 𝑤2 < 𝑤 and ℎ2 < ℎ. Goal is to

recover 𝑋true from 𝑌.

In the simplest setup, 𝒜 is an average pool operator with 𝑟 × 𝑟 kernel and a stride 𝑟.

SRCNN

In 2015, Dong et al. presented super-resolution convolutional neural network (SRCNN).

They trained a 3-layer CNN 𝑓𝜃 to learn the high-resolution reconstruction with the loss

ℒ 𝜃 =෍

𝑖=1

𝑁

𝑓𝜃 ෨𝑌𝑖 − 𝑋𝑖
2

where ෨𝑌𝑖 ∈ ℝ
𝑤×ℎ is an upsampled version of 𝑌𝑖 ∈ ℝ 𝑤/𝑟 × ℎ/𝑟 , i.e., ෨𝑌𝑖 has the same number

of pixels as 𝑋𝑖, but the image is pixelated or blurry. The goal is to have 𝑓𝜃 ෨𝑌𝑖 be a sharp

reconstruction.

8C. Dong, C. C. Loy, K. He, and X. Tang, Image super-resolution using deep convolutional networks, IEEE TPAMI, 2015.

SRCNN

SRCNN showed that simple

learning based approaches

can match the state-of the-

art performances of super-

resolution task.

9C. Dong, C. C. Loy, K. He, and X. Tang, Image super-resolution using deep convolutional networks, IEEE TPAMI, 2015.

ILR Conv.1 ReLu.1 HR Conv.D (Residual) Conv.D-1 ReLu.D-1

x r y

VDSR

In 2016, Kim et al. presented VDSR. They trained a 20-layer CNN with a residual

connection 𝑓𝜃 to learn the high-resolution reconstruction with the loss

ℒ 𝜃 =෍

𝑖=1

𝑁

𝑓𝜃 ෨𝑌𝑖 − 𝑋𝑖
2

The residual connection was the key insight that enabled the training of much deeper CNNs.

10J. Kim, J. K. Lee, and K. M. Lee, Accurate image super-resolution using very deep convolutional networks, CVPR, 2016.

VDSR

VDSR dominated all prior approaches

not based on deep learning.

showed that simple learning based

approaches can batch the state-of the-

art performances of super-resolution

task.

11J. Kim, J. K. Lee, and K. M. Lee, Accurate image super-resolution using very deep convolutional networks, CVPR, 2016.

Other inverse problem tasks and results

There are many other inverse problems. Almost all of them now require deep neural

networks to achieve state-of-the-art results.

We won’t spend more time on inverse problems in this course, but let’s have fun and see a

few other tasks and results. (These results are based on much more complex architectures

and loss functions.)

12

SRGAN

13
C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, Photo-realistic single image

super-resolution using a generative adversarial network, CVPR, 2017.

bicubic interpolation SRGAN ground truth

SRGAN

14
C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, Photo-realistic single image

super-resolution using a generative adversarial network, CVPR, 2017.

bicubic interpolation SRGAN ground truth

SRGAN

15
C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, Photo-realistic single image

super-resolution using a generative adversarial network, CVPR, 2017.

bicubic interpolation SRGAN ground truth

Image colorization

16R. Zhang, P. Isola, and A. A. Efros, Colorful image colorization, ECCV, 2016.

Image inpainting

17J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang, Generative image inpainting with contextual attention, CVPR, 2018.

Image inpainting

18J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang, Generative image inpainting with contextual attention, CVPR, 2018.

input output ground truth

Linear operator ≅ matrix

Core tenet of linear algebra: matrices are linear operators and linear operators are matrices.

Let 𝑓 ∶ ℝ𝑛 → ℝ𝑚 be linear, i.e.,

𝑓 𝑥 + 𝑦 = 𝑓 𝑥 + 𝑓 𝑦 and 𝑓 𝛼𝑥 = 𝛼𝑓 𝑥

for all 𝑥, 𝑦 ∈ ℝ𝑛 and 𝛼 ∈ ℝ.

There exists a matrix 𝐴 ∈ ℝ𝑚×𝑛 that represents 𝑓 ∶ ℝ𝑛 → ℝ𝑚, i.e.,

𝑓 𝑥 = 𝐴𝑥

for all 𝑥 ∈ ℝ𝑛.

19

Linear operator ≅ matrix

Let 𝑒𝑖 be the 𝑖-th unit vector, i.e., 𝑒𝑖 has all zeros elements except entry 1 in the 𝑖-th
coordinate.

Given a linear 𝑓 ∶ ℝ𝑛 → ℝ𝑚, we can find the matrix

𝐴 = 𝐴∶,1 𝐴∶,2 ⋯ 𝐴∶,𝑛 ∈ ℝ𝑚×𝑛

representing 𝑓 with

𝑓 𝑒𝑗 = 𝐴𝑒𝑗 = 𝐴∶,𝑗

for all 𝑗 = 1,… , 𝑛, or with

𝑒𝑖
⊤𝑓 𝑒𝑗 = 𝑒𝑖

⊤𝐴𝑒𝑗 = 𝐴𝑖,𝑗

for all 𝑖 = 1,… ,𝑚 and 𝑗 = 1,… , 𝑛.

20

Linear operator ≇ matrix

In applied mathematics and machine learning, there are many setups where explicitly

forming the matrix representation 𝐴 ∈ ℝ𝑚×𝑛 is costly, even though the matrix-vector

products 𝐴𝑥 and 𝐴⊤𝑦 are efficient to evaluate.

In machine learning, convolutions are the primary example. Other areas, linear operators

based on FFTs are the primary example.

In such setups, the matrix representation is still a useful conceptual tool, even if we never

intend to form the matrix.

21

Transpose (adjoint) of a linear operator

Given a matrix 𝐴, the transpose 𝐴⊤ is obtained by flipping the row and column dimensions,

i.e., 𝐴⊤ 𝑖𝑗 = 𝐴 𝑗𝑖. However, using this definition is not always the most effective when

understanding the action of 𝐴⊤.

Another approach is to use the adjoint view. Since

𝑦⊤ 𝐴𝑥 = 𝐴⊤𝑦 ⊤𝑥

for any 𝑥 ∈ ℝ𝑛 and 𝑦 ∈ ℝ𝑚, understand the action of 𝐴⊤ by finding an expression of the form

𝑦⊤𝐴𝑥 =෍

𝑗=1

𝑛

something 𝑗 𝑥𝑗 = 𝐴⊤𝑦 ⊤𝑥

22

Example: 1D transpose convolution

Consider the 1D convolution represented by 𝐴 ∈ ℝ 𝑛−𝑓+1 ×𝑛 defined with a given 𝑤 ∈ ℝ𝑓

and

Then we have

23

Example: 1D transpose convolution

and we have the following formula which

coincides with transposing the matrix 𝐴.

For more complicated linear operators, this is how

you understand the transpose operation.

24

Operations increasing spatial dimensions

In image classification tasks, the spatial dimensions of neural networks often decrease as

the depth progresses.

This is because we are trying to forget location information. (In classification, we care about

what is in the image, but we do not where it is in the image.)

However, there are many networks for which we want to increase the spatial dimension:

• Linear layers

• Upsampling

• Transposed convolution

25

Upsampling: Nearest neighbor

torch.nn.Upsample with mode='nearest'

26

6 6 8 8

6 6 8 8

3 3 4 4

3 3 4 4

6 8

3 4

Upsampling: Bilinear interpolation

Torch.nn.Upsample with mode='bilinear'

(We won’t pay attention to the interpolation formula.)

'linear' interpolation is available for 1D data

'trilinear' interpolation is available for 3D data

27

6.0000 6.5000 7.5000 8.0000

5.2500 5.6875 6.5625 7.0000

3.7500 4.0625 4.6875 5.0000

3.0000 3.2500 3.7500 4.0000

6 8

3 4

Transposed convolution

In transposed convolution, input neurons

additively distribute values to the output via the

kernel.

Before people noticed that this is the transpose

of convolution, the names backwards

convolution and deconvolution* were used.

28*This is a particularly bad name as deconvolution refers to the inverse, rather than transpose, of the convolution in signal processing.

Transposed convolution

For each input neuron,

multiply the kernel and add

(accumulate) the value in the

output.

Can accommodate strides,

padding, and multiple

channels.

29

Convolution visualized

30
Illustration due to: https://medium.com/apache-mxnet/convolutions-explained-with-ms-excel-465d6649831c

D. Mishra, Convolutions explained with… MS Excel!, Medium, 2018.

Transpose convolution visualized

31
Illustration due to: https://medium.com/apache-mxnet/transposed-convolutions-explained-with-ms-excel-52d13030c7e8

D. Mishra, Transposed convolutions explained with… MS Excel!, Medium, 2018.

def trans_conv(Y, w, b):
c_in, c_out, f1, f2 = w.shape
batch, c_in, m, n = Y.shape
X = torch.zeros(batch, c_out, m + f1 - 1, n + f2 - 1)
for k in range(c_in):
for i in range(Y.shape[2]):
for j in range(Y.shape[3]):

X[:, :, i:i+f1, j:j+f2] += Y[:, k, i, j].view(-1,1,1,1)*w[k, :, :, :].unsqueeze(0)
return X + b.view(1,-1,1,1)

2D trans. Conv. layer: Formal definition

Input tensor: 𝑌 ∈ ℝ𝐵×𝐶in×𝑚×𝑛, 𝐵 batch size, 𝐶in # of input channels.

Output tensor: 𝑋 ∈ ℝ𝐵×𝐶out× 𝑚+𝑓1−1 × 𝑛+𝑓2−1 , 𝐵 batch size, 𝐶out # of output channels, 𝑚, 𝑛 #

of vertical and horizontal indices.

Filter 𝑤 ∈ ℝ𝐶in×𝐶out×𝑓1×𝑓2, bias 𝑏 ∈ ℝ𝐶out. (If bias=False, then 𝑏 = 0.)

32

Dependency by sparsity pattern

In a matrix representation 𝐴 of convolution. The

dependencies of the inputs and outputs are represented by

the non-zeros of 𝐴, i.e., the sparsity pattern of 𝐴.

If 𝐴𝑖𝑗 = 0, then input neuron 𝑗 does not affect the output

neuron 𝑖. If 𝐴𝑖𝑗 ≠ 0, then 𝐴⊤ 𝑗𝑖 ≠ 0. So if input neuron 𝑗

affects output neuron 𝑖 in convolution, then input neuron 𝑖
affects output neuron 𝑗 in transposed convolution.

We can combine this reasoning with our visual

understanding of convolution. The diagram simultaneously

illustrates the dependencies for both convolution and

transposed convolution.

33

Input for conv

Output for trans.conv

Output for conv

Input for trans.conv.

Semantic segmentation

In semantic

segmentation, the goal is

to segment the image

into semantically

meaningful regions by

classifying each pixel.

34

Other related tasks

Object localization localizes a single object

usually via a bounding box.

Object detection detects many objects, with

the same class often repeated, usually via

bounding boxes.

35

Other related tasks

Instance segmentation distinguishes multiple instances of the same object type.

36

Pascal VOC

We will use PASCAL Visual Object Classes (VOC) dataset for

semantic segmentation.

(Dataset also contains labels for object detection.)

There are 21 classes: 20 main classes and 1 “unlabeled” class.

Data 𝑋1, … , 𝑋𝑁 ∈ ℝ3×𝑚×𝑛 and labels 𝑌1, … , 𝑌𝑁 ∈ 0,1, … , 20 𝑚×𝑛,

i.e., 𝑌𝑖 provides a class label for every pixel of 𝑋𝑖.

37

Loss for semantic segmentation

Consider the neural network

𝑓𝜃 ∶ ℝ
3×𝑚×𝑛 → ℝ𝑘×𝑚×𝑛

such that 𝜇 𝑓𝜃 𝑋
𝑖𝑗
∈ Δ𝑘 is the probabilities for the 𝑘 classes for pixel (𝑖, 𝑗).

We minimize the sum of pixel-wise cross-entropy losses

ℒ 𝜃 =෍

𝑙=1

𝑁

෍

𝑖=1

𝑚

෍

𝑗=1

𝑛

ℓCE 𝑓𝜃 𝑋𝑙 𝑖𝑗 , 𝑌𝑙 𝑖𝑗

where ℓCE is the cross entropy loss.

38

U-Net

39
O. Ronneberger, P. Fischer, and T. Brox, U-Net: Convolutional networks for biomedical image segmentation, Medical Image Computing and Computer-

Assisted Intervention, 2015.

The U-Net architecture:

• Reduce the spatial dimension

to obtain high-level (coarse

scale) features

• Upsample or transpose

convolution to restore spatial

dimension.

• Use residual connections

across each dimension

reduction stage.

Magnetic resonance imaging

Magnetic resonance imaging (MRI) is an inverse problem in which we partially* measure the

Fourier transform of the patient and the goal is to reconstruct the patient’s image.

So 𝑋true ∈ ℝ𝑛 is the true original image (reshaped into a vector) with 𝑛 pixels or voxels and

𝒜 𝑋true ∈ ℂ𝑘 with 𝑘 ≪ 𝑛. (If 𝑘 = 𝑛, MRI scan can take hours.)

Classical reconstruction algorithms rely on Fourier analysis, total variation regularization,

compressed sensing, and optimization.

Recent state-of-the-art use deep neural networks.

40*We measure fewer points of the Fourier transform than there are pixels or voxels in the 2D or 3D image.

fastMRI dataset

A team of researchers from

Facebook AI Research and

NYU released a large MRI

dataset to stimulate data-

driven deep learning

research for MRI

reconstruction.

41
J. Zbontar, F. Knoll, A. Sriram, T. Murrell, Z. Huang, M. J. Muckley, A. Defazio, R. Stern, P. Johnson, M. Bruno, M. Parente, K. J. Geras, J. Katsnelson, H.

Chandarana, Z. Zhang, M. Drozdzal, A. Romero, M. Rabbat, P. Vincent, N. Yakubova, J. Pinkerton, D. Wang, E. Owens, C. L. Zitnick, M. P. Recht, D. K.

Sodickson, and Y. W. Lui, fastMRI: An open dataset and benchmarks for accelerated MRI, arXiv, 2019.

U-Net for inverse problems

Although U-Net was originally proposed as an architecture for semantic segmentation, it is

also being used widely as one of the default architectures in inverse problems, including

MRI reconstruction.

42
J. Zbontar, F. Knoll, A. Sriram, T. Murrell, Z. Huang, M. J. Muckley, A. Defazio, R. Stern, P. Johnson, M. Bruno, M. Parente, K. J. Geras, J. Katsnelson, H.

Chandarana, Z. Zhang, M. Drozdzal, A. Romero, M. Rabbat, P. Vincent, N. Yakubova, J. Pinkerton, D. Wang, E. Owens, C. L. Zitnick, M. P. Recht, D. K.

Sodickson, and Y. W. Lui, fastMRI: An open dataset and benchmarks for accelerated MRI, arXiv, 2019.

Computational tomography

Computational tomography (CT) is an inverse problem in which we partially* measure the

Radon transform of the patient and the goal is to reconstruct the patient’s image.

So 𝑋true ∈ ℝ𝑛 is the true original image (reshaped into a vector) with 𝑛 pixels or voxels and

𝒜 𝑋true ∈ ℝ𝑘 with 𝑘 ≪ 𝑛. (If 𝑘 = 𝑛, the X-ray exposure to perform the CT scan can be

harmful.)

Recent state-of-the-art use deep neural networks.

43*We measure fewer points of the Radon transform than there are pixels or voxels in the 2D or 3D image.

U-Net for CT reconstruction

U-Net is also used as one of the default architectures in CT reconstruction

44K. H. Jin, M. T. McCann, E. Froustey, and M. Unser, Deep convolutional neural network for inverse problems in imaging, IEEE TIP, 2017.

