
Mathematical Foundations of Deep Neural Networks, M1407.001200
E. Ryu
Spring 2024

Homework 1
Due 5pm, Monday, March 11, 2024

Problem 1: Least-squares derivatives. Let X1, . . . , XN ∈ Rp and Y1, . . . , YN ∈ R. Define

X =

X⊺
1
...

X⊺
N

 ∈ RN×p, Y =

Y1
...

YN

 ∈ RN .

Let

ℓi(θ) =
1

2
(X⊺

i θ − Yi)
2 for i = 1, . . . , N, L(θ) = 1

2
∥Xθ − Y ∥2.

Show (a) ∇θℓi(θ) = (X⊺
i θ − Yi)Xi and (b) ∇θL(θ) = X⊺(Xθ − Y).

Hint. For part (a), start by computing ∂
∂θj

ℓi(θ). For part (b), use the fact that

Mv =

N∑
i=1

M:,ivi ∈ Rp

for any M ∈ Rp×N , v ∈ RN , where M:,i is the ith column of M for i = 1, . . . , N .

Problem 2: Diverging univariate GD. Consider the univariate function f(θ) = θ2/2. Show
that

θk+1 = θk − αf ′(θk)

with θ0 ̸= 0 diverges if α > 2.

Clarification. There is a slight conflict of notation: θ2 denotes the square of the scalar θ while
θk denotes the kth iterate of GD.

Problem 3: Diverging multivariate GD. Let X ∈ RN×p and Y ∈ RN , and consider the opti-
mization problem

minimize
θ∈Rp

f(θ)

with

f(θ) =
1

2
∥Xθ − Y ∥2.

Show
θk+1 = θk − α∇f(θk)

with α > 2/ρ(X⊺X) diverges for most starting points θ0 ∈ Rm. Here, ρ denotes the spectral
radius, i.e., ρ(X⊺X) is the largest eigenvalue of the symmetric matrix X⊺X. For simplicity, you
may assume X⊺X is invertible.

Hint. Let θ⋆ = (X⊺X)−1X⊺Y and show that

θk+1 − θ⋆ = Some function of (θk − θ⋆).

Remark. “Most starting points” can be formalized as “almost everywhere with respect to
the Lebesgue measure”. If you are unfamiliar with measure theory, you can understand the
statement as holding for all starting points except for a lower dimensional set.

1

Problem 4: GD converging to wide local minima. Consider the optimization problem

minimize
θ∈R

f(θ)

with

f(θ) =
10θ2 + e3(θ−3)((θ − 10)2/2 + 50)

1 + e3(θ−3)
.

Code for evaluating f and f ′ is implemented in the starter code wideMinima.py. We call the
global minimum near θ = 0 the sharp minimum and the local minimum near θ = 10 the wide
minimum.

Implement gradient descent and run it with random starting points within the range [−5, 20].
Experimentally demonstrate that gradient descent with learning rate α = 0.01 converges to
either of the two minima, with α = 0.3 converges to the wide minimum, and with α = 4 does
not converge for most starting points.

Remark. The moral of this problem is that the learning rate of GD (and SGD) determines the
sharpness of the minima the algorithm converges to. To converge to sharper local minima and
thereby achieve a smaller loss, one often progressively reduces the learning rate using “learning
rate schedulers”. On the other hand, there is some recent work demonstrating that sharp local
minima do not generalize well and should be avoided. We will revisit this topic later. 1

1Y. Jiang, B. Neyshabur, H. Mobahi, D. Krishnan, S. Bengio, Fantastic Generalization Measures and Where
to Find Them, ICLR, 2020.
P. Foret, A. Kleiner, H. Mobahi, B. Neyshabur, Sharpness-aware Minimization for Efficiently Improving Gener-
alization, ICLR, 2020.

2

Problem 5: Implementing GD with duck typing. Consider the optimization problem

minimize
x∈Rn

ℓ(Ax− b) + λ
2∥x∥

2,

where b ∈ Rn−r+1 and the linear operator A ∈ R(n−r+1)×n is defined with a given k ∈ Rr and

A =



k1 · · · kr 0 · · · 0
0 k1 · · · kr 0 · · · 0
0 0 k1 · · · kr 0 · · · 0
...

. . .
. . .

...
0 · · · 0 k1 · · · kr 0
0 · · · 0 0 k1 · · · kr


.

Let ℓ : Rm → R be the element-wise Huber loss defined as

ℓ(y) =
m∑
i=1

h(yi),

where

h =

{
1
2x

2 for |x| ≤ 1
|x| − 1

2 otherwise.

Code for evaluating ℓ and ∇ℓ is implemented in the starter code conv1D.py. We use the
following Python implementation of gradient descent

for _ in range (100) :

x = x - alpha*(A.T@(huber_grad(A@x -b))+lam*x)

where x and b are numpy arrays of lengths n and n-r+1.

The näıve approach of making A a regular numpy array with

from scipy.linalg import circulant

A = circulant(np.concatenate ((np.flip(k),np.zeros(n-r))))[r-1:,:]

is inefficient because the 0s of A are wasteful when computing the matrix-vector products A@x
and A.T@(...). Instead, we make A an object with methods computing matrix-vector products
A@x and A.T@(...) without directly forming the (n− r + 1)× n matrix.

Download the starter code conv1D.py. Implement the __matmul__ methods so that the above
gradient descent code runs without modification. You may not create a (n− r + 1)× n numpy
array (nor a n× (n− r + 1) numpy array) in the implementation.

Remark. In machine learning, the operation Ax is called the convolution of x with the receptive
field or filter k. In mathematics and signal processing, Ax is called the cross-correlation of x
with the kernel k. (Traditional convolution has the indices of k flipped so that kr · · · k1, rather
than k1 · · · kr, appears in A.)

Hint. This problem can be completed by writing two lines of code. More specifically, the

return None

of __matmul__ for Convolution1d and TransposedConvolution1d can each be replaced with

return np.asarray ([LIST COMPREHENSION])

for some list comprehensions.

3

