
Mathematical Foundations of Deep Neural Networks, M1407.001200
E. Ryu
Spring 2024

Homework 10
Due 5pm, Monday, May 27, 2024

Problem 1: Log-derivative trick for VAE. Let Z ∈ Rk be a random variable. Let qϕ(z) be
a probability density function for all ϕ ∈ Rp. Assume qϕ(z) is differentiable in ϕ for all fixed
z ∈ Rk. Let h : Rk → R satisfy h(z) > 0 for all z ∈ Rk. Assume that the order of integration
and differentiation can be swapped. Show

∇ϕEZ∼qϕ(z)

[
log

(
h(Z)

qϕ(Z)

)]
= EZ∼qϕ(z)

[
(∇ϕ log qϕ(Z)) log

(
h(Z)

qϕ(Z)

)]
.

Hint. Since qϕ(z) is a probability density function,∫
∇ϕqϕ(z) dz = ∇ϕ

∫
qϕ(z) dz = ∇ϕ1 = 0.

Problem 2: Projected gradient method. Consider the optimization problem

minimize
x∈Rn

f(x)

subject to x ∈ C,

where C ⊂ Rn. Constrained optimization problems of this type can be solved with the projected
gradient method

xk+1 = ΠC(x
k − α∇f(xk)),

where ΠC is the projection onto C. The projection of y ∈ Rn onto C ⊆ Rn is defined as the
point in C that is closest to y:

ΠC(y) = argmin
x∈C

∥x− y∥2.

For the particular set
C = {x ∈ R2 |x1 = a, 0 ≤ x2 ≤ 1},

where a ∈ R, show that

ΠC(y) =

[
a

min{max{y2, 0}, 1}

]
,

where y = (y1, y2).

1

Figure 1: The original, corrupted, and inpainted MNIST image.

Problem 3: Image inpainting with flow models. Assume we have a trained flow model that
we use to evaluate the likelihood function p. (Since we will not further train or update the
flow model, we supress the network parameter θ and write p rather than pθ.) The starter
code flow_inpainting.py loads a NICE flow model pre-trained on the MNIST dataset saved
in nice.pt. Let Xtrue ∈ R28×28 be an MNIST image with pixel intensities normalized to be
in [0, 1]. Let M = {0, 1}28×28 be a binary mask. We measure M ⊙ Xtrue, where ⊙ denotes
elementwise multiplication, and the goal is to inpaint the missing information (1−M)⊙Xtrue,
where 1−M ∈ {0, 1}28×28 is the inverted mask. (See Figure 1.) Perform inpainting by solving
the following constrained maximum likelihood estimation problem

minimize
X∈R28×28

− log p(X)

subject to M ⊙X = M ⊙Xtrue

0 ≤ X ≤ 1,

where 0 ≤ X ≤ 1 is enforced elementwise. Use the projected gradient method with learning
rate 10−3 and 300 iterations.

Hint. Represent the optimization variable with

X = image.clone (). requires_grad_(True)

while preserving image, the tensor containing the corrupted image. When manipulating X in
the projection step, manipulate X.data rather than X itself so that the computation graph is
not altered by the projection step. Use clamp(...) to enforce the 0 ≤ X ≤ 1 constraint.

Remark. The optimization problem can be interpreted as finding the most likely reconstruction
consistent with the measurements.

Remark. The NICE paper [2] obtains better inpainting results by using a learning rate scheduler
(iteration-dependent stepsize) and adding noise to escape from local minima.

2

Problem 4: Ingredients of Glow [1]. Let

A = PL(U + diag(s)) ∈ RC×C ,

where P ∈ RC×C is a permutation matrix, L ∈ RC×C is a lower triangular matrix with unit
diagonals, U ∈ RC×C is upper triangular with zero diagonals, and s ∈ RC . To clarify, Lii = 1
for i = 1, . . . , C, Lij = 0 for 1 ≤ i < j ≤ C, and Uij = 0 for 1 ≤ j ≤ i ≤ C.

(a) Let f1(x) = Ax. Show

log

∣∣∣∣∂f1∂x

∣∣∣∣ = C∑
i=1

log |si|.

(b) Given h : Ra×b×c → Ra×b×c, define∣∣∣∣∂h(X)

∂X

∣∣∣∣ = ∣∣∣∣∂(h(X).reshape(abc))

∂(X.reshape(abc))

∣∣∣∣ ,
i.e., we define the absolute value of the Jacobian determinant with the input and output
tensors vectorized. Note that the reshape operation, which maps elements from the tensor
in Ra×b×c to the elements of the vector in Rabc, is not unique. Show that the definition of∣∣∣∂h(X)

∂X

∣∣∣ does not depend on the specific choice of reshape.

(c) Let f2(X |P,L, U, s) be the 1 × 1 convolution from RC×m×n to RC×m×n with filter w ∈
RC×C×1×1 defined as

wi,j,1,1 = Ai,j , for i = 1, . . . , C, j = 1, . . . , C.

So X ∈ RC×m×n and f2(X |P,L, U, s) ∈ RC×m×n. (Assume the batch size is 1.) Show

log

∣∣∣∣∂f2(X |P,L, U, s)
∂X

∣∣∣∣ = mn

C∑
i=1

log |si|.

(d) Consider the following coupling layer from X ∈ R2C×m×n to Z ∈ R2C×m×n:

Z1:C,:,: = X1:C,:,:

ZC+1:2C,:,: = f2(XC+1:2C,:,:|P,L(X1:C,:,:), U(X1:C,:,:), s(X1:C,:,:)),

where P is a fixed permutation matrix, L(·) outputs lower triangular matrices with unit
diagonals in RC×C , U(·) outputs upper triangular matrices with zero diagonals in RC×C ,
and s(·) ∈ RC . Show

log

∣∣∣∣ ∂Z∂X
∣∣∣∣ = mn

C∑
i=1

log |si|.

Remark. Given any A ∈ Rn×n, a decomposition A = PL(U +diag(s)) can be computed via the
so-called PLU factorization, which performs steps analogous to Gaussian elimination.

3

Problem 5: Gambler’s ruin. You are a gambler at a casino with a starting balance of 100$.
You will play a game in which you bet 1$ every game. With probability 18/37, you win and
collect 2$ (so you make a 1$ profit). With probability 19/37, you lose and collect no money.
You play until you reach a balance of 0$ or 200$ or until you play 600 games. Write a Monte
Carlo simulation with importance sampling to estimate the probability that you leave the casino
with 200$. Specifically, simulate playing up to 600 games until you reach the balance of 0$ or
200$ and repeat this N = 3000 times.

Hint. Regardless of the outcome, simulate K = 600 games. The outcomes of the games form a
sequence of Bernoulli random variables with probability mass function

f(X1, . . . , XK) =
K∏
i=1

pXi(1− p)(1−Xi)

and p = 18/37. For the sampling distribution, also use a sequence of Bernoulli random variables
with probability mass function

g(Y1, . . . , YK) =
K∏
i=1

qYi(1− q)(1−Yi)

but with q > p. Try using q = 0.55.

Hint. The answer is approximately 2× 10−6. Submit Python code that produces this answer.

Problem 6: Solve

minimize
µ,σ∈R

EX∼N (µ,σ2)[X sin(X)] + 1
2(µ− 1)2 + σ − log σ

subject to σ > 0

using SGD combined with

(a) the log-derivative trick and

(b) the reparameterization trick.

Hint. Use the change of variables σ = eτ to remove the constraint σ > 0.

Clarification. Implement SGD in Python and submit the code.

References

[1] D. P. Kingma and P. Dhariwal, Glow: Generative flow with invertible 1x1 convolutions,
NeurIPS, 2018.

[2] L. Dinh, D. Krueger, and Y. Bengio, NICE: Non-linear independent components estimation,
ICLR Workshop, 2015.

4

