Mathematical Foundations of Deep Neural Networks, M1407.001200 E. Ryu Spring 2024

Homework 10 Due 5pm, Monday, May 27, 2024

Problem 1: Log-derivative trick for VAE. Let $Z \in \mathbb{R}^k$ be a random variable. Let $q_{\phi}(z)$ be a probability density function for all $\phi \in \mathbb{R}^p$. Assume $q_{\phi}(z)$ is differentiable in ϕ for all fixed $z \in \mathbb{R}^k$. Let $h \colon \mathbb{R}^k \to \mathbb{R}$ satisfy h(z) > 0 for all $z \in \mathbb{R}^k$. Assume that the order of integration and differentiation can be swapped. Show

$$\nabla_{\phi} \mathbb{E}_{Z \sim q_{\phi}(z)} \left[\log \left(\frac{h(Z)}{q_{\phi}(Z)} \right) \right] = \mathbb{E}_{Z \sim q_{\phi}(z)} \left[\left(\nabla_{\phi} \log q_{\phi}(Z) \right) \log \left(\frac{h(Z)}{q_{\phi}(Z)} \right) \right].$$

Hint. Since $q_{\phi}(z)$ is a probability density function,

$$\int \nabla_{\phi} q_{\phi}(z) \, dz = \nabla_{\phi} \int q_{\phi}(z) \, dz = \nabla_{\phi} 1 = 0.$$

Problem 2: Projected gradient method. Consider the optimization problem

$$\begin{array}{ll} \underset{x \in \mathbb{R}^n}{\text{minimize}} & f(x) \\ \text{subject to} & x \in C, \end{array}$$

where $C \subset \mathbb{R}^n$. Constrained optimization problems of this type can be solved with the *projected* gradient method

$$x^{k+1} = \prod_C (x^k - \alpha \nabla f(x^k)),$$

where Π_C is the projection onto C. The projection of $y \in \mathbb{R}^n$ onto $C \subseteq \mathbb{R}^n$ is defined as the point in C that is closest to y:

$$\Pi_C(y) = \operatorname*{argmin}_{x \in C} \|x - y\|^2$$

For the particular set

$$C = \{ x \in \mathbb{R}^2 \, | \, x_1 = a, \, 0 \le x_2 \le 1 \},\$$

where $a \in \mathbb{R}$, show that

$$\Pi_C(y) = \begin{bmatrix} a\\ \min\{\max\{y_2, 0\}, 1\} \end{bmatrix},$$

where $y = (y_1, y_2)$.

Figure 1: The original, corrupted, and inpainted MNIST image.

Problem 3: Image inpainting with flow models. Assume we have a trained flow model that we use to evaluate the likelihood function p. (Since we will not further train or update the flow model, we supress the network parameter θ and write p rather than p_{θ} .) The starter code flow_inpainting.py loads a NICE flow model pre-trained on the MNIST dataset saved in nice.pt. Let $X_{\text{true}} \in \mathbb{R}^{28 \times 28}$ be an MNIST image with pixel intensities normalized to be in [0, 1]. Let $M = \{0, 1\}^{28 \times 28}$ be a binary mask. We measure $M \odot X_{\text{true}}$, where \odot denotes elementwise multiplication, and the goal is to inpaint the missing information $(1 - M) \odot X_{\text{true}}$, where $1 - M \in \{0, 1\}^{28 \times 28}$ is the inverted mask. (See Figure 1.) Perform inpainting by solving the following constrained maximum likelihood estimation problem

$$\begin{array}{ll} \underset{X \in \mathbb{R}^{28 \times 28}}{\text{minimize}} & -\log p(X) \\ \text{subject to} & M \odot X = M \odot X_{\text{true}} \\ & 0 \le X \le 1, \end{array}$$

where $0 \le X \le 1$ is enforced elementwise. Use the projected gradient method with learning rate 10^{-3} and 300 iterations.

Hint. Represent the optimization variable with

X = image.clone().requires_grad_(True)

while preserving image, the tensor containing the corrupted image. When manipulating X in the projection step, manipulate X.data rather than X itself so that the computation graph is not altered by the projection step. Use clamp(...) to enforce the $0 \le X \le 1$ constraint.

Remark. The optimization problem can be interpreted as finding the most likely reconstruction consistent with the measurements.

Remark. The NICE paper [2] obtains better inpainting results by using a learning rate scheduler (iteration-dependent stepsize) and adding noise to escape from local minima.

Problem 4: Ingredients of Glow [1]. Let

$$A = PL(U + \operatorname{diag}(s)) \in \mathbb{R}^{C \times C},$$

where $P \in \mathbb{R}^{C \times C}$ is a permutation matrix, $L \in \mathbb{R}^{C \times C}$ is a lower triangular matrix with unit diagonals, $U \in \mathbb{R}^{C \times C}$ is upper triangular with zero diagonals, and $s \in \mathbb{R}^{C}$. To clarify, $L_{ii} = 1$ for $i = 1, \ldots, C$, $L_{ij} = 0$ for $1 \le i < j \le C$, and $U_{ij} = 0$ for $1 \le j \le i \le C$.

(a) Let $f_1(x) = Ax$. Show

$$\log \left| \frac{\partial f_1}{\partial x} \right| = \sum_{i=1}^C \log |s_i|.$$

(b) Given $h: \mathbb{R}^{a \times b \times c} \to \mathbb{R}^{a \times b \times c}$, define

$$\left|\frac{\partial h(X)}{\partial X}\right| = \left|\frac{\partial (h(X).\operatorname{reshape}(abc))}{\partial (X.\operatorname{reshape}(abc))}\right|.$$

i.e., we define the absolute value of the Jacobian determinant with the input and output tensors vectorized. Note that the reshape operation, which maps elements from the tensor in $\mathbb{R}^{a \times b \times c}$ to the elements of the vector in \mathbb{R}^{abc} , is not unique. Show that the definition of $\left|\frac{\partial h(X)}{\partial X}\right|$ does not depend on the specific choice of reshape.

(c) Let $f_2(X | P, L, U, s)$ be the 1×1 convolution from $\mathbb{R}^{C \times m \times n}$ to $\mathbb{R}^{C \times m \times n}$ with filter $w \in \mathbb{R}^{C \times C \times 1 \times 1}$ defined as

$$w_{i,i,1,1} = A_{i,j},$$
 for $i = 1, \dots, C, j = 1, \dots, C.$

So $X \in \mathbb{R}^{C \times m \times n}$ and $f_2(X \mid P, L, U, s) \in \mathbb{R}^{C \times m \times n}$. (Assume the batch size is 1.) Show

$$\log \left| \frac{\partial f_2(X \mid P, L, U, s)}{\partial X} \right| = mn \sum_{i=1}^C \log |s_i|.$$

(d) Consider the following coupling layer from $X \in \mathbb{R}^{2C \times m \times n}$ to $Z \in \mathbb{R}^{2C \times m \times n}$:

$$Z_{1:C,:,:} = X_{1:C,:,:}$$

$$Z_{C+1:2C,:,:} = f_2(X_{C+1:2C,:,:}|P, L(X_{1:C,:,:}), U(X_{1:C,:,:}), s(X_{1:C,:,:}))$$

where P is a fixed permutation matrix, $L(\cdot)$ outputs lower triangular matrices with unit diagonals in $\mathbb{R}^{C \times C}$, $U(\cdot)$ outputs upper triangular matrices with zero diagonals in $\mathbb{R}^{C \times C}$, and $s(\cdot) \in \mathbb{R}^{C}$. Show

$$\log \left| \frac{\partial Z}{\partial X} \right| = mn \sum_{i=1}^{C} \log |s_i|.$$

Remark. Given any $A \in \mathbb{R}^{n \times n}$, a decomposition A = PL(U + diag(s)) can be computed via the so-called PLU factorization, which performs steps analogous to Gaussian elimination.

Problem 5: Gambler's ruin. You are a gambler at a casino with a starting balance of 100\$. You will play a game in which you bet 1\$ every game. With probability 18/37, you win and collect 2\$ (so you make a 1\$ profit). With probability 19/37, you lose and collect no money. You play until you reach a balance of 0\$ or 200\$ or until you play 600 games. Write a Monte Carlo simulation with importance sampling to estimate the probability that you leave the casino with 200\$. Specifically, simulate playing up to 600 games until you reach the balance of 0\$ or 200\$ and repeat this N = 3000 times.

Hint. Regardless of the outcome, simulate K = 600 games. The outcomes of the games form a sequence of Bernoulli random variables with probability mass function

$$f(X_1, \dots, X_K) = \prod_{i=1}^K p^{X_i} (1-p)^{(1-X_i)}$$

and p = 18/37. For the sampling distribution, also use a sequence of Bernoulli random variables with probability mass function

$$g(Y_1, \dots, Y_K) = \prod_{i=1}^K q^{Y_i} (1-q)^{(1-Y_i)}$$

but with q > p. Try using q = 0.55.

Hint. The answer is approximately 2×10^{-6} . Submit Python code that produces this answer.

Problem 6: Solve

$$\begin{array}{ll} \underset{\mu,\sigma\in\mathbb{R}}{\operatorname{minimize}} & \mathbb{E}_{X\sim\mathcal{N}(\mu,\sigma^2)}[X\sin(X)] + \frac{1}{2}(\mu-1)^2 + \sigma - \log\sigma\\ \text{subject to} & \sigma > 0 \end{array}$$

using SGD combined with

- (a) the log-derivative trick and
- (b) the reparameterization trick.

Hint. Use the change of variables $\sigma = e^{\tau}$ to remove the constraint $\sigma > 0$. *Clarification.* Implement SGD in Python and submit the code.

References

- D. P. Kingma and P. Dhariwal, Glow: Generative flow with invertible 1x1 convolutions, *NeurIPS*, 2018.
- [2] L. Dinh, D. Krueger, and Y. Bengio, NICE: Non-linear independent components estimation, *ICLR Workshop*, 2015.