Homework 10
Due 5pm, Monday, May 27, 2024
Problem 1: Log-derivative trick for VAE. Let $Z \in \mathbb{R}^{k}$ be a random variable. Let $q_{\phi}(z)$ be a probability density function for all $\phi \in \mathbb{R}^{p}$. Assume $q_{\phi}(z)$ is differentiable in ϕ for all fixed $z \in \mathbb{R}^{k}$. Let $h: \mathbb{R}^{k} \rightarrow \mathbb{R}$ satisfy $h(z)>0$ for all $z \in \mathbb{R}^{k}$. Assume that the order of integration and differentiation can be swapped. Show

$$
\nabla_{\phi} \mathbb{E}_{Z \sim q_{\phi}(z)}\left[\log \left(\frac{h(Z)}{q_{\phi}(Z)}\right)\right]=\mathbb{E}_{Z \sim q_{\phi}(z)}\left[\left(\nabla_{\phi} \log q_{\phi}(Z)\right) \log \left(\frac{h(Z)}{q_{\phi}(Z)}\right)\right] .
$$

Hint. Since $q_{\phi}(z)$ is a probability density function,

$$
\int \nabla_{\phi} q_{\phi}(z) d z=\nabla_{\phi} \int q_{\phi}(z) d z=\nabla_{\phi} 1=0 .
$$

Problem 2: Projected gradient method. Consider the optimization problem

$$
\begin{array}{ll}
\underset{x \in \mathbb{R}^{z}}{\operatorname{minimize}} & f(x) \\
\text { subject to } & x \in C,
\end{array}
$$

where $C \subset \mathbb{R}^{n}$. Constrained optimization problems of this type can be solved with the projected gradient method

$$
x^{k+1}=\Pi_{C}\left(x^{k}-\alpha \nabla f\left(x^{k}\right)\right),
$$

where Π_{C} is the projection onto C. The projection of $y \in \mathbb{R}^{n}$ onto $C \subseteq \mathbb{R}^{n}$ is defined as the point in C that is closest to y :

$$
\Pi_{C}(y)=\underset{x \in C}{\operatorname{argmin}}\|x-y\|^{2} .
$$

For the particular set

$$
C=\left\{x \in \mathbb{R}^{2} \mid x_{1}=a, 0 \leq x_{2} \leq 1\right\}
$$

where $a \in \mathbb{R}$, show that

$$
\Pi_{C}(y)=\left[\begin{array}{c}
a \\
\min \left\{\max \left\{y_{2}, 0\right\}, 1\right\}
\end{array}\right],
$$

where $y=\left(y_{1}, y_{2}\right)$.

Figure 1: The original, corrupted, and inpainted MNIST image.

Problem 3: Image inpainting with flow models. Assume we have a trained flow model that we use to evaluate the likelihood function p. (Since we will not further train or update the flow model, we supress the network parameter θ and write p rather than p_{θ}.) The starter code flow_inpainting.py loads a NICE flow model pre-trained on the MNIST dataset saved in nice.pt. Let $X_{\text {true }} \in \mathbb{R}^{28 \times 28}$ be an MNIST image with pixel intensities normalized to be in $[0,1]$. Let $M=\{0,1\}^{28 \times 28}$ be a binary mask. We measure $M \odot X_{\text {true }}$, where \odot denotes elementwise multiplication, and the goal is to inpaint the missing information $(1-M) \odot X_{\text {true }}$, where $1-M \in\{0,1\}^{28 \times 28}$ is the inverted mask. (See Figure 1.) Perform inpainting by solving the following constrained maximum likelihood estimation problem

$$
\begin{array}{ll}
\underset{X \in \mathbb{R}^{28} 828}{\operatorname{minimize}} & -\log p(X) \\
\text { subject to } & M \odot X=M \odot X_{\text {true }} \\
& 0 \leq X \leq 1,
\end{array}
$$

where $0 \leq X \leq 1$ is enforced elementwise. Use the projected gradient method with learning rate 10^{-3} and 300 iterations.

Hint. Represent the optimization variable with
X = image.clone().requires_grad_(True)
while preserving image, the tensor containing the corrupted image. When manipulating X in the projection step, manipulate X .data rather than X itself so that the computation graph is not altered by the projection step. Use clamp (...) to enforce the $0 \leq X \leq 1$ constraint.
Remark. The optimization problem can be interpreted as finding the most likely reconstruction consistent with the measurements.
Remark. The NICE paper [2] obtains better inpainting results by using a learning rate scheduler (iteration-dependent stepsize) and adding noise to escape from local minima.

Problem 4: Ingredients of Glow [1]. Let

$$
A=P L(U+\operatorname{diag}(s)) \in \mathbb{R}^{C \times C}
$$

where $P \in \mathbb{R}^{C \times C}$ is a permutation matrix, $L \in \mathbb{R}^{C \times C}$ is a lower triangular matrix with unit diagonals, $U \in \mathbb{R}^{C \times C}$ is upper triangular with zero diagonals, and $s \in \mathbb{R}^{C}$. To clarify, $L_{i i}=1$ for $i=1, \ldots, C, L_{i j}=0$ for $1 \leq i<j \leq C$, and $U_{i j}=0$ for $1 \leq j \leq i \leq C$.
(a) Let $f_{1}(x)=A x$. Show

$$
\log \left|\frac{\partial f_{1}}{\partial x}\right|=\sum_{i=1}^{C} \log \left|s_{i}\right|
$$

(b) Given $h: \mathbb{R}^{a \times b \times c} \rightarrow \mathbb{R}^{a \times b \times c}$, define

$$
\left|\frac{\partial h(X)}{\partial X}\right|=\left|\frac{\partial(h(X) \cdot \operatorname{reshape}(a b c))}{\partial(X \cdot \operatorname{reshape}(a b c))}\right|
$$

i.e., we define the absolute value of the Jacobian determinant with the input and output tensors vectorized. Note that the reshape operation, which maps elements from the tensor in $\mathbb{R}^{a \times b \times c}$ to the elements of the vector in $\mathbb{R}^{a b c}$, is not unique. Show that the definition of $\left|\frac{\partial h(X)}{\partial X}\right|$ does not depend on the specific choice of reshape.
(c) Let $f_{2}(X \mid P, L, U, s)$ be the 1×1 convolution from $\mathbb{R}^{C \times m \times n}$ to $\mathbb{R}^{C \times m \times n}$ with filter $w \in$ $\mathbb{R}^{C \times C \times 1 \times 1}$ defined as

$$
w_{i, j, 1,1}=A_{i, j}, \quad \text { for } i=1, \ldots, C, j=1, \ldots, C
$$

So $X \in \mathbb{R}^{C \times m \times n}$ and $f_{2}(X \mid P, L, U, s) \in \mathbb{R}^{C \times m \times n}$. (Assume the batch size is 1.) Show

$$
\log \left|\frac{\partial f_{2}(X \mid P, L, U, s)}{\partial X}\right|=m n \sum_{i=1}^{C} \log \left|s_{i}\right|
$$

(d) Consider the following coupling layer from $X \in \mathbb{R}^{2 C \times m \times n}$ to $Z \in \mathbb{R}^{2 C \times m \times n}$:

$$
\begin{aligned}
Z_{1: C,:,::} & =X_{1: C,:,:} \\
Z_{C+1: 2 C,:,:} & =f_{2}\left(X_{C+1: 2 C,:,:} \mid P, L\left(X_{1: C,:,:}\right), U\left(X_{1: C,:,:}\right), s\left(X_{1: C,:,:}\right)\right),
\end{aligned}
$$

where P is a fixed permutation matrix, $L(\cdot)$ outputs lower triangular matrices with unit diagonals in $\mathbb{R}^{C \times C}, U(\cdot)$ outputs upper triangular matrices with zero diagonals in $\mathbb{R}^{C \times C}$, and $s(\cdot) \in \mathbb{R}^{C}$. Show

$$
\log \left|\frac{\partial Z}{\partial X}\right|=m n \sum_{i=1}^{C} \log \left|s_{i}\right|
$$

Remark. Given any $A \in \mathbb{R}^{n \times n}$, a decomposition $A=P L(U+\operatorname{diag}(s))$ can be computed via the so-called PLU factorization, which performs steps analogous to Gaussian elimination.

Problem 5: Gambler's ruin. You are a gambler at a casino with a starting balance of $100 \$$. You will play a game in which you bet $1 \$$ every game. With probability $18 / 37$, you win and collect $2 \$$ (so you make a $1 \$$ profit). With probability $19 / 37$, you lose and collect no money. You play until you reach a balance of $0 \$$ or $200 \$$ or until you play 600 games. Write a Monte Carlo simulation with importance sampling to estimate the probability that you leave the casino with $200 \$$. Specifically, simulate playing up to 600 games until you reach the balance of $0 \$$ or $200 \$$ and repeat this $N=3000$ times.
Hint. Regardless of the outcome, simulate $K=600$ games. The outcomes of the games form a sequence of Bernoulli random variables with probability mass function

$$
f\left(X_{1}, \ldots, X_{K}\right)=\prod_{i=1}^{K} p^{X_{i}}(1-p)^{\left(1-X_{i}\right)}
$$

and $p=18 / 37$. For the sampling distribution, also use a sequence of Bernoulli random variables with probability mass function

$$
g\left(Y_{1}, \ldots, Y_{K}\right)=\prod_{i=1}^{K} q^{Y_{i}}(1-q)^{\left(1-Y_{i}\right)}
$$

but with $q>p$. Try using $q=0.55$.

Hint. The answer is approximately 2×10^{-6}. Submit Python code that produces this answer.

Problem 6: Solve

$$
\begin{array}{ll}
\underset{\mu, \sigma \in \mathbb{R}}{\operatorname{minimize}} & \mathbb{E}_{X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)}[X \sin (X)]+\frac{1}{2}(\mu-1)^{2}+\sigma-\log \sigma \\
\text { subject to } & \sigma>0
\end{array}
$$

using SGD combined with
(a) the log-derivative trick and
(b) the reparameterization trick.

Hint. Use the change of variables $\sigma=e^{\tau}$ to remove the constraint $\sigma>0$.
Clarification. Implement SGD in Python and submit the code.

References

[1] D. P. Kingma and P. Dhariwal, Glow: Generative flow with invertible 1x1 convolutions, NeurIPS, 2018.
[2] L. Dinh, D. Krueger, and Y. Bengio, NICE: Non-linear independent components estimation, ICLR Workshop, 2015.

