
Mathematical Foundations of Deep Neural Networks, M1407.001200
E. Ryu
Spring 2024

Homework 12
Due 5pm, Tuesday, June 18, 2024

Problem 1: Gradient ascent-descent for robust logistic regression. Consider the minimax opti-
mization problem

minimize
θ∈Rp

maximize
ϕ∈Rp

L(θ, ϕ),

where

L(θ, ϕ) =
1

N

N∑
i=1

log(1 + exp(−Yi(Xi − ϕ)⊺θ))− λ

2
∥ϕ∥2,

X1, . . . , XN ∈ Rp, Y1, . . . , YN ∈ {−1, 1}, and λ = 30. Use the data

N, p = 30, 20

np.random.seed (0)

X = np.random.randn(N,p)

Y = 2*np.random.randint(2, size = N) - 1

lamda = 30

where X⊺
1 , . . . , X

⊺
N are the rows of X. Implement stochastic gradient ascent-descent with starting

points θ0 and ϕ0 randomly initialized to be zero-mean IID Gaussians with standard deviation
0.1, descent and ascent stepsizes α = 3 × 10−1 and β = 10−4, and 5000 epochs. You may find
the starter code minimax_logistic.py helpful.

Remark. We can interpret this problem as performing robust logistic regression where there is
uncertaintly in the data X1, . . . , XN .

Problem 2: GAN with non-uniform weights. Consider the variant of the GAN with non-
uniform weights on type I and type II errors:

minimize
θ∈Rp

maximize
ϕ∈Rp

EX∼ptrue [logDϕ(X)] + λEX̃∼pθ
[log(1−Dϕ(X̃))].

Here, λ > 0 represents the relative significance of a type II error over a type I error. Assum-
ing the discriminator network Dϕ is infinitely expressive, i.e., assuming Dϕ : Rn → (0, 1) can
represent any function from Rn to (0, 1), show that the stated minimax problem is equivalent
to

minimize
θ∈Rp

Df (ptrue∥pθ)

with

f(u) =

{
u log u

u+λ + λ log λ
λ+u + (1 + λ) log(1 + λ)− λ log λ u ≥ 0

∞ otherwise.

1

Figure 1: Data distribution pdata for the Swiss roll VAE and GAN problems.

Problem 3: Swiss roll VAE. Implement a VAE to learn the data distribution pdata defined by
the starter code swiss_roll.py and illustrated in Figure 1. Use the standard VAE setup with

pZ = N (0, 1) (z ∈ R)
qϕ(z | x) = N

(
µϕ(x), σ

2
ϕ(x)

)
pθ(x | z) = N

(
fθ(z), σ

2I
)
, σ =

1√
150

Let the encoder (µϕ, log σϕ) be a 3-layer fully-connected network with both hidden layer widths
equal to 128. Let the decoder fθ be a 3-layer fully-connected network with both hidden layer
widths equal to 64. For both the encoder and decoder networks, use the LeakyReLU activation
function with negative slope 0.2 for the first hidden layer, the tanh activation function for the
second hidden layer, and no activation function for the output layer. (The first hidden layer is
the layer closest to the input.) Use the standard VAE loss

L(θ, ϕ) = − log pθ(X |Z) +DKL (qϕ(· | X)∥pZ(·))

where X ∼ pdata and Z ∼ qϕ(z |X). Use the Adam optimizer with learning rate 5 × 10−4 and
a batch size of 64. Train for 2000 epochs.

Problem 4: Swiss roll GAN. Implement a GAN to learn the data distribution pdata defined
by the starter code swiss_roll.py and illustrated in Figure 1. Use a latent distribution pZ =
N (0, 1), with z ∈ R. Let the discriminator Dϕ be a 3-layer fully-connected network with both
hidden layer widths equal to 128. Use the tanh activation function for the hidden layers and
the sigmoid activation function for the output layer. Let the generator Gθ be a 2-layer fully-
connected network with hidden layer width equal to 32. Use the tanh activation function for
the hidden layer and no activation function for the output layer. Use the standard GAN loss

L(θ, ϕ) = logDϕ(X) + log(1−Dϕ(Gθ(Z))),

where X ∼ pdata and Z ∼ pZ . Use the Adam optimizer with learning rate 5× 10−4 and a batch
size of 64. Train for 2000 epochs.

2

