
Mathematical Foundations of Deep Neural Networks, M1407.001200
E. Ryu
Spring 2024

Homework 2
Due 5pm, Monday, March 18, 2024

Problem 1: Logistic regression via SGD. Use SGD to solve the logistic regression optimization
problem

minimize
θ∈Rp

1

N

N∑
i=1

log(1 + exp(−YiX
⊺
i θ)),

where X1, . . . , XN ∈ Rp and Y1, . . . , YN ∈ {−1, 1}. Use the data

N, p = 30, 20

np.random.seed (0)

X = np.random.randn(N,p)

Y = 2*np.random.randint(2, size = N) - 1

where X⊺
1 , . . . , X

⊺
N are the rows of X.

Problem 2: SVM via SGD. Use SGD to solve the non-differentiable SVM optimization problem

minimize
θ∈Rp

1

N

N∑
i=1

max{0, 1− YiX
⊺
i θ}+ λ∥θ∥2,

where X1, . . . , XN ∈ Rp, Y1, . . . , YN ∈ {−1, 1}, and λ = 0.1. Use the data of Problem 1.
Empirically, does the SGD ever encounter a point of non-differentiability?

Problem 3: Consider the data generated by the Python code

N=30

np.random.seed (0)

X = np.random.randn(2,N)

y = np.sign(X[0 ,:]**2+X[1 ,:]**2 -0.7)

theta = 0.5

c, s = np.cos(theta), np.sin(theta)

X = np.array ([[c, -s], [s, c]])@X

X = X + np.array ([[1] ,[1]])

Observe (by plotting) that the data is not linearly separable. Consider the transformation

ϕ

([
u
v

])
=


1
u
u2

v
v2

 .

Using the logistic regression or SVM, show that the data ϕ(X1), . . . , ϕ(XN) ∈ R5 with labels
Y1, . . . , YN ∈ {−1,+1} is linearly separable. Visualize in R2 the data and the decision boundary.

1

Hint. Visualize the decision boundary given by

0 == w[0]+w[1]*x+w[2]*(x**2)+w[3]*y+w[4]*(y**2)

with the code

xx = np.linspace(-4, 4, 1024)

yy = np.linspace(-4, 4, 1024)

xx , yy = np.meshgrid(xx , yy)

Z = w[0] + (w[1] * xx + w[2] * xx**2) + (w[3] * yy + w[4] * yy**2)

plt.contour(xx , yy , Z, 0)

Remark. This is the basis of kernel methods.

Problem 4: Nonnegativity of KL-divergence. A set C ⊆ Rm is said to be convex if

x1, x2 ∈ C ⇒ ηx1 + (1− η)x2 ∈ C, ∀η ∈ (0, 1).

A function φ : C → R is said to be convex if C ⊆ Rm is convex and

φ(ηx1 + (1− η)x2) ≤ ηφ(x1) + (1− η)φ(x2), ∀x1, x2 ∈ C, η ∈ (0, 1).

Jensen’s inequality [1] states that if X ∈ C is a random variable and φ is convex, then

φ(E[X]) ≤ E[φ(X)].

Use this to show that
DKL(p∥q) ≥ 0

for any probability mass functions p, q ∈ Rn.

Hint. First show that − log(x) is a convex function.

Problem 5: Positivity of KL-divergence. A function φ : C → R is said to be strictly convex if
C ⊆ Rm is convex and

φ(ηx1 + (1− η)x2) < ηφ(x1) + (1− η)φ(x2), ∀x1, x2 ∈ C, x1 ̸= x2, η ∈ (0, 1).

Strict Jensen’s inequality states that if X ∈ C is a non-constant random variable and φ is
strictly convex, then

φ(E[X]) < E[φ(X)].

Use this to show that
DKL(p∥q) > 0

for any probability mass functions p, q ∈ Rn such that p ̸= q.

2

Problem 6: Differentiating 2-layer neural networks. Consider the 2-layer neural network

fθ(x) = u⊺σ(ax+ b) =

p∑
j=1

ujσ(ajx+ bj),

where a, b, u ∈ Rp and θ = (a1, . . . , ap, b1, . . . , bp, u1, . . . , up) ∈ R3p. Assume the univariate
function σ : R → R is differentiable. The notation σ(ax+ b) means σ is applied elementwise to
the vector in Rp. Show that

∇ufθ(x) = σ(ax+ b)

∇bfθ(x) = σ′(ax+ b)⊙ u = diag(σ′(ax+ b))u

∇afθ(x) = (σ′(ax+ b)⊙ u)x = diag(σ′(ax+ b))ux,

where σ′(ax+ b) means the univariate function σ′ is applied elementwise to the vector ax+ b,
⊙ denotes the element-wise product, and diag(·) denotes the diagonal matrix with the diagonal
elements equal to the elements of the input vector.

Problem 7: SGD with 2-layer neural networks. Consider the univariate function

f⋆(x) = (x− 2) cos(4x).

Let

fθ(x) =

p∑
j=1

ujσ(ajx+ bj),

be the same 2-layer neural network as in the previous problem. For this problem, use the
sigmoid activation function, i.e., σ(x) = (1 + e−x)−1. Given data Xi generated as IID unit
Gaussians and corresponding labels Yi = f⋆(Xi) for i = 1, . . . , N , define loss functions

L(θ) = 1

N

N∑
i=1

ℓθ(Xi, Yi)

and

ℓθ(X,Y) =
1

2
(fθ(X)− Y)2.

Consider the minimization problem

minimize
θ∈R3p

L(θ).

Without using PyTorch (so using NumPy), implement

i(k) ∼ Uniform{1, . . . , N}
θk+1 = θk − α∇θℓθ(Xi(k), Yi(k)).

Use the parameters K = 10000, α = 0.007, N = 30, and p = 50 and use independent initial-
izations with distributions a0j ∼ N (0, 42), b0j ∼ N (0, 42), and u0j ∼ N (0, 0.052) for j = 1, . . . , p.
(These parameters and initializations are implemented in the starter code twolayerSGD.py.)
Plot the final trained function with fθK (x) as a function of x. How does it compare with f⋆(x)?

Remark. In order to fit the nonlinear function f⋆, it is essential that we use the nonlinear
activation function σ; without it,

fθ(x) =

p∑
j=1

uj(ajx+ bj),

will be linear in x, and a linear function cannot approximate the nonlinear function f⋆(x) well.

3

References

[1] J. L. W. V. Jensen, Sur les fonctions convexes et les inégalités entre les valeurs moyennes,
Acta Mathematica, 1906.

4

