
Mathematical Foundations of Deep Neural Networks, M1407.001200
E. Ryu
Fall 2024

Homework 3
Due 5pm, Monday, March 25, 2024

Problem 1: 3-layer MLP to fit a univariate function. Consider the univariate function

f⋆(x) = (x− 2) cos(4x).

Let fθ(x) be a 3-layer MLP with the sigmoid activation function, i.e., σ(x) = (1+e−x)−1. Given
data Xi generated as IID unit Gaussians and corresponding labels Yi = f⋆(Xi) for i = 1, . . . , N ,
define the loss function

L(θ) = 1

N

N∑
i=1

1

2
(fθ(Xi)− Yi)

2.

Use PyTorch to train fθ with minibatch shuffled cyclic SGD applied to

minimize
θ∈Rp

L(θ).

Use layer widths (n0, n1, n2, n3) = (1, 64, 64, 1), total epochs K = 1000 (this is epochs, not
iterations), stepsize α = 0.1, batch size B = 128, and number of data points N = 512. (Use
the starter code threelayerSGD.py.) For all three layers, initialize the weights as IID unit
Gaussians and biases with the (deterministic) value 0.03. Plot the final trained function with
fθK (x) as a function of x.

Hint. For initialization, do something like

model.l1.weight.data = torch.normal(0, 1, model.l1.weight.shape)

model.l1.bias.data = torch.full(model.l1.bias.shape , 0.03)

Hint. For the squared loss, use nn.MSELoss().

Problem 2: Deep learning operates under p ≫ N . In the previous problem, how many trainable
parameters are in the 3-layer MLP? Repeat the previous problem with the training labels

y_train = f_true(X_train) + torch.normal(0, 0.5, X_train.shape)

How are the results affected?

Remark. From a classical statistical perspective, it is surprising that large neural networks with
more parameters p than the number of data points N do not “overfit”, even in the presence of
label noise. In fact, most of deep learning operates under the regime where there are more un-
knowns (trainable parameters) than data points. We will revisit this issue later in our discussion
of the bias-variance tradeoff and the double descent phenomenon.

1



Problem 3: Basic properties of the CE loss. Define the cross entropy loss as

ℓCE(f, y) = − log

(
exp(fy)∑k
j=1 exp(fj)

)
,

where f ∈ Rk and y ∈ {1, . . . , k}.

(a) Show that 0 < ℓCE(f, y) < ∞.

(b) Let ei be the i-th unit vector, i.e, ei is the one-hot vector with value 1 is the i-th coordinate
and 0’s for all other coordinates. Show that ℓCE(λey, y) → 0 as λ → ∞.

Problem 4: Derivative of max. Let

f(x) = max{f1(x), . . . , fN (x)},

where f1, . . . , fN are differentiable univariate functions. Show that if I = argmax1,...,N{fi(x)}
is unique at x ∈ R (the maximum is attained by only one function at a given x), then f is
differentiable at x and

d

dx
f(x) =

d

dx
fI(x)

at x.

Problem 5: Basic properties of activation functions. Prove the following basic facts about
some commonly used activation functions.

(a) Idempotence of ReLU. The ReLU activation σ(z) = max{0, z} is idempotent, i.e.,

σ(σ(z)) = σ(z), ∀z ∈ R.

(b) Softplus. The softplus function σ(z) = log(1 + ez) is considered a smooth alternative of
ReLU. Show that softplus has Lipschitz continuous derivatives while ReLU does not.

(c) Equivalence of tanh and sigmoid. Let σ(z) = (1 + e−z)−1 be the sigmoid function and
let ρ(z) = (1 − e−2z)/(1 + e−2z) be the tanh function. Show that the two activation
functions are equivalent in the sense that MLPs built with them are equivalent: given
L > 1, A1, . . . , AL, and b1, . . . , bL, there are C1, . . . , CL and d1, . . . dL such that

yL = ALyL−1 + bL

yL−1 = σ(AL−1yL−2 + bL−1)

...

y2 = σ(A2y1 + b2)

y1 = σ(A1x+ b1),

yL = CLyL−1 + dL

yL−1 = ρ(CL−1yL−2 + dL−1)

...

y2 = ρ(C2y1 + d2)

y1 = ρ(C1x+ d1),

represent identical x 7→ yL mappings, and vice versa. Here, x ∈ Rn0 , Aℓ, Cℓ ∈ Rnℓ×nℓ−1 ,
bℓ, dℓ ∈ Rnℓ for ℓ = 1, . . . , L,and σ is applied element-wise.

Remark. The “equivalence” of part (c) should not be understood to mean there is no practical
difference between the two activation functions. As we will discuss in later in this course, how
one initializes neural network parameters is important. When standard initializations are used,
tanh is often easier to train compared to sigmoid, due to the fact that the output of tanh is
zero-centered.

2



Problem 6: Vanishing gradients. Consider the 2-layer neural network

fθ(x) = u⊺σ(ax+ b) =

p∑
j=1

ujσ(ajx+ bj),

where x ∈ R and a, b, u ∈ Rp. Let σ be the ReLU activation function. Using the data
X1, . . . , XN ∈ R and labels Y1, . . . , YN ∈ Y, we train the neural network by solving

minimize
θ∈R3p

1
N

∑N
i=1 ℓ(fθ(Xi), Yi)

with SGD. We assume ℓ(x, y) is differentiable in x. Assume the j-th ReLU output is “dead” at
initialization in the sense that a0jXi + b0j < 0 for all i = 1, . . . , N . Show that j-th ReLU output
remains dead throughout the training.

Remark. The term “vanishing gradients” refers both to the circumstance where the gradient
exactly vanishes (as in this problem) and to the circumstance where the gradient becomes
extremely small but not zero.

Problem 7: Leaky ReLU. The leaky ReLU activation function [1] is defined as

σ(z) =

{
z for z ≥ 0
αz otherwise,

where α is a fixed parameter (α is not trained) often set to α = 0.01. Show that leaky ReLU,
instead of ReLU, is used in the previous problem, the gradient no longer exactly vanishes.

References

[1] A. L. Maas, A. Y. Hannun, and A. Y. Ng, Rectifier nonlinearities improve neural network
acoustic models. ICML Workshop on Deep Learning for Audio, Speech, and Language Pro-
cessing, 2013.

3


