
Mathematical Foundations of Deep Neural Networks, M1407.001200
E. Ryu
Spring 2024

Homework 4
Due 5pm, Monday, April 1, 2024

Problem 1: Finite difference with convolution. Given an imageX ∈ Rm×n, we wish to compute
the x- and y-direction derivatives. This is commonly done in computer vision for the purpose
of “edge detection”. Specifically, define Y ∈ R2×m×n with

Y1,i,j = Xi+1,j −Xi,j

and
Y2,i,j = Xi,j+1 −Xi,j

for i = 1, . . . ,m and j = 1, . . . , n. We define Xm+1,: = 0 and X:,n+1 = 0, i.e., we define the
out-of-bounds elements to have 0 value. How can we represent the mapping X 7→ Y as a
convolution with a 3× 3 filter and zero padding of 1? More specifically, what should the filter
w ∈ R2×3×3 be?

Problem 2: Average pooling as convolution. Given an input tensor X ∈ RC×m×n, the Avg-
Pool2d operation with kernel size k outputs Y ∈ RC×(m/k)×(n/k) with

Yc,i,j =
1

k2

k∑
a=1

k∑
b=1

Xc,k(i−1)+a,k(j−1)+b

for i = 1, . . . , (m/k) and j = 1, . . . , (n/k). For the sake of simplicity, assume m and n are
divisible by k. How can we represent the AvgPool2d operation X 7→ Y as a convolution?

Problem 3: RGB to greyscale mapping with 1× 1 convolution. The standard conversion from
an RGB pixel to greyscale value (the luminance “Y value”) is

Y = 0.299R+ 0.587G+ 0.114B.

This conversion produces visually superior results when judged by human test subjects, com-
pared to a uniform averaging with 1/3 weights. Specifically, given X ∈ R3×m×n, define
Y ∈ Rm×n with

Yi,j = 0.299X1,i,j + 0.587X2,i,j + 0.114X3,i,j

for i = 1, . . . ,m and j = 1, . . . , n. How can we represent the mapping X 7→ Y as a convolution
with a 1× 1 filter? More specifically, what should the filter w ∈ R3×1×1 be?

Remark. Of course, the answer is

w1,1,1 = 0.299, w2,1,1 = 0.587, w3,1,1 = 0.114.

The intention of this problem is to have you think about what a 1× 1 convolution is.

Remark. Using 1 × 1 convolutions to linearly combine channel information for each spatial
location is a common technique that we will revisit when constructing “bottleneck” layers.

1



Problem 4: Let σ : R → R a nondecreasing activation function, and let ρ : Rm×n → Rk×ℓ be a
max pool operation. Show that

σ(ρ(X)) = ρ(σ(X))

for all X ∈ Rm×n, i.e., show that σ and ρ commute.

Problem 5: Non-CE loss function. Consider the setup of predicting labels of the 4 and 9
classes of the MNIST dataset. As we did for logistic regression, choose the model

fa,b(x) =

[
1/(1 + ea

⊺x+b)

1/(1 + e−(a⊺x+b))

]
,

but minimize the sum-of-squares loss instead of the KL-divergence. In other words, instead of
solving

minimize
a∈Rp, b∈R

N∑
i=1

DKL(P(Yi)∥fa,b(Xi))

solve

minimize
a∈Rp, b∈R

1

N

N∑
i=1

∥P(Yi)− fa,b(Xi)∥2,

where

P(y) =

{ [
1 0

]⊺
if y = −1[

0 1
]⊺

if y = 1.

How does the performance compare to minimizing the KL divergence?

Hint. Let σ(z) = 1/(1+ e−z) be the sigmoid function, which is implemented as torch.sigmoid
in PyTorch. Consider

ℓ(z, y) =
1

2
(1− y)

(
(1− σ(−z))2 + (σ(z))2

)
+

1

2
(1 + y)

(
(σ(−z))2 + (1− σ(z))2

)
.

Remark. When defining loss functions in PyTorch, you want to avoid using if-statements until
you understand backprop sufficiently well.

Remark. Throughout the deep learning literature, the cross-entropy (CE) loss is most commonly
used for image classification. However, there does not seem to be sufficient evidence, experimen-
tal nor theoretical, to justify this default choice, and some recent experimental investigations
indicate that different losses can outperform the CE loss [2, 3].

2



Problem 6: Backprop for MLP. In this problem, we take a closer look at the gradient com-
putation of multi-layer perceptrons. Let σ : R → R be a differentiable activation function and
consider the following multi-layer perceptron

yL = ALyL−1 + bL

yL−1 = σ(AL−1yL−2 + bL−1)

...

y2 = σ(A2y1 + b2)

y1 = σ(A1x+ b1),

where x ∈ Rn0 , Aℓ ∈ Rnℓ×nℓ−1 , bℓ ∈ Rnℓ , and nL = 1. (To clarify, σ is applied element-wise.)
For notational convenience, define y0 = x.

(a) Show

∂yL
∂bL

= 1,
∂yL
∂yL−1

= AL,

∂yℓ
∂bℓ

= diag
(
σ′(Aℓyℓ−1 + bℓ)

)
, for ℓ = 1, . . . , L− 1

∂yℓ
∂yℓ−1

= diag
(
σ′(Aℓyℓ−1 + bℓ)

)
Aℓ, for ℓ = 2, . . . , L− 1,

where ∂yℓ
∂bℓ

∈ Rnℓ×nℓ and ∂yℓ
∂yℓ−1

∈ Rnℓ×nℓ−1 are Jacobian matrices. (For any v ∈ Rk, we

define diag(v) to be the k × k diagonal matrix with v1, . . . , vk as its diagonal entries.)

(b) Since yℓ is a vector and Aℓ is a matrix, writing ∂yℓ
∂Aℓ

would not make sense. However,

yL ∈ R is a scalar, so we define ∂yL
∂Aℓ

∈ Rnℓ×nℓ−1 with(
∂yL
∂Aℓ

)
ij

=
∂yL

∂(Aℓ)ij

for i = 1, . . . , nℓ and j = 1, . . . , nℓ−1. Show

∂yL
∂AL

= y⊺L−1

∂yL
∂Aℓ

= diag
(
σ′(Aℓyℓ−1 + bℓ)

)(∂yL
∂yℓ

)⊺

y⊺ℓ−1, for ℓ = 1 . . . , L− 1.

Hint. For part (a), first compute(
∂yℓ
∂bℓ

)
ij

=
∂(yℓ)i
∂(bℓ)j

,

(
∂yℓ
∂yℓ−1

)
ij

=
∂(yℓ)i

∂(yℓ−1)j
.

For part (b), use the chain rule to first compute

∂yL
∂(Aℓ)ij

=
∂yL
∂yℓ

∂yℓ
∂(Aℓ)ij

To clarify, ∂yL
∂yℓ

∈ R1×nℓ and ∂yℓ
∂(Aℓ)ij

∈ Rnℓ×1. Once the derivatives have been computed for each

i and j, then find a vectorized (or matricized) expression of the result.

Remark. Note that

∂yL
∂yℓ

=
∂yL
∂yL−1

∂yL−1

∂yL−2
. . .

∂yℓ+1

∂yℓ
, for ℓ = 1 . . . , L.

(the RHS is a product of matrices) is the chain rule of vector calculus.

3



Problem 7: In a standard convolutional layer, a convolutional filter acts on all channels of the
input. However, the C3 layer of the original LeNet5 architecture uses convolutions that act only
on a subset of the input channels. See Table 1. In this problem, implement the original C3 layer
as described in LeCun et al.’s paper [1]. Use the starter code lenet_original.py. Compared
to the regular conv2d layer, what is the reduction in parameter count? Does the reduction in
parameter count as observed from the print statement of the starter code agree with what you
would expect from hand calculations?

Hint. In the __init__ method, create 16 Conv2d modules, 6 taking in 3 channels, 9 taking
in 4 channels, and 1 taking in 6 channels. You may find nn.ModuleList useful in organizing
them. In the forward method, compute the 16 output channels separately and concatenate
them with torch.cat. For each of the 16 convolutional modules, use advanced indexing and
provide x[:, list, :, :] as input.

Remark. The purpose of this problem is to serve as an exercise of implementing a somewhat
complex model in PyTorch, rather than to present any significant practical improvement. LeCun
et al.’s original intention in designing this layer was to force “a break of symmetry in the
network”; without this symmetry breaking, the symmetric channels would wastefully serve
duplicate roles. However, the modern view is that the random initialization of the weights and
biases is sufficient to break symmetry. When pushed further, having incomplete connections
in convolutional layers can significantly reduce the number of trainable parameters. We will
later see this in the split-transform-merge structure of GoogLeNet, Inception, and ResNext
architectures.

References

[1] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to docu-
ment recognition, Proceeding of IEEE, 1998.

[2] K. Janocha andW. M. Czarnecki, On loss functions for deep neural networks in classification,
TFML, 2017.

[3] L. Hui and M. Belkin, Evaluation of neural architectures trained with square loss vs cross-
entropy in classification tasks, ICLR, 2021.

4


