
Mathematical Foundations of Deep Neural Networks, M1407.001200
E. Ryu
Spring 2024

Homework 7
Due 5pm, Monday, April 29, 2024

Problem 1: The true softmax. Define

νβ(x) =
1

β
log

n∑
i=1

exp(βxi).

Clearly, νβ : Rn → R is differentiable. Show that

(a) νβ(x) → max{x1, . . . , xn} as β → ∞.

(b) ∇ν1 = µ, where µ is the softmax function.

(c) If imax = argmax1≤i≤n xi is uniquely defined, then ∇νβ(x) → eimax as β → ∞, where
{e1, . . . , en} is the standard basis of Rn.

Remark. The parameter β is referred to as inverse temperature, since
∑n

i=1 exp(βxi) is the
“partition function” of statistical physics when β = 1

kBT , kB is the Boltzmann constant, and T
is the temperature. The regime β → ∞ is therefore referred to as the low-temperature regime.

Problem 2: Are linear layers compute-heavy? In AlexNet, 96% of trainable parameters are in
the final linear layers, and only 4% are in the convolutional layers. How many operations do the
linear and convolutional layers require in the forward pass? Only count the additions and multi-
plications of these layers, and do not count the operations necessary for the activation, pooling,
dropout, and softmax layers. Use the version of AlexNet defined in counting_params.py.
Assume the input image has size 3× 227× 227.

Remark. A more complete investigation in the spirit of this problem would count the arithmetic
operations of a gradient computation via a backward pass. For the sake of simplicity, we only
consider the forward pass.

Problem 3: Removing BN after training. During training, the addition of batch norm adds
additional operations that were otherwise not present and therefore increases the computational
cost per iteration. During testing, however, the effect of batch normalization can be combined
with the preceding convolutional or linear layer so that no additional computational cost is
incurred. Download the starter code bn_remove.py and the save file smallNetSaved and carry
out the removal of the batchnorm layers. Specifically, load the pre-trained smallNetTrain

model and set the weights and parameters of smallNetTest so that the two models produce
exactly the same outputs on the test set.
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Problem 4: Backprop with convolutions. Consider 1D convolutions with single input and
output channels, stride 1, and padding 0. Let w1, . . . , wL be convolutional filters with sizes
f1, . . . , fL. Let Awℓ

∈ Rnℓ×nℓ−1 , where nℓ = nℓ−1−fℓ+1, be the matrix representing convolution
with wℓ, i.e., multiplication by Awℓ

is equivalent to convolution with wℓ, for ℓ = 1, . . . , L. Let
σ : R → R be a differentiable activation function. Consider the convolutional neural network

yL = AwLyL−1 + bL1nL

yL−1 = σ(AwL−1yL−2 + bL−11nL−1)

...

y2 = σ(Aw2y1 + b21n2)

y1 = σ(Aw1x+ b11n1),

where x ∈ Rn0 , bℓ ∈ R, 1nℓ
∈ Rnℓ is the vector with all entries being 1, and nL = 1. For

notational convenience, define y0 = x.

(a) Define

vL = 1, vℓ =
∂yL
∂yℓ

diag
(
σ′(Awℓ

yℓ−1 + bℓ1nℓ
)
)

for ℓ = 1, . . . , L− 1.

Let Cv⊺ℓ be the 1D convolutional operator defined by interpreting v⊺ℓ ∈ Rnℓ as a convolu-
tional filter for ℓ = 1, . . . , L. Show that

∂yL
∂yL−1

= AwL ,
∂yℓ
∂yℓ−1

= diag
(
σ′(Awℓ

yℓ−1 + bℓ1nℓ
)
)
Awℓ

for ℓ = 2, . . . , L− 1

∂yL
∂wℓ

= (Cv⊺ℓ yℓ−1)
⊺ for ℓ = 1, . . . , L

∂yL
∂bℓ

= vℓ1nℓ
for ℓ = 1, . . . , L.

(b) As discussed in homework 1, forming the full matrix Awℓ
is wasteful and should be avoided.

Describe how matrix-vector or vector-matrix products with respect to Awi or A
⊺
wi should

be used in the forward pass and backpropagation.

Clarification. A matrix-vector product Awiv should be computed by performing convolution.
A vector-matrix product u⊺Awi = (A⊺

wiu)
⊺ should be computed by performing transpose-

convolution, which was discussed in homework 1.
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Problem 5: Larger network in network. Consider the convolutional neural network Net1 de-
signed to classify the CIFAR10 dataset. Use the starter code LNiN.py.

class Net1(nn.Module ):

def __init__(self , num_classes =10):

super(Net1 , self). __init__ ()

self.features = nn.Sequential(

nn.Conv2d(3, 64, kernel_size =7, stride =1),

nn.ReLU(),

nn.Conv2d (64, 192, kernel_size =3, stride =1),

nn.ReLU(),

nn.Conv2d (192, 384, kernel_size =3, stride =1),

nn.ReLU(),

nn.Conv2d (384, 256, kernel_size =3, stride =1),

nn.ReLU(),

nn.Conv2d (256, 256, kernel_size =3, stride =1),

)

self.classifier = nn.Sequential(

nn.Linear (256 * 18 * 18, 4096),

nn.ReLU(),

nn.Linear (4096, 4096),

nn.ReLU(),

nn.Linear (4096, num_classes)

)

def forward(self , x):

x = self.features(x)

x = torch.flatten(x, 1)

x = self.classifier(x)

return x

(a) Consider Net2, which replaces the fully-connected layers of Net1 with convolutional layers.
Implement Net2 and the weight initialization function so that Net1 and Net2 are equivalent
in the following sense: When the parameters of Net1 are appropriately copied over, Net2
produces exactly the same output as Net1 for inputs of size B × 3× 32× 32.

class Net2(nn.Module ):

def __init__(self , num_classes =10):

super(Net2 , self). __init__ ()

self.features = nn.Sequential(

nn.Conv2d(3, 64, kernel_size =7, stride =1),

nn.ReLU(),

nn.Conv2d (64, 192, kernel_size =3, stride =1),

nn.ReLU(),

nn.Conv2d (192, 384, kernel_size =3, stride =1),

nn.ReLU(),

nn.Conv2d (384, 256, kernel_size =3, stride =1),

nn.ReLU(),

nn.Conv2d (256, 256, kernel_size =3, stride =1),

)
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###########################################################

### TODO: Complete initialization of self.classifier ###

### by filling in the ... ###

###########################################################

self.classifier = nn.Sequential(

nn.Conv2d (...),

nn.ReLU(),

nn.Conv2d (...),

nn.ReLU(),

nn.Conv2d (...)

)

def copy_weights_from(self , net1):

with torch.no_grad ():

for i in range(0, len(self.features), 2):

self.features[i]. weight.copy_(net1.features[i]. weight)

self.features[i].bias.copy_(net1.features[i].bias)

for i in range(len(self.classifier )):

####################################################

### TO DO: Correctly transfer weight of Net1 ###

####################################################

def forward(self , x):

x = self.features(x)

x = self.classifier(x)

return x

model1 = Net1() # model1 randomly initialized

model2 = Net2()

model2.copy_weights_from(model1)

test_dataset = torchvision.datasets.CIFAR10(

root=’./data’,

train=False ,

transform=torchvision.transforms.ToTensor ()

)

test_loader = torch.utils.data.DataLoader(

dataset=test_dataset ,

batch_size =10

)

imgs , _ = next(iter(test_loader ))

diff = torch.mean(( model1(imgs)-model2(imgs). squeeze ())**2)

print(f"Average Pixel Diff: {diff.item ()}") # should be small
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(b) Let X be a tensor of size B × 3× h× w with h > 32 and w > 32. While Net2 can take X

as input, Net1 cannot. By appropriately filling in ..., describe how Net2 applied to X is
equivalent to Net1 applied to patches of X.

# Continues from code of (a)

test_dataset = torchvision.datasets.CIFAR10(

root=’./data’,

train=False ,

transform=torchvision.transforms.Compose ([

torchvision.transforms.Resize ((36, 38)),

torchvision.transforms.ToTensor ()

]),

download=True

)

test_loader = torch.utils.data.DataLoader(

dataset=test_dataset ,

batch_size =10,

shuffle=False

)

images , _ = next(iter(test_loader ))

b, w, h = images.shape [0], images.shape[-1], images.shape[-2]

out1 = torch.empty((b, 10, h - 31, w - 31))

for i in range(h - 31):

for j in range(w - 31):

########################################################

### TO DO: fill in ... to make out1 and out2 equal ###

########################################################

out1[:, :, i, j] = model1 (...)

out2 = model2(images)

diff = torch.mean((out1 -out2 )**2)

print(f"Average Pixel Diff: {diff.item ()}")
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