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Richard M. Sutton

One of the founding fathers of 
reinforcement learning.
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The Bitter Lesson
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“The biggest lesson that can be read from 70 years of AI research is that general methods that 
leverage computation are ultimately the most effective, and by a large margin. The ultimate 
reason for this is Moore's law, or rather its generalization of continued exponentially falling cost 
per unit of computation. Most AI research has been conducted as if the computation available to 
the agent were constant (in which case leveraging human knowledge would be one of the only 
ways to improve performance) but, over a slightly longer time than a typical research project, 
massively more computation inevitably becomes available. Seeking an improvement that makes 
a difference in the shorter term, researchers seek to leverage their human knowledge of the 
domain, but the only thing that matters in the long run is the leveraging of computation. These 
two need not run counter to each other, but in practice they tend to. Time spent on one is time 
not spent on the other. There are psychological commitments to investment in one approach or 
the other. And the human-knowledge approach tends to complicate methods in ways that make 
them less suited to taking advantage of general methods leveraging computation.  There were 
many examples of AI researchers' belated learning of this bitter lesson, and it is instructive to 
review some of the most prominent."



The Bitter Lesson

“In computer chess, the methods that defeated the world champion, Kasparov, in 1997, 

were based on massive, deep search. At the time, this was looked upon with dismay by the 

majority of computer-chess researchers who had pursued methods that leveraged human 

understanding of the special structure of chess. When a simpler, search-based approach 

with special hardware and software proved vastly more effective, these human-knowledge-

based chess researchers were not good losers. They said that “brute force” search may 

have won this time, but it was not a general strategy, and anyway it was not how people 

played chess. These researchers wanted methods based on human input to win and were 

disappointed when they did not.”
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The Bitter Lesson

“A similar pattern of research progress was seen in computer Go, only delayed by a further 

20 years. Enormous initial efforts went into avoiding search by taking advantage of human 

knowledge, or of the special features of the game, but all those efforts proved irrelevant, or 

worse, once search was applied effectively at scale. Also important was the use of learning 

by self play to learn a value function (as it was in many other games and even in chess, 

although learning did not play a big role in the 1997 program that first beat a world 

champion). Learning by self play, and learning in general, is like search in that it enables 

massive computation to be brought to bear. Search and learning are the two most important 

classes of techniques for utilizing massive amounts of computation in AI research. In 

computer Go, as in computer chess, researchers' initial effort was directed towards utilizing 

human understanding (so that less search was needed) and only much later was much 

greater success had by embracing search and learning.”
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The Bitter Lesson

“In speech recognition, there was an early competition, sponsored by DARPA, in the 1970s. 
Entrants included a host of special methods that took advantage of human knowledge—
knowledge of words, of phonemes, of the human vocal tract, etc. On the other side were 
newer methods that were more statistical in nature and did much more computation, based 
on hidden Markov models (HMMs). Again, the statistical methods won out over the human-
knowledge-based methods. This led to a major change in all of natural language 
processing, gradually over decades, where statistics and computation came to dominate the 
field. The recent rise of deep learning in speech recognition is the most recent step in this 
consistent direction. Deep learning methods rely even less on human knowledge, and use 
even more computation, together with learning on huge training sets, to produce 
dramatically better speech recognition systems. As in the games, researchers always tried 
to make systems that worked the way the researchers thought their own minds worked —
they tried to put that knowledge in their systems — but it proved ultimately 
counterproductive, and a colossal waste of researcher's time, when, through Moore's law, 
massive computation became available and a means was found to put it to good use."
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The Bitter Lesson

“In computer vision, there has been a similar pattern. Early methods conceived of vision as 

searching for edges, or generalized cylinders, or in terms of SIFT features. But today all this 

is discarded. Modern deep-learning neural networks use only the notions of convolution and 

certain kinds of invariances, and perform much better.”
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The Bitter Lesson

“This is a big lesson. As a field, we still have not thoroughly learned it, as we are continuing 

to make the same kind of mistakes. To see this, and to effectively resist it, we have to 

understand the appeal of these mistakes. We have to learn the bitter lesson that building in 

how we think we think does not work in the long run. The bitter lesson is based on the 

historical observations that 1) AI researchers have often tried to build knowledge into their 

agents, 2) this always helps in the short term, and is personally satisfying to the researcher, 

but 3) in the long run it plateaus and even inhibits further progress, and 4) breakthrough 

progress eventually arrives by an opposing approach based on scaling computation by 

search and learning. The eventual success is tinged with bitterness, and often incompletely 

digested, because it is success over a favored, human-centric approach.”
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The Bitter Lesson

“One thing that should be learned from the bitter lesson is the great power of general 

purpose methods, of methods that continue to scale with increased computation even as 

the available computation becomes very great. The two methods that seem to scale 

arbitrarily in this way are search and learning.”
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The Bitter Lesson

“The second general point to be learned from the bitter lesson is that the actual contents of 

minds are tremendously, irredeemably complex; we should stop trying to find simple ways 

to think about the contents of minds, such as simple ways to think about space, objects, 

multiple agents, or symmetries. All these are part of the arbitrary, intrinsically-complex, 

outside world. They are not what should be built in, as their complexity is endless; instead 

we should build in only the meta-methods that can find and capture this arbitrary complexity. 

Essential to these methods is that they can find good approximations, but the search for 

them should be by our methods, not by us. We want AI agents that can discover like we 

can, not which contain what we have discovered. Building in our discoveries only makes it 

harder to see how the discovering process can be done.”

— Richard M. Sutton —

March 13, 2019
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T5 model

Text-to-text-transfer-transformer (T5) uses an encoder-decoder transformer and formats all 

pre-training and fine-tuning into a text-to-text format.

Unified task-agnostic architecture. The many tasks, which are not semantically related, are 

formatted into a text-to-text format. Same model, objective, training procedure and decoding 

process to every task that we consider.

11
C. Raffel, N. Shazeer, A. Roberts, K .Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu, Exploring the limits of transfer learning with a unified text-

to-text transformer, JMLR, 2020. (arXiv Oct. 2019)



T5 pre-training

Pre-training on large unlabeled text with diverse objectives inspired by prior work. 

The “inputs” are fed into the encoder block while the “target” text is generated by the 

decoder one token at a time.
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T5 attention mask

Encoder uses un-masked attention, while decoder can access encoder tokens via cross 

attention and the earlier decoder tokens.

Alternatively, interpret the T5 transformer as using the “causal with prefix” attention mask.
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T5 fine-tuning

Simultaneously fine-tune on a wide range of tasks. Simply prompt the model differently for 

each task to inform T5 of the specific task to solve.
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T5 contribution

Advanced state-of-the-art with the pre-train-than-fine-tune approach.

Gave the idea that language models can understand and respond to natural language 

instructions. We can simply tell a language model what we want (in natural language) and it 

will follow our instructions.

Problem: The prompts were unnatural as they did not fully describe the task at hand.

It was a half-way measure between an arbitrary label (like “task 3A”) and a complete 

natural-language description.
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C. Raffel, N. Shazeer, A. Roberts, K .Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu, Exploring the limits of transfer learning with a unified text-

to-text transformer, JMLR, 2020. (arXiv Oct. 2019)



Instruction fine-tuning

Instruction fine-tuning, 

presented in the FLAN# and T0*

papers, fine-tunes a pre-trained 

model on a collection of 

datasets described via natural-

language instructions.

This allows the many tasks to 

be unified: Follow the natural 

language instructions.
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#J. Wei, M. Bosma, V. Zhao, K. Guu, A. W. Yu, B. Lester, N. Du, A. M. Dai, Q. V. Le, Finetuned language models are zero-shot learners, ICLR, 2022.

(arXiv Sept. 2021)
*V. Sanh, A. Webson, C. Raffel, S. H. Bach, …, Alexander M. Rush, Multitask prompted training enables zero-shot task generalization, ICLR, 2022. (arXiv

Oct. 2021)



Instruction fine-tuning

FLAN is a 137B parameter model instruction

fine-tuned on over 60 NLP datasets

verbalized via natural language instruction

templates.

17
J. Wei, M. Bosma, V. Zhao, K. Guu, A. W. Yu, B. Lester, N. Du, A. M. Dai, Q. V. Le, Finetuned language models are zero-shot learners, ICLR, 2022.

(arXiv Sept. 2021)



Scaling instruction fine-tuning

Flan-PaLM scales instruction 

fine-tuning up to a 540B 

model with 1836 instruction-

finetuning tasks.

18H. W. Chung, L. Hou, S. Longpre, … Jason Wei, Scaling instruction-finetuned language models, JMLR, 2024. (arXiv Oct. 2022)



Scaling instruction fine-tuning

Key finding: Task diversity is essential not just in having the model be multi-task, but also in 

benefiting the individual task performances. Training on tasks A, B, C, … improved 

performance on task A.

19H. W. Chung, L. Hou, S. Longpre, … Jason Wei, Scaling instruction-finetuned language models, JMLR, 2024. (arXiv Oct. 2022)



3-Step of training LLMs

1. Pre-traigning produces model with base capabilties, but the model just tries to complete 

text. Model does not have the propensity to follow instructions.

2. Instruction fine-tuning induces the model to follow instructions and be helpful.

Model can engage in chat-bot-style back-and-forth dialogue after instruction fine-tuning.

3. RLHF further aligns LLM with human values and expectations.

20

Pre-training Instruction fine-tuning RLHF alignment



Why RLHF?

Pre-training and supervised instruction fine-tuning use the next-token-prediction loss. The 

dataset presents a correct answer and forces the model to imitate it, like imitation learning 

of RL.

• Large language models can generate outputs that are untruthful, toxic, or simply not 

helpful to the user. Next token prediction does provide an effective way to steer a model 

away from bad outputs.

• The pre-training dataset (must) contain some data that is unkind, so a model 

trained with next-token-prediction may sometimes be unkind to the user. How do 

we explicitly tell the model to be kind to the user?

• Next-token-prediction is not appropriate for specifying abstract goals. 

• E.g. “Follow the user’s instructions helpfully and safely.”

• E.g. “Refuse a user’s command if it is unethical or dangerous.”
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RLHF from RL

Reinforcement learning (RL), aims to control 

an agent to achieve high “reward”, but this 

reward is sometimes difficult to specify as a 

formal function.

Example) We know a backflip when we see it, 

but it is difficult program a function that returns 

positive reward upon a successful backflip.

RL with human feedback (RLHF) uses human 

feedback to determine the desired behavior, 

often my training a reward model.

22
P. Christiano, J. Leike, T. B. Brown, M. Martic, S. Legg, and D. Amodei, Deep reinforcement learning from human preferences, NeurIPS, 2017.

B. Ibarz, J. Leike, T. Pohlen, G. Irving, S. Legg, and D. Amodei, Reward learning from human preferences and demonstrations in Atari, NeurIPS, 2018.

See:

https://openai.com/index/learning-from-human-preferences/



Aligning LLMs with RLHF

In the InstructGPT# paper, RLHF is carried out with three neural networks.

• 𝜋𝜃 𝑢ℓ+1 𝑢1, … , 𝑢ℓ : Instruction fine-tuned LM, 175B GPT-3.

• 𝑟𝜓: Reward model (RM), initialized from a pre-trained LM, 6B GPT-3.

• 𝑉𝜙: Value function model, initialized to be RM. Used in PPO.

(Smaller 6B RM was used because with a 175B RM, (1) training was more unstable which 

made them less suitable, and (2) using a 175B RM and value function greatly increase the 

compute requirements of PPO.)

23
#L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, …, P. Christiano, J. Leike, and R. Lowe, Training language models to follow 

instructions with human feedback, NeurIPS, 2022. (arXiv March 2022)



Reward model: Bradley–Terry

Reward model 𝑟𝜓 is trained as a Bradley–Terry model. Specifically, train by minimizing

where human annotator prefers 𝑦win over 𝑦lose.

Only relies on humans to provide comparison labels. No need to provide absolute scores.

This is soft-max regression with 𝐾 = 2 (logistic regression) on determining probability of the 

two events: [ 𝑥, 𝑦1 is better] vs. [ 𝑥, 𝑦2 is better]

24R. A. Bradley and M. E. Terry, Rank analysis of incomplete block designs: I. The method of paired comparisons,  Biometrika, 1952.



Best-of-N sampling

Best-of-N sampling is a simple algorithm to improve generation using a reward model:

1. Generate 𝑁 text outputs.

2. Select the best one as determined by the reward model. 

Advantage: Simple and effective# way to utilize a reward model trained from human 

feedback. Also, no need for RL training, which can be tricky.

Downside: Sampling requires 𝑁 generations, so inefficient.

25#L. Gao, J. Schulman, and J. Hilton, Scaling laws for reward model overoptimization, ICML, 2023.



RLHF details

Each timestep is a BPE token.

Response generation is an episide, and an episode terminates when LM generates <EOS>.

No discount used, i.e., discount factor 𝛾 = 1 is used.

Reward (by reward model) only provided at the end of the episode. Called “contextual bandit” 
setting.

The PPO clip ratio is set to 𝜀 = 0.2.

Sampling temperature is 1 for rollouts.

26
L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, …, P. Christiano, J. Leike, and R. Lowe, Training language models to follow 

instructions with human feedback, NeurIPS, 2022. (arXiv March 2022)



Proximal policy optimization (PPO)

We now denote the language model as 𝜋𝜃, viewing it as an RL policy.

• 𝜋𝜃 𝑢ℓ+1 𝑢1, … , 𝑢ℓ is probability of “action” 𝑢ℓ+1 based on the current “state” 𝑢1, … , 𝑢ℓ.

Let 𝑥 be a text prompt and 𝑦 = 𝑦1:𝑇 be its completion by 𝜋𝜃. Let 𝑦1:𝑡 the partial completion 

up to token 𝑡.

PPO maintains a value function model 𝑉𝜙.

• 𝑉𝜙 𝑥, 𝑦1:𝑡 : Given 𝑥, 𝑦1:𝑡 , what is the expected reward if we continue generation with 𝜋𝜃.

Advantage መ𝐴 = 𝑟𝜓 𝑥, 𝑦1:𝑇 − 𝑉𝜙 𝑥, 𝑦1:𝑡 : how good is the completion 𝑦𝑡+1:𝑇 compared to what 

𝑉𝜙 was expecting based on 𝑦1:𝑡?

27J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, Proximal policy optimization algorithms, arXiv, 2017.



Proximal policy optimization (PPO)

If መ𝐴 = 𝑟𝜓 𝑥, 𝑦1:𝑇 − 𝑉𝜙 𝑥, 𝑦1:𝑡 > 0, then 𝑦𝑡+1:𝑇 was a good completion. We should adjust 𝜋𝜃
to make this completion more likely.

If መ𝐴 = 𝑟𝜓 𝑥, 𝑦1:𝑇 − 𝑉𝜙 𝑥, 𝑦1:𝑡 < 0, then 𝑦𝑡+1:𝑇 was a bad completion. We should adjust 𝜋𝜃 to 

make this completion less likely.

However, we do not want to adjust 𝜋𝜃 from this single (batch of) trajectories for optimization 

reasons. Therefore, we restrict the incentive to adjust 𝜋𝜃 too much using a clipped 

objective. (Hence “proximal” policy optimization.)

28J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, Proximal policy optimization algorithms, arXiv, 2017.



Proximal policy optimization (PPO)

29

The clipped surrogate objective in PPO is

Interpretation: We increase/maximize                   only by a small factor. 

This removes the incentive to move 𝜃 far away from 𝜃𝑘.

The loss is equivalent to

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, Proximal policy optimization algorithms, arXiv, 2017.



PPO v.0 (susceptible to over-optimization)

30
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Over-optimization

Goodhart's law: When a measure becomes a target, it ceases to be a good measure.

Problem with PPO v.0: Over-optimization.

• Reward model is not perfect, so we do not want to overfit to it. (Maximizing reward model 

too much will result in adversarial generation that seems good to the reward model by 

exploiting the imperfections of the model.)

• Moving away from the pre-trained and instruction-fine tuned model too much will cause 

the language model to lose its main capabilities.

32



Over-optimizations: Clarification

PPO’s clipped objective prevents over-optimization with respect to the batch 

trajectories                                      . We do not want to move 𝜃next too far away from 𝜃curr
since                                        is informative about which 𝜃next is good only when 𝜃next is in 

a neighborhood of 𝜃curr.

Problem with PPO v.0 is that the reward model 𝑟𝜓 was trained on 𝜋SFT, the supervised-fine-

tuned (pre-trained and instruction fine-tuned) baseline. So 𝑟𝜓 is informative about 𝜋𝜃
RL only 

when 𝜋𝜃
RL is in the neighborhood of 𝜋SFT. (𝜋𝜃

RL is initialized to 𝜋SFT.)

Resolution) Impose a KL-divergence pelanty term, preventing 𝜋𝜃
RL from moving too far away 

from 𝜋SFT.
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KL-penalty and pre-training loss

RLHF minimizes the objective:

The 𝜂-term means continue to train 𝜋𝜃
RL with the pre-training loss, while we do PPO.

The 𝑟𝜓 𝑥, 𝑦 -term is the RLHF with PPO. The 𝛽-term is incorporated into PPO.

PPO and pre-training update performed simultaneously or in alternating fashion.

34
L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, …, P. Christiano, J. Leike, and R. Lowe, Training language models to follow 

instructions with human feedback, NeurIPS, 2022. (arXiv March 2022)



PPO with KL penalty
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Bitter Lesson II

A counterintuitive implication of scale: trying to solve a more general version of the problem is an 
easier way to solve the original problem than directly tackling it. Attempting a more general 
problem encourages you to come up with a more general and simpler approach. This often leads to 
a more scalable method. By leveraging increasingly cheaper compute, you solve the specific 
problem as a by-product of tackling a more general one. Some examples: - Directly solving NLU 
tasks (e.g. question answering) vs. learning a general language model and solving the task as a next 
token prediction. - Instead of directly working on machine translation, work on a general problem of 
learning all languages (mT5 vs. translation-specific models). Taking this idea to the limit, it might be 
the case that aiming for super-intelligence is an easier (but extremely difficult) way to get to general 
intelligence compared to directly solving general intelligence by mimicking human intelligence. This 
requires thinking about approaches that are native to machines as opposed to trying to teach 
machines how we think humans think because if we simply mimic human intelligence, it likely won’t 
lead to super-human intelligence.

36https://twitter.com/hwchung27/status/1712209280529727705


