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Natural language processing (NLP)

Natural language processing (NLP) is concerned with computationally processing natural 

(human) languages. The goal is to design and/or train a system that can understand and 

process information written in documents.

A natural language or ordinary language is any language that has evolved naturally in 

humans through use and repetition without conscious planning or premeditation such as 

English or Korean. They are distinguished from formal and constructed languages such as 

C, Python, Lojban, and Esperanto.

NLP was once a field that relied on insight into linguistics, but modern NLP is dominated by 

data-driven deep-learning based approaches. 
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Task: Review sentiment analysis

Given a review 𝑋 ∈ 𝒳 on a reviewing website, decide whether its label 𝑌 ∈ 𝒴 = −1,0, +1 is 

negative (−1), neutral (0), or positive (+1).

Eg.

Review: I hate this movie 

Sentiment: Negative

Review: I love this movie

Sentiment: Positive

Input is variable-length. Output is fixed-size.
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Sentiment analysis with BOW

A bag of words (BOW) model makes the prediction with a linear combination of tokenized 

word. This is a simple baseline.

More generally “bag of words” refers to models that view a sentence as an unordered 

collection (bag) of words. Completely disregarding word order is a significant drawback of 

the method.
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Sequence (seq) notation

Let 𝒰 be any set. Define 𝑘-tuples of 𝒰 as

𝒰𝑘 = 𝑢1, … , 𝑢𝑘 𝑢1, … , 𝑢𝑘 ∈ 𝒰

The Kleene star notation

𝒰∗ =ራ

𝑘≥0

𝒰𝑘 = 𝑢1, … , 𝑢𝑘 𝑢1, … , 𝑢𝑘 ∈ 𝒰, 𝑘 ≥ 0

denotes sequences of 𝒰 of arbitrary finite length.

5Although unimportant in most practical setups, we define the empty sequence is a valid sequence of length 0 and write ∈ 𝒰∗.



Characters

Let 𝒞 be a set of “characters”.

• 𝒞 can be the set of English characters, space, and some punctuation.

• 𝒞 can be the set of all unicode characters.

Let 𝒳 = 𝐶∗ be the set of finite-length sequence of characters, i.e., 𝑋 ∈ 𝒳 is raw text.
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Tokenization

Given 𝑋 = 𝑐1, … , 𝑐𝑇 ∈ 𝒞∗, a tokenizer is a function 𝜏 ∶ 𝒞∗ → ℝ𝑛 ∗ such that

𝜏 𝑐1, 𝑐2, … , 𝑐𝑇 = 𝑢1, 𝑢2, … , 𝑢𝐿

where 𝑢1, 𝑢2, … , 𝑢𝐿 ∈ ℝ𝑛. 𝑇 and 𝐿 are often not the same. Sometimes 𝜏 is fixed, and 

sometimes it is trainable (e.g. word2vec).

For text generation, we want the tokenizer to be invertible.
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Character-level tokenizer v.0

Example: 𝒞 = 𝑎, 𝑏, … , 𝑧,_,.,?,! and 

𝜏 𝑋 = 𝜏 𝑐1, … , 𝑐𝐿 = 𝜏 𝑐1 , … , 𝜏 𝑐𝐿
𝜏 𝑎 = 1, 𝜏 𝑏 = 2, … 𝜏 𝑧 = 26, …

So 𝑛 = 1 and 𝐿 = 𝑇.

This doesn’t work very well.

We want distinct tokens to be vectors of distinct directions.
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Character-level tokenizer v.1

Example: 𝒞 = 𝑎, 𝑏, … , 𝑧,_,.,?,!

𝜏 𝑋 = 𝜏 𝑐1, … , 𝑐𝐿 = 𝜏 𝑐1 , … , 𝜏 𝑐𝐿

𝜏 𝑎 =

1
0
0
⋮
0

, 𝜏 𝑏 =

0
1
0
⋮
0

, … 𝜏 ! =

0
0
0
⋮
1

So 𝑛 = 30 and 𝑇 = 𝐿. The output vectors are called one-hot-encodings as only one element 

of the encoded vector is nonzero (hot).
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Word-level tokenizer

Examples: 𝒞 = 𝑎, 𝑏, … , 𝑧,_ (so English letters and space) and 𝒲 = English words

𝜏 𝑋 = 𝜏 𝑐1, … , 𝑐𝑇 = 𝜏 𝑤1, … , 𝑤𝐿 = 𝜏 𝑤1 , … , 𝜏 𝑤𝐿

𝜏 ‘aardvark’ =

1
0
0
⋮
0

, 𝜏 ‘ability’ =

0
1
0
⋮
0

, … , 𝜏 ‘Zyzzyva’ =

0
0
0
⋮
1

, …

where 𝑤1, … , 𝑤𝐿 ∈ 𝒲. So 𝑛 = 𝒲 = size of dictionary and 𝐿 ≤ 𝑇.

I.e., this is a one-hot encoding of words.
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End-of-string (EOS) token

Given 𝑋 ∈ 𝒳 and its length 0 ≤ 𝑇 < ∞, we equivalently consider a special “end-of-string” 
token <EOS> to be the final 𝑇 + 1 -th element. In other words,

𝑋 = 𝑐1, 𝑐2, … , 𝑐𝑇 = 𝑐1, 𝑐2, … , 𝑐𝑇 , <EOS>

for any 𝑋 ∈ 𝒳, where 𝑐1, … , 𝑐𝑇 ∈ 𝒞.

We use the same notation for elements in 𝒰∗, i.e.,

𝑢1, 𝑢2, … , 𝑢𝐿 = 𝑢1, 𝑢2, … , 𝑢𝐿, <EOS> ∈ 𝒰∗
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Discussion on tokenizers

Q) Why tokenizers?

A) Neural networks perform arithmetic on vectors and numbers, so tokenizers convert text 

into a sequence of vectors.

Q) Why can’t we map characters or words to integers? Why map to one-hot-vectors?

A) We want different words or things to map to different vectors. Vectors can represent 

differences through different directions and magnitudes, while scalars are far more 

restrictive as they can only use magnitudes to represent differences.
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Discussion on tokenizers

Q) Advantage of word-level tokenizer over character-level tokernizer?

A) Shorter tokenized sequence. Uses dictionary. (Model need not learn words from scratch.)

Q) Advantage of character-level tokenizer over word-level tokernizer?

A) Can learn to handle misspellings (‘learning’ ≈ ‘lerning’) and inflections (‘running’ = ‘run’ + 

‘ing’). Better for multi-language models. (Dictionaries of multiple languages is too large.)

Q) Are there other tokenizers?

A) Word2Vec and subword tokenization (byte-pair encoding) are trained tokenizers.

More on these later.
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Basic BOW implementation

Let 𝜏 be a word-level tokenizer with dictionary 𝒲.

For 𝑋 = 𝑤1, … , 𝑤𝐿 the bag-of-word (BOW) model 𝑓𝜃 is

𝑓𝜃 𝑋 = 𝑏 + 𝑎 ⋅෍

ℓ=1

𝐿

𝜏 𝑤ℓ = 𝑏 + 𝑎 ⋅෍

ℓ=1

𝐿

𝜏 𝑋
ℓ

where 𝜃 = 𝑎, 𝑏 ∈ ℝ𝑛+1 is the trainable parameter.
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Sentiment analysis with DNN

Modern state-of-the-art NLP methods are based on deep neural networks (DNN).
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Task: Language model (LM)

A language model (LM) achieves one or two of the 

following goals.

Goal 1: Assign probabilities/likelihoods to sentences.

Goal 2: Generate coherent (likely) sentences.
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(This definition excluded encoder-only transformer models such as BERT from language models, 

but we will not be overly concerned with these definitions.)



Applications of LM: Voice-to-text

In a voice-to-text system, two interpretations can be auditorily ambiguous but semantically 

not ambiguous. An LM can determine which interpretation is more likely.

“The parcel was secured by grey tape.” (✓)

“The parcel was secured by great ape.”

“he was a lighthouse keeper” (✓)

“he was a light housekeeper”

A similar application with spelling correction.
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professor@snu.ac.kr

Meeting Arrangement

Meeting Arrangement

Dear professor,

What would be the right time to contact you?

I will be looking forward to hearing from you

Applications of LM: Autocomplete

An autocomplete system can assist writing by suggesting likely completions of a sentence.

(Note to self:

Replace image with

our own to avoid

copyright issues.)
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Applications of LM: SSL pre-training and 
universal interface
Training an NN to be a language model is a useful pretext task in the sense of self-

supervised training and transfer learning in the sense of self-supervised learning (SSL).

Pre-trained language models serve as foundation models that can be fine tuned for other 

downstream tasks. 

• More on this when we talk about ELMo, BERT, and GPT

A sufficiently powerful LM can serve as a universal language-based interface to the 

capabilities that the language model has learned.

• More on this when we talk about T5 and GPT3.
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Probabilities with sequences

Assume a sequence

𝑢1, 𝑢2, … , 𝑢𝐿 = 𝑢1, 𝑢2, … , 𝑢𝐿, <EOS> ∈ 𝒰∗

is generated randomly, i.e., we can assign a probability

ℙ 𝑢1, 𝑢2, … , 𝑢𝐿, <EOS> ∈ 0,1

The sequence length 𝐿 is also a random variable. Imagine 𝑢1, 𝑢2, … being generated 

sequentially. There are two equivalent ways to think of generation of 𝐿. 

• Given 𝑢1, 𝑢2, … , 𝑢ℓ, the sequence may end here and 𝑢ℓ+1 = <EOS>. Otherwise, the next 

token 𝑢ℓ+1 ≠ <EOS> is generated. 

• Given 𝑢1, 𝑢2, … , 𝑢ℓ, the next token may be 𝑢ℓ+1=<EOS> and the sequence terminates. 

Otherwise, 𝑢ℓ+1 ≠ <EOS> and the generation continues to 𝑢ℓ+2.
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Probability notation with <EOS>

Clarification) Given 0 ≤ 𝐿 < ∞ and 𝑢1, 𝑢2, … , 𝑢𝐿 ∈ 𝒰,

is the probability that a random sequence in 𝒰∗ has values 𝑢1, 𝑢2, … , 𝑢𝐿 for the first 𝐿
elements and then terminates, i.e., 𝑢𝐿+1=<EOS>.

On the other hand, if 𝑢1, 𝑢2, … , 𝑢𝐿 ∈ 𝒰,

is the probability that a random sequence in 𝒰∗ has values 𝑢1, 𝑢2, … , 𝑢𝐿 for the first 𝐿
elements (and none of them are <EOS>) but 𝑢𝐿+1 but may or may not be <EOS>. In particular, 
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Conditional probabilities with sequences

With the chain rule (conditional probability), we have

where ℙ 𝑢ℓ 𝑢1, … , 𝑢ℓ−1 is the probability of 𝑢ℓ conditioned on the past. (For ℓ = 1, we mean 

ℙ 𝑢1 𝑢1, … , 𝑢0 = ℙ 𝑢1 .) So the probability of the entire sequence 𝑢1, 𝑢2, … , 𝑢𝐿 =
𝑢1, 𝑢2, … , 𝑢𝐿, <EOS> is the product of the conditional probabilities.

To clarify, we have made no assumptions on the sequence probabilities. (We have not 

assumed that anything is Markov or that anything is independent.)
22



Cond. prob. with continuous sequences

If sequence elements 𝑢𝑡 are continuous random variables, then we need density functions 

instead of discrete probability mass functions. However, calculations are essentially the 

same, so we do not repeat it. (Measure-theoretic probability theory unifies analysis.)

In NLP, vocabulary is finite, so consider seqs with discrete elements.

Some RL problems have continuous states and rewards.

For image patches (vision transformers), seq elements are (essentially) continuous.
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Autoregressive (AR) modelling

An autoregressive model of a sequence learns to predict 𝑢ℓ given the past ovservations 

𝑢1, … , 𝑢ℓ−1. Goal is to learn a model 𝑓𝜃 that approximates the full conditional distribution 

𝑓𝜃 𝑢ℓ; 𝑢1, … , 𝑢ℓ−1 ≈ ℙ 𝑢ℓ 𝑢1, … , 𝑢ℓ−1

(Etymology is ‘auto’ ≈ ’self’ and ‘regress’ ≈ ’fit’.)
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Sequence likelihood with AR model

Given a trained autoregressive model 𝑓𝜃 𝑢ℓ; 𝑢1, … , 𝑢ℓ−1 ≈ ℙ 𝑢ℓ 𝑢1, … , 𝑢ℓ−1 , we can 

(approximately) compute the likelihood of a sequence 𝑢1, … , 𝑢𝐿 with
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Sequence generation with AR model

Given a trained autoregressive model 𝑓𝜃 𝑢𝑡; 𝑢1, … , 𝑢ℓ−1 ≈ ℙ 𝑢ℓ 𝑢1, … , 𝑢ℓ−1 , and an un-

terminated sequence 𝑢1, … , 𝑢ℓ−1 (if ℓ = 1, then start generation from nothing) we can 

generate 𝑢1, … , 𝑢ℓ−1, 𝑢ℓ, … , 𝑢𝐿 ∼ ℙ 𝑢𝑡, … , 𝑢𝐿, 𝑢𝐿+1=<EOS> 𝑢1, … , 𝑢ℓ−1 by sampling

which is justified by
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Modern NLP and sequence processing

Modern NLP solves various tasks, especially language modelling, with deep neural networks.

We need a general approach to process sequences (variable-length data) as inputs and 

outputs. We start with RNNs and then move on to transformers.

Why still learn RNNs? Although transformers have been replacing RNNs and CNNs in recent 

years, RNNs and CNNs are not yet obsolete. Also much of the architecture design of 

transformers are inspired by practices inherited from the RNN era. One still needs to know 

RNNs to fully understand modern NLP.
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Learning with variable-size inputs

In image classification, the input 𝑋 ∈ ℝ3×𝑛×𝑚 is of fixed size and processed by a deep CNN.

We now want to process variable-size input 𝑋 ∈ 𝒞∗ with a neural network.

Simple idea: Zero-pad up to length of longest sequence.

• + This can work as a quick and temporary solution.

• − Does not scale well for long sequences if fully-connected layer is used.

• − Maximum length must be specified.
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Process one input per layer

29

Idea: Process one input per layer

• + Shorter sequences require fewer layers to evaluate.

• + Each layer is much smaller than a giant layer one would need to process the whole 

sequence at once.

• − Total number of weights and biases increase with maximum sequence length.

• − Exploding/vanishing gradients.



Weight sharing

Idea: What if the parameters are the same (use weight sharing) for all layers?

• + Can process an arbitrary number of inputs.

• − Exploding/vanishing gradients.

This is called a recurrent neural network (RNN).
30

Same 𝐴 and 𝑏



Recurrent neural networks (RNN)

More generally, an RNN has the form

where ෨𝜃, 𝐴, and 𝑏 are the trainable parameters.

The 𝑞෩𝜃 is called the recurrent function.

The exploding/vanishing gradient problem still remains.

RNNs work only if 𝑞෩𝜃 is chosen to mitigate this problem.

31J. L. Elman, Finding structure in time, Cognitive Science, 1990.



Backprop for RNN

Let 𝜏 𝑋 = 𝑢1, … , 𝑢𝐿 and 𝑓𝜃 𝑋 ∈ ℝ. So 𝐴 ∈ ℝ1×𝑛, 𝑏 ∈ ℝ, ෨𝜃 ∈ ℝ𝑝, and ℎ0, … , ℎ𝐿 ∈ ℝ𝑛.

Let 𝜃 = 𝐴, 𝑏, ෨𝜃 . Then,

Consider backpropagation on                    :
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Backprop for RNN
Next, compute 𝜕ℎ𝑇/𝜕 ෨𝜃:
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Backprop for RNN

Translate calculation to 𝜕ℓ/𝜕 ෨𝜃:

This is called backpropagation through time (BPTT).

34P. J. Werbos, Generalization of backpropagation with application to a recurrent gas market model, Neural Networks, 1988.



Backprop code for RNN 
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# Forward pass given 𝜏(𝑋)=(u[1],...u[L])
h[0] = 0
for l = 1,2,...,L:
h[l] = q(th,h[l-1],u[l])           # ℎℓ = 𝑞෩𝜃 ℎℓ−1, 𝑢ℓ

fX = A @ h[L] + b # 𝑓𝜃 𝑋 = 𝐴ℎ𝐿 + 𝑏
ell = loss(fX,Y)                    # ℒ 𝑓𝜃 𝑋 , 𝑌

# Backward pass
dldf = loss.df(fX,Y)    # 𝜕ℒ/𝜕𝑓
dldA = dldf @ h[L] # 𝜕ℒ/𝜕𝐴 ✓
dldb = dldf # 𝜕ℒ/𝜕𝑏 ✓

dldh = dldf @ A                      # 𝜕ℒ/𝜕ℎ𝐿
dldth = 0                            # .zero_grad()
for l = L,L-1,...,2,1 :
dldth += dldh @ q.dth(h[l-1],u[l]) # 𝜕ℒ/𝜕 ෨𝜃 (partial sum)
dldh = dldh @ q.dh(h[l-1],u[l]) # 𝜕ℒ/𝜕ℎℓ−1

# 𝜕ℒ/𝜕 ෨𝜃 ✓ (all terms in sum accounted for)



RNNs are extremely deep networks

Seq. length of 100s or 1000s is common. 

Multiplying many numbers is unstable:

• If most of the numbers > 1, we get ∞ (“Exploding gradients”. Can fix with gradient clipping.)

• If most of the numbers < 1, we get 0 (“Vanishing gradients”. Bigger problem.)

Reasonably-sized product if numbers are all close to 1.

For matrices, a similar reasoning holds with eigenvalues or singular values.

36Y. Bengio, P. Simard, and P. Frasconi, Learning long-term dependencies with gradient descent is difficult, IEEE Transactions on Neural Networks, 1994.



Exploding gradients and gradient clipping

The exploding gradient problem occurs when the gradient magnitude is very large.

Exploding gradients imply the output is very sensitive to small changes of the parameters in 

a certain direction. Sometimes, such gradients are unworkable and the neural network 

architecture must be changed.

Sometimes, however, the direction of the gradient

is fine. If so, one can use gradient clipping and

use the clipped gradient in the optimization.

Gradient clipping with threshold value 𝑣:
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Vanishing gradients

The vanishing gradient problem occurs when the magnitude of a gradient is very small.

Intuitively, vanishing gradients means the gradient signal does not reach the earlier layers. 

In an RNN, for example,              may not be small but 

can be small.

This means changes in ℎℓ do not affect the output ℒ. Since                       this further implies 

that (small) changes in 𝑢ℓ do not affect ℒ. We can intuitively understand this as the RNN not 

utilizing information of 𝑢ℓ, i.e., RNN does not remember 𝑢ℓ at step 𝐿. (Although this 

argument is not precisely correct since large changes in 𝑢ℓ may affect ℒ.) In any case, the 

gradient signal from far away at time 𝐿 is lost and the model can’t learn what information to 

preserve at time ℓ. 38



Promoting better gradient flow

As an example, consider 

If the Jacobian is close to identity, i.e.,                                                then we say the

gradient flows through the layer ℎℓ+1 well.

If                , then            and we say the gradient does not flow well through the layer

ℎℓ+1 well; any information contained in           is lost.
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Promoting better gradient flow

So then, do we always want good gradient flow? Do we always want               ?

No. We want                 when we want to remember information.

We want                 when we want to forget.

Solution) Design a “neural circuit” that explicitly controls when to remember information and 

when to forget information.

40

“cell state”

“forget gate”



LSTM cells

41

“cell state”

“forget gate”

S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural Computation, 1997.

F. A. Gers, J. Schmidhuber, and F. Cummins, Learning to forget: continual prediction with LSTM, Neural Computation, 2000.

“hidden state”

𝑐ℓ, ҧ𝑓ℓ, ҧ𝑖ℓ, ҧ𝑔ℓ, ҧ𝑜ℓ have same

dimension as ℎℓ.

Long short-term memory (LSTM) cells 

has an intricate and somewhat 

arbitrary structure.

Works much better than a naïve RNN!

Cell state 𝑐ℓ serves as memory.

(In retrospect, the cell state should be 

called the hidden state, as it is more 

similar to the hidden states of RNNs or 

hidden Markov models. However, this 

notation is now standard.)



LSTM implementation
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class LSTMScratch(nn.Module):
def __init__(self, u_dim, h_dim):
super().__init__()
self.W = nn.Linear(u_dim + h_dim, 4 * h_dim)  # (W initialization omitted)
self.u_dim, self.h_dim = u_dim, h_dim

# input shape (length,batch,u_dim)
# for now, assume all seq. in batch have same length
def forward(self, inputs, h, c) :
# h, c are usually zero
output = zeros(inputs.shape[0], inputs.shape[1], num_hiddens)
for ind,u in enumerate(inputs) :
(f,i,g,o) = self.W(torch.cat(h,u,dim=2)).chunk(4)
f, i, g, o = torch.sigmoid(f), torch.sigmoid(i), torch.tanh(g), torch.sigmoid(o)
c = c * f + i * g
h = o * torch.tanh(c)
output[ind,:,:] = h

#output shape (length,batch,h_dim)
return outputs, (h, c)



LSTM implementation

Example usage of LSTM model:

(Recurrent application of LSTM done within class method.)

LSTM is somewhat complicated. However, programming abstraction makes it easy to use 

once implemented.

43

rnn = nn.LSTMScratch(10, 20)    # (u_dim, h_dim)
input = torch.randn(5, 3, 10)   # (length, batch, u_dim)
h0 = torch.zeros(3, 20)         # (batch, h_dim)
c0 = torch.zeros(3, 20)         # (batch, h_dim)
output, (hn, cn) = rnn(input, (h0, c0))



LSTM name meaning

To clarify, “long short-term memory” does not mean long-term & short-term memory.

Rather, it means that the cell state serves as a longer short-term memory. In contrast, a 

naïve RNN (that uses an MLP rather an LSTM cell as the recurrent function) would have a 

much shorter short-term memory.

A true long term memory would correspond to some external storage, which an LSTM RNN 

doesn’t have. (In fact no mainstream NLP system currently uses long term memory.)
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Aside: Exploding/vanishing gradient 
problem
The exploding/vanishing gradient problem is a problem not just for RNNs. It can be a 

problem for all deep neural networks.

The ResNet architectue, and more generally the use of residual connections is one 

approach to mitigate the exploding/vanishing gradient problem.

Another technique is the use of normalization layers such as batch norm.

RNNs can use batch norm#, but it is not common.

45#T. Cooijmans, N. Ballas, C. Laurent, C. Gülçehre, and A. Courville, Recurrent batch normalization, ICLR, 2017.



Sentiment analysis 
with LSTM

The output hidden state 

can be used for the single 

(non-sequence) output.

46



47

Pooling all of the hidden 

states often performs better 

than then using only the last 

one for learning a single 

(non-sequence) output.

Sentiment analysis 
with LSTM



Stacked RNN

Stacked RNNs use more depth and can learn 

more complex representations. 

Rule of thumb is to use 2–8 stacked LSTM layers.

• 2 layers is almost always better than 1.

• 3 layers is not always better than 2.

Each layer of an RNN transforms a sequence to a 

sequence.

48



Example task: 
Parts of speech 
tagging
For some RNN tasks, the output 

is a sequence, and the total loss 

is the sum of the losses incurred 

at each sequence term.
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Bidirectional RNN

(Unidirectional) RNNs process information 

forward in time. In language, however, it is 

common for later words to provide necessary 

context for understanding a previous word.

A bidirectional RNN combines forward and 

reverse directional RNNs to process a 

sequence without a single sense of direction.

50
M. Schuster and K. K. Paliwal , Bidirectional recurrent neural networks, 

IEEE TSP, 1997.



Stacked bidirectional RNN

Stacking and bidirectionality can be combined.

51



RNN-LM

The RNN language model (RNN-LM) is trained as an autoregressive model with the 

following structure.

52T. Mikolov, S. Kombrink, L. Burget, J. H. Černocký, and S. Khudanpur, Extensions of recurrent neural network language model, ICASSP, 2011.



LM loss

Let us interpret the loss

We are given a sequence of tokens 𝑢1, … , 𝑢𝐿 . RNN predicts the next token

𝑢ℓ+1 ≈ ℎℓ = 𝑓𝜃 𝑢1, … , 𝑢ℓ

for each ℓ. The (in)accuracy of the prediction is measured by the cross entropy loss

The sequence 𝑢1, … , 𝑢𝐿 creates 𝐿 next-token-prediction problems. Namely,

given 𝑢1, … , 𝑢ℓ, predict 𝑢ℓ+1. Our loss ℒ is the sum of the losses on these 𝐿 problems.
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LSTM with output projection

54

“cell state”

“forget gate”

H. Sak, A. W. Senior, F. Beaufays, Long short-term memory based recurrent neural network architectures for large vocabulary speech recognition, arXiv, 

2014.

“hidden state”

𝑐ℓ, ҧ𝑓ℓ, ҧ𝑖ℓ, ҧ𝑔ℓ, ҧ𝑜ℓ have same dimension

ℎℓ has a different (usually larger) dimensionSometimes, you want the LSTM to output a 

large hidden state while maintaining a 

reasonably-sized internal computation.

(In LMs, the output size can be the vocabulary 

size or the number of possible tokens with 

byte pair encoding, both are large.)

Solution) Output projection.



Backprop with RNN?

In this RNN-LM, the output of LSTM goes into two blocks, so the backprop computation 

should be the sum of the two contributions.

This leads to the general graph-form backprop.
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Trainable tokenizer

The tokenizer is the first contact between language and our algorithm.

Instead of using one-hot encodings, which is fixed (given a dictionary), it is better to have 

some trainable component in the tokenizer.

Currently, byte-pair encoding has become the standard choice, but we shall consider the 

historical context. 
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word2vec

Given an input 𝑋 = 𝑤1, … , 𝑤𝐿 chunked into words 𝑤1, … , 𝑤𝐿 ∈ 𝒲, train a tokenizer 𝜏𝜃 such 

that 𝜏𝜃 𝑤ℓ ∈ ℝ𝑑 is determined by word co-occurrence. Intuition is that two words are similar 

if the distribution of nearby words are similar.

Train 𝜏𝜃 with a large corpus of unlabeled text.

Using such a trained 𝜏𝜃 with RNNs significantly improves performance, compared to simple 

one-hot tokenizers.

Downside: The word-level tokenizer 𝜏𝜃 𝑤ℓ does not take into account the context in which 

the word 𝑤ℓ is used in (cf. polysemy). 
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T. Mikolov, K. Chen, G. Corrado, and J. Dean, Efficient estimation of word representations in vector space, ICLR Workshop, 2013.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, Distributed representations of words and phrases and their compositionality, NeurIPS, 2013.



ELMo
Embeddings from Language Models (ELMo) is an in-context tokenizer. Produces word 

representations in the context of the entire sentence.

Uses bidirectional LSTM structure. The states of RNNs are hidden states, but they can also be 

considered tokernized values of the given words.

58
M. E. Peters, W. Ammar, C. Bhagavatula, and R. Power, Semi-supervised sequence tagging with bidirectional language models, ACL, 2017.

M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer, Deep contextualized word representations, NAACL, 2018.

(ELMo has its own tokenizer layer 

with trainable parameters, but we 

won’t pay attention to it.)



Bidirectional LM loss for pre-training

Pre-training uses the loss

where 𝜃LSTM and 𝜃LSTM are the 

parameters of the forward and 

backward LSTM cells and 𝜃other are the 

shared parameters for the input 

(tokenizer) and output (softmax) stages.
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Non-causal language model

Causal language models learn

𝑓𝜃 𝑢ℓ; 𝑢1, … , 𝑢ℓ−1 ≈ ℙ 𝑢ℓ 𝑢1, … , 𝑢ℓ−1

i.e., the LM learns to predict the next token left-to-right.

ELMo and BERT are not causal language models. (Half of ELMO is a causal language 

model, but that is not the point.) ELMo and BERT can understand language and solve many 

NLP tasks, but it cannot generate text.

GPT is a causal language model and it can generate text.
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ELMo fine-tuning

Given a prior NLP method  (which can be very specialized and tailored to the specific task) 

that takes in 𝑥ℓ ℓ=1
𝐿 , replace the input 𝑥ℓ ℓ=1

𝐿 with ෤𝑥ℓ ℓ=1
𝐿 , where

where 𝐾 is the depth of the LSTM RNN, 𝑘 = 0 corresponds to the tokenization layer, and 

𝑠𝑘
task are the task-specific trainable parameters. (The sum is over the LSTM depth.)

Then, train the entire pipeline, including the ELMo weights, 𝑠𝑘
task

𝑘=0

𝐾
, and the weights of 

the NLP method on labeled fine-tuning data.
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Results

ELMo achieves state-of-the-art performance on a wide range of NLP tasks.

• Question answering

• Textual entailment (determining whether a “hypothesis” is true, given a “premise”)

• Semantic role labeling (Answers “Who did what to whom”)

• Coreference resolution (clustering mentions in text that refer to the same underlying real 

world entities)

• Named entity extraction (finding four types of named entities (PER, LOC, ORG, MISC) in 

news articles)

• Sentiment analysis (whether paragraph is positive or negative)
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Discussion of ELMo

Although the idea of semi-supervised learning through large-scale pre-training and fine-

tuning was not new (Dai and Le 2015) ELMo executed it very well and advanced the state 

of the art substantially. 

However, LSTM RNN is not the best architecture. The left- and right-directional RNNs only 

process information unidirectionally. What is the model needs to examine the entire 

sentence to make inference? Also, RNNs are fundamentally computationally inefficient.

The overall approach is still not universal; each task needs a tailored method and ELMo

only served to provide better tokenization.

63A. M. Dai and Q. V. Le, Semi-supervised sequence learning, NeurIPS, 2015.



BERT

Bidirectional Encoder Representations from Transformers (BERT) (i) replaces the LSTMs of 

ELMo with (encoder-only) transformer layers and (ii) proposed a more universal approach. 

BERT set a new state-of-the-art on almost every benchmark

64J. Devlin, M. Chang, K. Lee, and K. Toutanova, BERT: Pre-training of deep bidirectional transformers for language understanding, NAACL, 2019.



Transformers

Transformer architectures are sequence-to-sequence models. They “transform” a sequence 

to another sequence in each layer.

There are 3 types of transformers, listed in order of complexity.

• Encoder-only (BERT)

• Decoder-only (GPT) 

• Encoder-decoder (Original transformer of Vaswani et al. 2017)

We first discuss the encoder-only transformer.
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Encoder-only transformer

The transformer architecture relies on the following components

• Multi-head self-attention

• Residual connections

• Layer Normalization

• Position-wise FFN

• Positional encodings
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Single-head self attention
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Attention is a pseudo-linear operation

Functions 𝑓 ∶ ℝ𝑛 → ℝ𝑚 of the form

𝑓 𝑥 = 𝐴 𝑥 𝑥

are said to be “pseudo-linear”. (It is not linear because they the matrix 𝐴 𝑥 ∈ ℝ𝑛×𝑚.)

Attention is a pseudo-linear mapping from 𝑉 ∈ ℝ𝐿×𝑑in to Output ∈ ℝ𝐿×𝑑out.

Pseudo-linear operations are common in signal processing and kernel methods.

(I quickly point this out as it is a nice and simple observation.)
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Multi-head self attention (MHA)

Just as one uses multiple CNN channels, we use multiple attention heads.

Seq-to-seq transformation 𝑥ℓ ℓ=1
𝐿 ↦ 𝑧ℓ ℓ=1

𝐿 . Often 𝑑𝑋 = 𝑑𝑍 required by residual connection.
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Encoder-only transformer

One transformer layer consists of:

View one layer of TF as a sequence-to-sequence 

transformation 𝑥ℓ
𝑘

ℓ=1

𝐿
↦ 𝑥ℓ

𝑘+1

ℓ=1

𝐿
. TF stacks 

many such layers.

The “addition” block is a residual connection, 

which helps with optimization.

70𝑥ℓ
𝑘

ℓ=1

𝐿

𝑥ℓ
𝑘+1

ℓ=1

𝐿



Layer normalization

Layer normalization (LN) also stabilizes training by normalizing the features and thereby 

avoiding exploding and vanishing gradients.

Normalization across the features. Does not normalize over sequence lengths or batch 

elements. Assume 𝑋 has dimension (batch × sequence length × channel/feature)

ො𝜇 ∶, ∶ =
1

𝐶
෍

𝑐=1

𝐶

𝑋[∶, ∶, 𝑐]

ො𝜎2 ∶, ∶ =
1

𝐶
෍

𝑐=1

𝐶

𝑋 ∶, ∶, 𝑐 − ො𝜇 ∶, ∶ 2

LN𝛾,𝛽 𝑋 [∶, ∶, 𝑐] = 𝛾 𝑐
𝑋 ∶, ∶, 𝑐 − ො𝜇 ∶, ∶

ො𝜎2 ∶, ∶ + 𝜀
+ 𝛽 𝑐 𝑐 = 1,… , 𝐶

71J. L. Ba, J. R. Kiros, and G. E. Hinton, Layer normalization, arXiv, 2016.



TF LN ≠ CNN LN

How LN is used in CNNs is different from how it's used in Transformers (including ViT). 

For CNNs, LN normalize over channels and spatial dimensions. For transformers, LN 

normalizes over channels and not over spatial dimensions.

72
Figure credit to:

Z. Yao, Y. Cao, Y. Lin, Z. Liu, Z. Zhang, and H. Hu, Leveraging batch normalization for vision transformers, ICCVW, 2021.



Position-wise FFN

Position-wise FFN is a 2-layer MLP with ReLU, GELU, or SiLU activation functions:

Let 𝑛 be the token size, i.e., 𝑥 ∈ ℝ𝑛.

Then, often 𝑊1 ∈ ℝ4𝑛×𝑛, 𝑊2 ∈ ℝ𝑛×4𝑛 (expansion factor of 4).

Applies independently on each embedding, i.e.,
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GELU, SiLU, Swish activations

Gaussian error linear unit (GELU), Sigmoid-weighted linear unit (SiLU), and Swish are 

smooth non-monotone activation functions. The three are qualitatively similar: they 

decrease near 0 and then increase nearly linearly. 
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D. Hendrycks and K. Gimpel, Gaussian error linear units (GELUs), arXiv, 2016.

P. Ramachandran, B. Zoph, and Q. V. Le, Searching for Activation Functions, arXiv, 2017.

S. Elfwing, E. Uchibe, and K. Doya, Sigmoid-weighted linear units for neural network function approximation in reinforcement learning, Neural Networks, 2018.



Positional encoding/embedding

Problem: Transformer architecture is permutation equivariant and it does not know 

positional information of tokens. Relative positions of tokens (word order or patch location) 

obviously carries important meaning.

Solution: After tokenization 𝑢ℓ ℓ=1
𝐿 = 𝜏 𝑋 , add positional embedding vectors and then pass

𝑢ℓ + 𝑝ℓ ℓ=1
𝐿

as input to the transformer layers.
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S. Sukhbaatar, A. Szlam, J. Weston, and R. Fergus, End-to-end memory networks, NeurIPS, 2015.

J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin, Convolutional sequence to sequence learning, ICML, 2017.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, Attention is all you need, NeurIPS, 2017.



Positional encoding/embedding

NLP transformers often use the

sinuisoidal positional encoding 𝑝1, … , 𝑝𝐿 ∈ ℝ𝑑

(Feels like a very arbitrary design, but this work well and is hard to beat.) Since NLP 

transformers must accommodate arbitrary sequence length 𝐿, using a positional encoding 

with an analytical formula makes sense.

On the other hand, vision transformers let 𝑝ℓ ℓ=1
𝐿 be trainable. Possible since image 

resolution and hence sequence length 𝐿 is fixed. 
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Positional encoding/embedding

Idea is often attributed to Vaswani et al. 2017, 

However, Sukhbaatar et al. 2015 and Gehring et al. 2017 did publish the positional 

encoding technique earlier. The sinusoidal encoding is due to Vaswani et a. 2017.
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S. Sukhbaatar, A. Szlam, J. Weston, and R. Fergus, End-to-end memory networks, NeurIPS, 2015.

J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin, Convolutional sequence to sequence learning, ICML, 2017.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, Attention is all you need, NeurIPS, 2017.



Post-LN vs Pre-LN TF architectutres
There are 2 variants of the transformer architecture based on the position of LN. 

The original (Vaswani et al. 2017) paper illustrates postLN in its figure. However, their 

updated official codebase uses pre-LN. It is later reported that Pre-LN is more stable.

78R. Xiong, Y. Yang, D. He, K. Zheng, X. Zheng, C. Xing, H. Zhang, Y. Lan, L. Wang, and T.-Y. Liu, On layer normalization in the transformer architecture, 

ICML, 2020.



Transformer depth

Thanks to the residual connections and layer norm, transformers can often be much deeper 

than stacked RNNs. (ELMo has 2 layers, while BERT has 24 layers.)

To clarify, the layer norm and the residual connection are used to mitigate the 

exploding/vanishing gradient problem across the transformer depth.

The transformer does not have exploding/vanishing gradient problem along the sequence 

length 𝐿 due to its use of attention mechanism.
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Why transformers over RNNs?

Handling long sequence length:

RNNs can’t handle long input sequences due to a fixed memory size and vanishing or 

exploding gradients. LSTMs are designed to mitigate this problem, but transformers really 

solve this problem. Transformers allows the full input sequence to be considered when 

computing the representation of each token.

Efficient parallel computation:

RNNs are inherently sequential (inefficient) during training. (RNNs are efficient during 

inference.) In contrast, transformers are completely parallelizable in training, and we can 

better leverage efficient large-scale GPU computation.
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BERT pre-training
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BERT pre-training uses two losses.

1. Masked LM (MLM)

Randomly mask out 15% of the words and let BERT 

predict it. Output tokens corresponding to masked words 

are fed into softmax and CE loss.

2. Next sentence prediction (NSP)

Provide two sentences A and B separated with [SEP] 

token with 50% probability of B following A and 50% 

probability of B unrelated to A, and make binary 

prediction. Attach classification head to the output 

corresponding to [CLS] token. 



BERT fine-tuning

Many NLP tasks roughly fit the 

MLM and NSP shape.

For fine-tuning, make minimal 

modifications to the BERT 

baseline and fine-tune the whole 

model.

Fine-tuning is computationally 

very cheap (<1 hour on a single 

Google TPU).
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Vision transformer

Vision transformer is an encoder-only 

transformer architecture.

Given an image, each 16 × 16 patch is a 

token, and the patches are placed into a 

linear sequence.

Output corresponding to [CLS] token is 

used for classification.

83
A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. 

Houlsby, An image is worth 16x16 words: Transformers for image recognition at scale, ICLR, 2021.

Supervised pre-training on image classification had 

better performance compared to self-supervised 

pre-training with masked patch prediction.



GPT-1

GPT (generative pre-training) uses a causal language model loss.

Initially, GPT was trained to be an unsupervised pre-trained model in the vein of BERT, and 

the its text generation ability was not that strong.

(However, the focus of GPT-2 shifted to text generation.)

84A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, Improving language understanding by generative pre-training, 2018.



Masked attention

In RNNs, information is naturally processed sequentially.

However, there is a problem with using an encoder-only (BERT-style) transformer for a 

causal language model: The model can see the entire sequence, so predicitng the current 

word is trivial.

Therefore, GPT uses a masked attention that allows the current sequence element to only 

query earlier sequence elements.
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Masked single-head self attention

Crucially, 𝑞𝑖 is allowed to query only 𝑘1, … , 𝑘𝑖.

𝑦ℓ is a linear combination of 𝑣1, … , 𝑣ℓ.

𝑦ℓ only depends on 𝑥1, … , 𝑥ℓ.
( 𝑥ℓ ℓ=1

𝐿 ↦ 𝑦ℓ ℓ=1
𝐿 has causal dependency)
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Only lower-triangular

components of ሚ𝐴 are finite.

Only lower-triangular 

components of 𝐴 are nonzero.



Masked multi-head self attention

Seq-to-seq transformation 𝑥ℓ ℓ=1
𝐿 ↦ 𝑧ℓ ℓ=1

𝐿 with causal dependence: 

𝑧ℓ only depends on 𝑥1, … , 𝑥ℓ.

Since other components of transformer all act positionwise, the transformer with causal 

MHA is a seq-to-seq transformation with causal dependence.
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Self-supervised pre-training

Let 𝑋 be the input text tokenzed as 𝜏 𝑋 = 𝑢1, 𝑢2, … , 𝑢𝐿 . 

Let 𝑓𝜃 be the transformer mapping 𝑢ℓ ℓ=1
𝐿 ↦ 𝑤ℓ ℓ=1

𝐿 , where 𝑤ℓ ∈ ℝ𝑛. Then,

where ℓCE is the cross entropy loss.
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Supervised fine-tuning

First, transform the relevant 

text into sequence with 

appropriate delimiter tokens.

At the end of the transformer, 

the token corresponding to 

the “extract” toke position is 

extracted fed into a linear 

layer. 

The full GPT-1 model and the 

final linear layer is fine-tuned.
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Supervised fine-tuning

For classification, given an input text 𝑋 and a tokenizer 𝜏, the transformer maps

<Start>, 𝜏 𝑋 , <Extract> = 𝑢ℓ ℓ
𝐿 ↦ 𝑤ℓ ℓ

𝐿

The final token 𝑤𝐿 corresponding to the <Extract> token, is extracted. The loss

loss 𝐴𝑤𝐿 + 𝑏, 𝑌

where 𝐴 and 𝑏 are the parameters of the linear layer and 𝑌 is the label corresponding to 𝑋, 
is used. 

In all cases, only 𝑤𝐿 is extracted to form the supervised fine-tuning loss.

(Note that BERT had a <Cls> token at the start of the input, and it basically served the same 
role as the <Extract> token for GPT. Different from BERT, GPT is a causal language model, 
so the <Extract> token must be at the end if we want 𝑤𝐿 to encode information about the full 
sentence.) 90



Supervised fine-tuning

The full GPT-1 model (the pre-trained TF), the final linear layer, and the vector embeddings 

corresponding to <Start>, <Extract>, and <Delim> are trained.

For similarity tasks, there is no inherent ordering of the two sentences being compared. So 

the transformer is given both orderings.
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Example task: Machine translation

In machine translation, training data contains translation pairs between different languages.

Classically with an RNN, the encoding stage encodes (summarizes) the entire sentence into 

a latent vector, and the decode generates translation text autoregressively.
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(For better performance, a stacked 

bidirectional RNN encoder and a 

stacked unidirectional RNN decoder 

should be used.)

(Interestingly, reversing the input 

sentence often improves performance.)



Bahdanau attention and cross attention

The problem with the previous approach is that the hidden state passed from the encoder 

RNN to the decoder RNN acts as a bottleneck, and the hidden state may not be able to 

retain all the necessary information.

93D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly learning to align and translate, ICLR, 2015.

Solution: Allow the decoder RNN 

cells to access the hidden states of 

the encoder RNNs.

This attention mechanism is now 

called cross attention, and it is now 

commonly used to attend across 

different modalities. E.g. text 

decoder attends to image patches.

Q
query

K
Key



Transformer and cross attention

Vaswani et al. questioned whether the RNN mechanism 

was necessary. They concluded “Attention is all you need”.

Cross attention layer derives 𝑞ℓ ℓ=1
𝐿 from previous layer’s 

𝑥ℓ
dec

ℓ=1

𝐿
but 𝑘ℓ ℓ=1

𝐿′ and 𝑣ℓ ℓ=1
𝐿′ are derived from the 

encoder layer’s 𝑥ℓ
enc

ℓ=1
𝐿 . (In cross attention, number of 

queries need not match the number of keys and values.)

94A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, Attention is all you need, NeurIPS, 2017.

(Figure incorrectly depicts post-LN.) 



Understanding TF from historical context

The transformer architecture feels somewhat arbitrary, but we can understand the 

designers’ intent through the historical context

There is no mathematical reason that thing must be the way they are, and the standard 

architecture will likely change in the future.

The historical context does inform us of the intended purpose of the components, and it 

gives us a rough guideline of what things will certainty not work and what new components 

may work.
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