Natural Language
Processing

Generative Al and Foundation Models
Spring 2024
Department of Mathematical Sciences
Ernest K. Ryu
Seoul National University

Natural language processing (NLP)

Natural language processing (NLP) is concerned with computationally processing natural
(human) languages. The goal is to design and/or train a system that can understand and
process information written in documents.

A natural language or ordinary language is any language that has evolved naturally in
humans through use and repetition without conscious planning or premeditation such as
English or Korean. They are distinguished from formal and constructed languages such as
C, Python, Lojban, and Esperanto.

NLP was once a field that relied on insight into linguistics, but modern NLP is dominated by
data-driven deep-learning based approaches.

Task: Review sentiment analysis

Given a review X € X on a reviewing website, decide whether its label Y € Y = {—1,0,+1} is
negative (—1), neutral (0), or positive (+1).

EQ.

Review: | hate this movie
Sentiment: Negative

Review: | love this movie
Sentiment: Positive

Input is variable-length. Output is fixed-size.

Sentiment analysis with BOW

A bag of words (BOW) model makes the prediction with a linear combination of tokenized
word. This is a simple baseline.

we{;l«f; bios Soore

109

[R
yi Im/e 2:5 vne

More generally “bag of words” refers to models that view a sentence as an unordered
collection (bag) of words. Completely disregarding word order is a significant drawback of
the method.

Sequence (seq) notation

Let U be any set. Define k-tuples of U as
U = {(uy, .., up) Uy, ..., ux € U}

The Kleene star notation

U* = U’U" = {(uq, ..., w)|uq, ..., ux € U, k = 0}
k>0

denotes sequences of U of arbitrary finite length.

Although unimportant in most practical setups, we define the empty sequence () is a valid sequence of length 0 and write () € U*.

Characters

Let C be a set of “characters”.

e C can be the set of English characters, space, and some punctuation.

* C can be the set of all unicode characters.

Let X = C* be the set of finite-length sequence of characters, i.e., X € X is raw text.

Tokenization

Given X = (¢4, ..., c7) € C*, atokenizer is a function 7 : C* —» (R™)* such that
T(Cq, Coy ey) = (Uq, Uy, ooy Uy)

where uq, u,, ...,u; € R™. T and L are often not the same. Sometimes t is fixed, and
sometimes it is trainable (e.g. word2vec).

For text generation, we want the tokenizer to be invertible.

Character-level tokenizer v.0

Example: ¢ = {a, b, ..., 2z, ,.,?,!} and
T(X) = 1(cq, ..., Cp) = (T(Cl), ...,T(CL))
(a) =1, tb)=2, .. 1(2) =26,

Son=1landL =T.
This doesn’t work very well.

We want distinct tokens to be vectors of distinct directions.

Character-level tokenizer v.1

Example: ¢ = {a,b, ..., 2z, ,.,?2,!}
T(X) = T(Cl, ver) CL) = (T(Cl), ...,T(CL))
— — _0_

1 0
0 1 0
t(a) =0|, () =10|, .. () =]0
0. 0. 1.

Son =30 and T = L. The output vectors are called one-hot-encodings as only one element
of the encoded vector is nonzero (hot).

Word-level tokenizer

Examples: C = {a, b, ..., z, } (S0 English letters and space) and W = {English words}

T(X) = T_(@, v, C7) = T(Wq, o, Wy) = (T(Wl), ...,T(WL))

1 07 07

0 1 0
t(‘aardvark’) = |0, t(‘ability’) =|0|, .., t(‘Zyzzyva’) =|0|,

(- L0 1.

where wy, ...,w; € W. So n = |W| = (size of dictionary) and L < T.

l.e., this is a one-hot encoding of words.

End-of-string (EOS) token

Given X € X and its length 0 < T < o, we equivalently consider a special “end-of-string”
token <EOS> to be the final (T + 1)-th element. In other words,
X = (Cl, Coy vunly CT) = (Cl, €y vy, CT) <EOS>)

forany X € X, where ¢4, ...,cy € C.

We use the same notation for elements in U*, 1.e.,
(ul,uZ, ...,uL) - (ul,uZ, ey UL, <EOS>) (S ‘U*

11

Discussion on tokenizers

Q) Why tokenizers?

A) Neural networks perform arithmetic on vectors and numbers, so tokenizers convert text
Into a sequence of vectors.

Q) Why can’t we map characters or words to integers? Why map to one-hot-vectors?

A) We want different words or things to map to different vectors. Vectors can represent
differences through different directions and magnitudes, while scalars are far more
restrictive as they can only use magnitudes to represent differences.

12

Discussion on tokenizers

Q) Advantage of word-level tokenizer over character-level tokernizer?

A) Shorter tokenized sequence. Uses dictionary. (Model need not learn words from scratch.)

Q) Advantage of character-level tokenizer over word-level tokernizer?

A) Can learn to handle misspellings (‘learning’ = ‘lerning’) and inflections (‘running’ = ‘run’ +
‘ing’). Better for multi-language models. (Dictionaries of multiple languages is too large.)

Q) Are there other tokenizers?

A) Word2Vec and subword tokenization (byte-pair encoding) are trained tokenizers.
More on these later.

13

Basic BOW implementation

Let T be a word-level tokenizer with dictionary W.

For X = (wy, ..., w;) the bag-of-word (BOW) model fy is
foX)=b+a- ZT(Wg) =b+a- Z(T(X))

=1
where 8 = (a,b) € R*"*! is the trainable parameter.

Wl’t‘tf l]’Q

oo

]

T love ns wme

®

—>
n— @

14

Sentiment analysis with DNN

Modern state-of-the-art NLP methods are based on deep neural networks (DNN).

'{Pm‘am

W// 1ated /V/l/} E
’)
80 i i

T love ‘f’Z;; mivie (E05>

IR

15

Task: Language model (LM)

A language model (LM) achieves one or two of the provability
following goals.

{ome rM//{careJ vV — 9

T 111711

the bet thime in life ar free {EosS

Goal 1: Assign probabilities/likelihoods to sentences.

— I haveeverdone
|' 7

/ J 1. Traveling to different countries and experiencing different cultures.
{ { ome ovylicated VN

Goal 2: Generate coherent (likely) sentences.

2. Volunteering to help those in need.
3. Graduating from college.

4. Starting my own business.
T 1\ T 5. Taking a gap year to explore the world.

6. Learning a new language
'Hae ‘cff f["',,' 9 guage E0$)

(This definition excluded encoder-only transformer models such as BERT from language models,

but we will not be overly concerned with these definitions.) 16

Applications of LM: Voice-to-text

In a voice-to-text system, two interpretations can be auditorily ambiguous but semantically
not ambiguous. An LM can determine which interpretation is more likely.

“The parcel was secured by grey tape.” (V)

“The parcel was secured by great ape.”

“he was a lighthouse keeper” (V)

“he was a light housekeeper”

A similar application with spelling correction.

17

Applications of LM: Autocomplete

An autocomplete system can assist writing by suggesting likely completions of a sentence.

Meeting Arrangement

professor@snu.ac.kr
Meeting Arrangement

Dear professor,

What would be the right time to contact you?

(Note to self: | will be looking forwar
Replace image with

our own to avoid

copyright issues.)

18

Applications of LM: SSL pre-training and
universal interface

Training an NN to be a language model is a useful pretext task in the sense of self-
supervised training and transfer learning in the sense of self-supervised learning (SSL).
Pre-trained language models serve as foundation models that can be fine tuned for other
downstream tasks.

 More on this when we talk about ELMo, BERT, and GPT

A sufficiently powerful LM can serve as a universal language-based interface to the
capabilities that the language model has learned.

 More on this when we talk about T5 and GPT3.

19

Probabillities with sequences

Assume a sequence

(uq,uy, ., uy) = (Uq, Uy, ..., u;, <EOS>) € U*

IS generated randomly, i.e., we can assign a probability

[P’((ul,uz, ...,uL,<EOS>)) € [0,1]

The sequence length L is also a random variable. Imagine u4, u,, ... being generated
sequentially. There are two equivalent ways to think of generation of L.

Given uq, u,, ..., up, the sequence may end here and u,,; = <EOS>. Otherwise, the next
token u,,,; # <EOS> Is generated.

Given uq, u,, ..., up, the next token may be u,,;=<E0S> and the sequence terminates.
Otherwise, u,,,; # <EOS> and the generation continues to u,.,,.

20

Probabillity notation with <EOS>

Clarification) Given 0 < L < oo and uq, Uy, ..., u; € U,
P((ul, e uL)) = P((’U,l, Loaour, <EDS>))

IS the probability that a random sequence in U* has values uq, u,, ..., u; for the first L
elements and then terminates, i.e., u; ., =<EOS>.

On the other hand, if uq,u,, ...,u; € U,
P(ul, o5 .UL)

IS the probability that a random sequence in U* has values u4, u,, ..., u; for the first L
elements (and none of them are <EOS>) but u; ., but may or may not be <E0S>. In particular,

P(uy,...ur) =Pluy,...up,urr1 = <E0S>) + P(uq,...ur,ur1q1 7# <E0S>)
=P((u1,...ur)) +Plus,...ur,ur+1 7 <E0S>)

21

Conditional probabillities with sequences

With the chain rule (conditional probability), we have
P((ul,...uL)) :P((ul,. uL,<EDS>))

P(UL+1 = <EUS>|”LL1,. ..)P()
IP’(uL+1 = <EUS>|’LL1,...) (|U1,.. , UL, — 1)P(u1,...uL_1)
L
= P(ury1 = <E0S>|uq,...,u H (we | ur, ..., up—1)

where P(up|uy, ..., u,_1) is the probability of u, conditioned on the past. (For £ = 1, we mean
P(uq|uq, ..., up) = P(uy).) So the probability of the entire sequence (uq,u,, ..., u;) =
(uq, uy, ..., ug, <EOS>) is the product of the conditional probabilities.

To clarify, we have made no assumptions on the sequence probabilities. (We have not
assumed that anything is Markov or that anything is independent.)

Cond. prob. with continuous seguences

If sequence elements u; are continuous random variables, then we need density functions
Instead of discrete probability mass functions. However, calculations are essentially the
same, so we do not repeat it. (Measure-theoretic probability theory unifies analysis.)

In NLP, vocabulary is finite, so consider seqs with discrete elements.
Some RL problems have continuous states and rewards.

For image patches (vision transformers), seq elements are (essentially) continuous.

23

Autoregressive (AR) modelling

An autoregressive model of a sequence learns to predict u, given the past ovservations
uq, ..., Up_1. Goal is to learn a model fy that approximates the full conditional distribution

fo(up; uq, oo, up—q) = P(uglug, ..., up—q)

(Etymology is ‘auto’ = 'self’ and ‘regress’ = fit’.)

24

Seqguence likelihood with AR model

Given a trained autoregressive model fgy (up; uyq, ..., up_1) = P(upluy, ..., up_1), we can
(approximately) compute the likelihood of a sequence (uy, ..., u;) with

H Up | Upy. .o, Up—1)

L
P(
r=1
L
fo
—1

1

P((u1,...ur)) = P(ur41 = <E0S> | uq,...

,UL)
~ fo(upy1 = <E0S>;uy,...,ur) (we; Uy, ..o, Up—1)

25

Sequence generation with AR model

Given a trained autoregressive model fy (us; uq, ..., Up_1) = P(up|uy, ..., u,—1), and an un-
terminated sequence uq, ..., u,_4 (if £ = 1, then start generation from nothing) we can

generate (uq, ..., Up_1,Up, ..., U;) ~ P(uy, ..., Uy, Uy 41 =<EOS>|ug4, ..., up_1) by sampling

wpr ~ fo(sur, ..., up_1), ¢ =74, ... until uy = <E0S>

which is justified by

L
P(ug, ... up,up11 = <E0S>|uy,...,up—1) = Plupy1 = <E0S> |uq,...,ur) H P(ug |wg, ..., up—1)
0=/
L
~ fo(ur+1 = <E0S>;uq,...,ur) H folugsur, ..., up—q)
=0

26

Modern NLP and seguence processing

Modern NLP solves various tasks, especially language modelling, with deep neural networks.

We need a general approach to process sequences (variable-length data) as inputs and
outputs. We start with RNNs and then move on to transformers.

Why still learn RNNs? Although transformers have been replacing RNNs and CNNSs in recent
years, RNNs and CNNs are not yet obsolete. Also much of the architecture design of
transformers are inspired by practices inherited from the RNN era. One still needs to know

RNNs to fully understand modern NLP.

27

Learning with variable-size inputs

In image classification, the input X € R3*™*™ js of fixed size and processed by a deep CNN.

We now want to process variable-size input X € C* with a neural network.

Simple idea: Zero-pad up to length of longest sequence.

’T(Xl) — (U1,17U1,2,U1,37U1,4)
T(X2) = (u2,1, u2,2,u2,3)

T7(X3) = (us.1,us32,u33,U3.4,Us35)

(uivl’u";Q’ui,S?OvO) — —

* (4) This can work as a quick and temporary solution.
« (—) Does not scale well for long sequences if fully-connected layer is used.

* (—) Maximum length must be specified.

28

T(X1) = (u1,1,U1,2,U1,3, U1 4)

Process one input per layer 77 =l

7(X3) = (U’3,17 U3 2,U3.3, U3 4,U3 5

I] I I}
1| 1] 1
I : 1 I :
L.a L.a L2
ho=0¢ ¢ ¢t 1 ho=0¢ ¢t ¢ ho=0¢ ¢ ¢t t 1
ur1 Ur2 U3 Uia4 U1 U222 U223 u3z1 U322 U33 U334 U35
ldea: Process one input per layer
- he =0 | Ay he—1 + by
* (4) Shorter sequences require fewer layers to evaluate. |

* (4) Each layer is much smaller than a giant layer one would need to process the whole
seguence at once.

« (—) Total number of weights and biases increase with maximum sequence length.

* (—) Exploding/vanishing gradients.
29

Weight sharing

ldea: What if the parameters are the same (use weight sharing) for all layers?

j; E_'_'_"_'_'_'.'
{
{
/ ‘
I
Q
T
B

* (4) Can process an arbitrary number of inputs.

» (—) Exploding/vanishing gradients.

This is called a recurrent neural network (RNN).

30

Recurrent neural networks (RNN)

More generally, an RNN has the form

' hio =

1 — -

: I—V —_ — —_ —_ hf — QQ(h’f—lauf)a
La

0= (A,b,0)
ho=0¢ ¢ ¢ t 1

U1 U us U4 Us

where 0, A, and b are the trainable parameters.
The g3 Is called the recurrent function.

The exploding/vanishing gradient problem still remains.
RNNs work only if gz is chosen to mitigate this problem.

J. L. Elman, Finding structure in time, Cognitive Science, 1990.

t=1,...

, L

31

Backprop for RNN

Let 7(X) = (uy, ...,uy) and fyp(X) € R. So A € R™** b € R, € R?, and hy, ..., h; € R™.

Let & = (4,b,0). Then,
hog =0
hg:qéj(hg_l,ug), EZl,...,L
fo(X)=Ahr +b

Consider backpropagation on £(fg(X),Y):

OL(fo(X),Y) (0L 0fo(X)
S = (o) e
Ofo(X) L Ofo(X) 1

0A L o
dfo(X) _Aaﬂ
o0 o0

32

Backprop for RNN b= aplheroue). L=1....L

Next, compute dhy/00: 0
Ohr g gz Ohr_1 dqz(h, u) ou
aé — 8@ (h’L—lauL) =+ %(h’L—l?uL) 8é + T(hL—lauL) 8é
8% 8(]5 8% 8(]@' ahL_Q
= —2(hy_ —(hy_ Z(hy _ _ —(hy_ _ _
89(L—1,ur) + 8h(L—1,Ur) 89(L—2,Ur—1)+ 8h(L—2,UL—1) Y
0q; 0q; 0q; 0q; 0q; Ohy _
= 8‘19 (hp—1,ur) + %(hL—lauL) 8(? (hp—2,ur—1) + %(hL—lauL)%(hL—%uL—l) aLé 2
L L
0q; 0q;
=Z((ﬁ(hs_l,%)) q?(hg_l,ug))
=1 s=¢+1 89
L L
— Z L (hg_l,’u,g)) (deﬁne = —(hs_l,us))
=1 ((S—EH ahs_l) 90 Ohs—1 Oh
OhL, Dqz Ohr, 1 Ohs
= —— —(hg_1,up) (deﬁne — =
EZ:; he 06 Ohy T Ohs_1

L
Ohy, Ohy (dhy 0q;)
— 2 5, af defi — = —2 (hy_1q,
2 efine 25 = g (-1, ue) 33

Backprop for RNN

Translate calculation to 0¢/06:

Ohr,
— AL
Ohy

)

OL(fo(X),Y) _ 0L(fo(X),Y) 0fo(X)

0fs(X) _ <~ Ofa(X) g Ofs(X) _ 0fs(X) Ohy
00 _; ohy 06 LMY (deﬁne Ohe 0Ohy O
OL(f5(X),Y) = OL(fo(X),Y) 8fp(X) g
26 _E; of Ohe 9 M)
L OL(fo(X),Y) Dy
— Z o, 8@9 (he—1,up) (deﬁne o

[
|

1

This is called backpropagation through time (BPTT).

P. J. Werbos, Generalization of backpropagation with application to a recurrent gas market model, Neural Networks, 1988.

of

Ohy

34

)

Backprop code for RNN

(fe(X i OL(fo(X),Y) dqz

Ohy o0 (o1, ue)

=1

35

RNNs are extremely deep networks

(fe V) _ 5 OLUs(X).Y) Dty

Seg. length of 100s or 1000s is common. — Ohy Py
3ﬁ(f9(), Y) _9L(fo(X),Y) Ohy Ohp_n Ohgyy
Multiplying many numbers is unstable: Ohy Ohr, Ohr_1 Ohp_o Ohy

« If most of the numbers > 1, we get o (“Exploding gradients”. Can fix with gradient clipping.)
* If most of the numbers < 1, we get 0 (“Vanishing gradients”. Bigger problem.)

Reasonably-sized product if numbers are all close to 1.

For matrices, a similar reasoning holds with eigenvalues or singular values.

Y. Bengio, P. Simard, and P. Frasconi, Learning long-term dependencies with gradient descent is difficult, IEEE Transactions on Neural Networks, 1994. 36

Exploding gradients and gradient clipping

The exploding gradient problem occurs when the gradient magnitude is very large.

Exploding gradients imply the output is very sensitive to small changes of the parameters in
a certain direction. Sometimes, such gradients are unworkable and the neural network
architecture must be changed.

H . . . “’r.t}h t; l' . ‘V.th 1. o
Sometimes, however, the direction of the gradient rllou clipping ith clipping

IS fine. If so, one can use gradient clipping and
use the clipped gradient in the optimization.

J(w,b)
J(w,b)

Gradient clipping with threshold value v:

if <
g < max 1,L g= vg ﬂgHT
“g” mg otherwise

Vanishing gradients

The vanishing gradient problem occurs when the magnitude of a gradient is very small.

Intuitively, vanishing gradients means the gradient signal does not reach the earlier layers.
In an RNN, for example, 0L£/0hmay not be small but

0L 9 Ohp Ohp_y Ohy
Ohy ~ Ohp Ohp— Ohr—s Ohy

can be small.

oL 0L Oh
This means changes in h, do not affect the output £. Since 3, = a_ma_uj this further implies

that (small) changes in u, do not affect £. We can intuitively understand this as the RNN not
utilizing information of u,, i.e., RNN does not remember u, at step L. (Although this
argument is not precisely correct since large changes in u, may affect £.) In any case, the
gradient signal from far away at time L is lost and the model can’t learn what information to
preserve at time 4.

38

Promoting better gradient flow

As an example, consider Y OL Ohyiq

Ohy Ohgy1 Ohy

If the Jacobian is close to identity, i.e.,ag]‘i+l = %f (he,uerr) =~ I € R™*" then we say the
£

gradient flows through the layer h,,; well.

Oh oL _
32:1 ~0, then 7,- ~ 0 and we say the gradient does not flow well through the layer

If

h,., well; any information contained in

IS lost.
Ohgiq

39

Promoting better gradient flow

i oh
So then, do we always want good gradient flow? Do we always want 82“ ~ I7?
¢
oh i i
No. We want 62“ ~ I when we want to remember information.
¥
Ohpia

We want ~ 0 when we want to forget.

Ohy

Solution) Design a “neural circuit” that explicitly controls when to remember information and
when to forget information.

ce =¢co—1 O fo+ ge
dce,?l — ff,i E [0’ 1]

dce—1,4

“cell state”

fe € [0,1]
“forget gate”

ge
40

LSTM cells " o

¢s, f7, s, Jp, 0p have same
dimension as h,.

Long short-term memory (LSTM) cells
has an intricate and somewhat
arbitrary structure.

“cell state”

Works much better than a naive RNN!

Cell state c, serves as memory. ho 1
ﬂ
(In retrospect, the cell state should be b .
) o idden state "
called the hidden state, as it is more .
similar to the hidden states of RNNSs or N

hidden Markov models. However, this e e e e
notation is now standard.) e
S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural Computation, 1997. 41

F. A. Gers, J. Schmidhuber, and F. Cummins, Learning to forget: continual prediction with LSTM, Neural Computation, 2000.

LSTM implementation

class LSTMScratch(nn.Module):
def init (self, u_dim, h_dim):
super(). init ()
self.W = nn.Linear(u_dim + h_dim, 4 * h dim) # (W initialization omitted)
self.u dim, self.h dim = u _dim, h_dim

Jt
input shape (length,batch,u dim) hy 1 iy
for now, assume all seq. in batch have same length w g + b= Gs
def forward(self, inputs, h, c) : 5

h, c are usually zero -
output = zeros(inputs.shape[@], inputs.shape[1l], num_hiddens)
for ind,u in enumerate(inputs) :
(f,i,g,0) = self.W(torch.cat(h,u,dim=2)).chunk(4)
f, i, g, o = torch.sigmoid(f), torch.sigmoid(i), torch.tanh(g), torch.sigmoid(o)
c=c*f+1*g
h = o * torch.tanh(c)
output[ind,:,:] = h
#output shape (length,batch,h _dim)
return outputs, (h, ¢)

LSTM implementation

Example usage of LSTM model:

rnn = nn.LSTMScratch(10, 20) # (u_dim, h_dim)
input = torch.randn(5, 3, 10) # (length, batch, u dim)
ho = torch.zeros(3, 20) # (batch, h_dim)
cO® = torch.zeros(3, 20) # (batch, h_dim)

output, (hn, cn) = rnn(input, (he, c0))

(Recurrent application of LSTM done within class method.)

LSTM is somewhat complicated. However, programming abstraction makes it easy to use
once implemented.

43

LSTM name meaning

To clarify, “long short-term memory” does not mean long-term & short-term memory.

Rather, it means that the cell state serves as a longer short-term memory. In contrast, a
naive RNN (that uses an MLP rather an LSTM cell as the recurrent function) would have a
much shorter short-term memory.

A true long term memory would correspond to some external storage, which an LSTM RNN
doesn’t have. (In fact no mainstream NLP system currently uses long term memory.)

44

Aside: Exploding/vanishing gradient
problem

The exploding/vanishing gradient problem is a problem not just for RNNs. It can be a
problem for all deep neural networks.

The ResNet architectue, and more generally the use of residual connections is one
approach to mitigate the exploding/vanishing gradient problem.

Another technique is the use of normalization layers such as batch norm.

RNNSs can use batch norm#, but it is not common.

#T. Cooijmans, N. Ballas, C. Laurent, C. Gulgehre, and A. Courville, Recurrent batch normalization, ICLR, 2017.

45

Y= 'Positive
Sentiment analysis
with LSTM =

_ Linear |
The output hidden state
can be used for the single Centence
(non-sequence) output. Encoding
9}“’
o
hls|= P E——-)J —o[—>
s (G| = | F
G o 1. __9‘___ : #
) o ,

Sentiment analysis
with LSTM

Pooling all of the hidden
states often performs better
than then using only the last
one for learning a single
(non-sequence) output.

Y="Positive
i

Linear |

fentn ce
Entu’i-’

Stacked RNN

Stacked RNNs use more depth and can learn
more complex representations.

Rule of thumb is to use 2—8 stacked LSTM layers.
« 2 layers is almost always better than 1.

« 3 layers is not always better than 2.

Each layer of an RNN transforms a sequence to a
seqguence.

Example task:
Parts of speech

tagging

For some RNN tasks, the output
IS a sequence, and the total loss
IS the sum of the losses incurred
at each sequence term.

P

Bidirectional RNN

(Unidirectional) RNNs process information
forward in time. In language, however, it is
common for later words to provide necessary
context for understanding a previous word.

A bidirectional RNN combines forward and
reverse directional RNNSs to process a
sequence without a single sense of direction.

M. Schuster and K. K. Paliwal , Bidirectional recurrent neural networks,
IEEE TSP, 1997.

Y= 'Positive

. g’ 9% E,—_) 1
L)
B

'Hte. hamlmr’er was ?ooJ 50

Stacked bidirectional RNN

Stacking and bidirectionality can be combined.

51

RNN-LM

The RNN language model (RNN-LM) is trained as an autoregressive model with the
following structure.

tCM'
Us
== ILSTM

U

T
the

(e

{E0s)
T

U

A

ILSTM

U

T
hat

(e

ncaly

T. Mikolov, S. Kombrink, L. Burget, J. H. Cernocky, and S. Khudanpur, Extensions of recurrent neural network language model, ICASSP, 2011.

LM loss

L

Let us interpret the loss Z

(heytoyq)
=1

We are given a sequence of tokens (uq4, ..., u;). RNN predicts the next token
Upp1 = hf — fG(ulr "'ru{’)

for each £. The (in)accuracy of the prediction is measured by the cross entropy loss

(CE (hg,upyr)

The sequence (u4, ..., u;) creates L next-token-prediction problems. Namely,
given uy, ..., up, predict u,, 4. Our loss L is the sum of the losses on these L problems.

53

LSTM with output projection 1

cs, f7, s, Jp, 0, have same dimension
h, has a different (usually larger) dimension

Sometimes, you want the LSTM to output a
large hidden state while maintaining a
reasonably-sized internal computation.

“cell state”

|
|
l
(In LMs, the output size can be the vocabulary !
size or the number of possible tokens with !
byte pair encoding, both are large.) !
|
|
|

he—1
)

Solution) Output projection. S

|
1
1
\

(0%

H. Sak, A. W. Senior, F. Beaufays, Long short-term memory based recurrent neural network architectures for large vocabulary speech recognition, arXiv, 54
2014.

Backprop with RNN?

In this RNN-LM, the output of LSTM goes into two blocks, so the backprop computation
should be the sum of the two contributions.

% _ 0L O(hey1,ce1) n 8€CE(h£,U£+1)
8h£ 8(hg+1, Cg_|_1) 3hg 8h£

This leads to the general graph-form backprop.

e ———

Cat sat {E0S)
T

())) G| 1

(E

” i

N LY

___,‘LSTM____,[LSTM_:; oo -:]LSTM.___:

.‘?
=
N \-i‘\
RS

U Us Us U

T T T T
+he Cat fat hat

Trainable tokenizer

The tokenizer is the first contact between language and our algorithm.

Instead of using one-hot encodings, which is fixed (given a dictionary), it is better to have
some trainable component in the tokenizer.

Currently, byte-pair encoding has become the standard choice, but we shall consider the
historical context.

56

word2vec

Given an input X = (wy, ..., w;) chunked into words wy, ..., w; € W, train a tokenizer t4 such
that 74 (w,) € R% is determined by word co-occurrence. Intuition is that two words are similar
If the distribution of nearby words are similar.

Train Ty with a large corpus of unlabeled text.

Using such a trained 7, with RNNs significantly improves performance, compared to simple
one-hot tokenizers.

Downside: The word-level tokenizer t4(w,) does not take into account the context in which
the word w, is used in (cf. polysemy).

T. Mikolov, K. Chen, G. Corrado, and J. Dean, Efficient estimation of word representations in vector space, ICLR Workshop, 2013.
T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, Distributed representations of words and phrases and their compositionality, NeurlPS, 2013. §7

ELMo

Embeddings from Language Models (ELMo) is an in-context tokenizer. Produces word
representations in the context of the entire sentence.

Uses bidirectional LSTM structure. The states of RNNs are hidden states, but they can also be
considered tokernized values of the given words.

(ELMo has its own tokenizer layer
with trainable parameters, but we
won’t pay attention to it.)

M. E. Peters, W. Ammar, C. Bhagavatula, and R. Power, Semi-supervised sequence tagging with bidirectional language models, ACL, 2017. 58
M. E. Peters, M. Neumann, M. lyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer, Deep contextualized word representations, NAACL, 2018.

Bidirectional LM loss for pre-training

Pre-training uses the loss
L

L
N L
E(QLSTI\&; QLSTMy Qother) = Z — log fm,ﬁother (Ue \ Uy - .. ,u£—1)+z — log fmﬁomer (w | U1y - -+ ’U»L)
(=1 (=1

where 6;.stp and O s are the
parameters of the forward and
backward LSTM cells and 6,0, are the
shared parameters for the input ,
(tokenizer) and output (softmax) stages. |

59

Non-causal language model

Causal language models learn
fo(ug uy, oo, up—1) = P(ugluy, ..., up_q)

l.e., the LM learns to predict the next token left-to-right.

ELMo and BERT are not causal language models. (Half of ELMO is a causal language

model, but that is not the point.) ELMo and BERT can understand language and solve many
NLP tasks, but it cannot generate text.

GPT is a causal language model and it can generate text.

60

ELMo fine-tuning

Given a prior NLP method (which can be very specialized and tailored to the specific task)
that takes in {x,};_,, replace the input {x,};_, with {%,};_,, where

fL’E _ {35'87 § :StaSkhk 0 § :Stask ’]

where K is the depth of the LSTM RNN, k = 0 corresponds to the tokenization layer, and
st3sK are the task-specific trainable parameters. (The sum is over the LSTM depth.)

Then, train the entire pipeline, including the ELMo weights, {staSk and the weights of

the NLP method on labeled fine-tuning data.

k=0’

61

Results

ELMo achieves state-of-the-art performance on a wide range of NLP tasks.

Question answering
Textual entailment (determining whether a “hypothesis” is true, given a “premise”)
Semantic role labeling (Answers “Who did what to whom”)

Coreference resolution (clustering mentions in text that refer to the same underlying real
world entities)

Named entity extraction (finding four types of named entities (PER, LOC, ORG, MISC) in
news articles)

Sentiment analysis (whether paragraph is positive or negative)

62

Discussion of ELMo

Although the idea of semi-supervised learning through large-scale pre-training and fine-
tuning was not new (Dai and Le 2015) ELMo executed it very well and advanced the state
of the art substantially.

However, LSTM RNN is not the best architecture. The left- and right-directional RNNs only
process information unidirectionally. What is the model needs to examine the entire
sentence to make inference? Also, RNNs are fundamentally computationally inefficient.

The overall approach is still not universal; each task needs a tailored method and ELMo
only served to provide better tokenization.

A. M. Dai and Q. V. Le, Semi-supervised sequence learning, NeurlPS, 2015.

63

BERT

Bidirectional Encoder Representations from Transformers (BERT) (i) replaces the LSTMs of
ELMo with (encoder-only) transformer layers and (ii) proposed a more universal approach.
BERT set a new state-of-the-art on almost every benchmark

ﬂp Mask LM Mask LM \ @ MAD Start/End Span\
— L e e
[Ty][Tisery][T] [T J[Tiser)][T]
PR I
BERT ' » BERT
m- ‘ E H E[SEP] || E1: ‘ ‘ EM, | Ecws) E1 ‘ ‘ E || E[SEP] H Ev ‘ ‘ EMY ‘
g T e T e Bl gy — {0 o T s T e B o piiy
ME TKNW([SEP]][TOKTW (TokM] [cLs] Tok1 | ... (TkN][[SEP] W(me .
Masked Sentence A Masked Sentence B

. 3§
Unlabeled Sentence A and B Pair

Pre-training

Question Paragraph
2 3
Question Answer Pair

Fine-Tuning

J. Devlin, M. Chang, K. Lee, and K. Toutanova, BERT: Pre-training of deep bidirectional transformers for language understanding, NAACL, 2019.

64

Transformers

Transformer architectures are sequence-to-sequence models. They “transform” a sequence
to another sequence in each layer.

There are 3 types of transformers, listed in order of complexity.
* Encoder-only (BERT)
« Decoder-only (GPT)

« Encoder-decoder (Original transformer of Vaswani et al. 2017)

We first discuss the encoder-only transformer.

65

Encoder-only transformer

The transformer architecture relies on the following components
« Multi-head self-attention

* Residual connections

« Layer Normalization

« Position-wise FFN

» Positional encodings

Single-head self attention

r1,. .o ERX . {x}h = X e REXdx

Q=XW? ¢ REXdx K = XWk ¢ RExdx, V= XWV e RLXdv
T

Y = Attention(Q, K, V) = Softmax(Q

V e RLxdv
«/dK) —~—

) L?L 7 bxdv A =er~«:(:1‘;;% = A
e ki /Vdk o - i
Aij—zﬁﬂeq;kj’/m, for i,7 € {1,...,L} - AE;]
L 1.
Ye = ZAET‘UT', for{=1,...,L \ ﬂ‘(w")‘ /(\:jv)'r
r=1
yi,--., Y € R, {yedi_, =Y € RExdv E:HZ] E

67

Attention Is a pseudo-linear operation

Functions f : R®™ - R™ of the form
flx) =ACx)x

are said to be “pseudo-linear”. (It is not linear because they the matrix A(x) € R™*™))
Attention is a pseudo-linear mapping from V € Rl*%in to Qutput € RE*%out,
Pseudo-linear operations are common in signal processing and kernel methods.

(I quickly point this out as it is a nice and simple observation.)

68

Multi-head self attention (MHA)

Just as one uses multiple CNN channels, we use multiple attention heads.

Ti1,...,T[, € Rd}(’ {xﬁ}{?;:l — X € RLXdX

forh=1,... . H

Z =MHA(X) = goncat(Yi:. L YHl we
Lx Hdy Hdy xdz

A N4 § ERdz, {Zg}gj:l ZZERLXdZ

Seq-to-seq transformation {x,};_, = {z,}5_,. Often dy = d, required by residual connection.

69

Encoder-only transformer

One transformer layer consists of:

View one layer of TF as a sequence-to-sequence
L L

transformation {xﬁk)} - {x{gk“)} . TF stacks
=1 =1

many such layers.

The “addition” block is a residual connection,
which helps with optimization.

{x§k+1)};=1

!

addition
r 9

FFN

Layer Norm

L

addition
\

Multi-Head
Attention

F 3

Layer Norm

=

().,

70

Layer normalization

Layer normalization (LN) also stabilizes training by normalizing the features and thereby
avoiding exploding and vanishing gradients.

Normalization across the features. Does not normalize over sequence lengths or batch
elements. Assume X has dimension (batch x sequence length x channel/feature)

C
1
Al] = EEX[" X
C

LN, g (X)[5, 3, ¢]=y[] — '+ﬁ[c] c=1,..,C

J. L. Ba, J. R. Kiros, and G. E. Hinton, Layer normalization, arXiv, 2016.

71

TF LN = CNN LN

How LN is used in CNNs is different from how it's used in Transformers (including VIiT).

For CNNs, LN normalize over channels and spatial dimensions. For transformers, LN
normalizes over channels and not over spatial dimensions.

==
i
o
,

LT

Figure credit to:
Z.Yao, Y. Cao, Y. Lin, Z. Liu, Z. Zhang, and H. Hu, Leveraging batch normalization for vision transformers, ICCVW, 2021.

72

Position-wise FFN

Position-wise FFN is a 2-layer MLP with ReLU, GELU, or SiLU activation functions:
MLP(CIZ’) = WQJ(WL/L' + bl) + bQ

Let n be the token size, i.e., x € R".
Then, often W; € R**" W, € R™**" (expansion factor of 4).

Applies independently on each embedding, i.e.,

{ze}emy = {MLP(20)}ey

73

GELU, SILU, Swish activations

Gaussian error linear unit (GELU), Sigmoid-weighted linear unit (SiLU), and Swish are
smooth non-monotone activation functions. The three are qualitatively similar: they

decrease near 0 and then increase nearly linearly. S P Swish =15

5S¢

CELU(z) = 2®(z) = 2P(Z < &, Z ~ N(0,1)) 4
SiLU(z) = xo(x) = H% .
Swishg(z) = xo(Bz) = - —I—i_ﬁﬂ’ 2
s

D. Hendrycks and K. Gimpel, Gaussian error linear units (GELUS), arXiv, 2016.
P. Ramachandran, B. Zoph, and Q. V. Le, Searching for Activation Functions, arXiv, 2017. 74
S. Elfwing, E. Uchibe, and K. Doya, Sigmoid-weighted linear units for neural network function approximation in reinforcement learning, Neural Networks, 2018.

Positional encoding/embedding

Problem: Transformer architecture is permutation equivariant and it does not know
positional information of tokens. Relative positions of tokens (word order or patch location)
obviously carries important meaning.

Solution: After tokenization {u,};_, = t(X), add positional embedding vectors and then pass
{up + peYio,
as input to the transformer layers.

S. Sukhbaatar, A. Szlam, J. Weston, and R. Fergus, End-to-end memory networks, NeurlPS, 2015.
J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin, Convolutional sequence to sequence learning, ICML, 2017. 75
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, Attention is all you need, NeurlPS, 2017.

Positional encoding/embedding

sin(#/1000021/4)]

2-1/d

NLP transformers often use the 093(6/100002.2%)

sinuisoidal positional encoding py, ..., p;, € R4 31n((£/10000))
COS

¢/10000%2/4
pe = _

. d
sin(¢/10000% 2/ %)
2.4 /4
| cos(¢/100007°277)

(Feels like a very arbitrary design, but this work well and is hard to beat.) Since NLP
transformers must accommodate arbitrary sequence length L, using a positional encoding
with an analytical formula makes sense.

On the other hand, vision transformers let {p,};_, be trainable. Possible since image
resolution and hence sequence length L is fixed.

Positional encoding/embedding

|dea Is often attributed to Vaswani et al. 2017,

However, Sukhbaatar et al. 2015 and Gehring et al. 2017 did publish the positional
encoding technique earlier. The sinusoidal encoding is due to Vaswani et a. 2017.

S. Sukhbaatar, A. Szlam, J. Weston, and R. Fergus, End-to-end memory networks, NeurlPS, 2015.
J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin, Convolutional sequence to sequence learning, ICML, 2017.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, Attention is all you need, NeurlPS, 2017.

77

Post-LN vs Pre-LN TF architectutres

There are 2 variants of the transformer architecture based on the position of LN.

The original (Vaswani et al. 2017) paper illustrates postLN in its figure. However, their
updated official codebase uses pre-LN. It is later reported that Pre-LN is more stable.

X141 Xi+1
addition
A
sdiGon Pre-LN Transformer
- FFEN :
DT E. DT €
\ 2]"%" = LayerNorm(z]";")
5 5 = pre2 T pre,l r prel _pre,l
EFN Post-LN Transformer z}; " = MultiHeadAtt(z]; ", [2] 1 s 2l n)
st:1 2 e - S pout S8ta ~pred _ _pre pre,2
/ 27" = MultiHeadAtt(2?>, [T, -+, 200 1) /' Trs = =T + I :
ost,2 ost st R A pred . ox.oo pre..
b4 gPost? = POt 4 PO s o Ld)Ll’NOl’lTl(l.l(.l-)
® ; ! i LPres po predyrsl 1LI\TA72,0 2,1
Tover Norm J.’ff"'J = LayerNorm(2}7*"?) i 277 = ReLU(2f " "W + b1 W=" + b
5 ost-B5ss Gy ’ | aadition pre __ _preb .pre.3
2P = ReLU(2P2*° Wt 4 pLhyW 2t 4 p24 “1 L1 =T I,
wpost.5 _post.3 post.4 z e T re
T =Ty 0 tT; Final LayerNorm: 2% ; . + LayerNorm(2}";,)
“ zP?st. = LayerNorm(z}2°%°) Multi-Head
: 2 Attention
Multi-Head T
‘/ A
X] X1

R. Xiong, Y. Yang, D. He, K. Zheng, X. Zheng, C. Xing, H. Zhang, Y. Lan, L. Wang, and T.-Y. Liu, On layer normalization in the transformer architecture, 78
ICML, 2020.

Transformer depth

Thanks to the residual connections and layer norm, transformers can often be much deeper
than stacked RNNs. (ELMo has 2 layers, while BERT has 24 layers.)

To clarify, the layer norm and the residual connection are used to mitigate the
exploding/vanishing gradient problem across the transformer depth.

The transformer does not have exploding/vanishing gradient problem along the sequence
length L due to its use of attention mechanism.

79

Why transformers over RNNSs?

Handling long sequence length:

RNNs can’t handle long input sequences due to a fixed memory size and vanishing or
exploding gradients. LSTMs are designed to mitigate this problem, but transformers really
solve this problem. Transformers allows the full input sequence to be considered when
computing the representation of each token.

Efficient parallel computation:

RNNSs are inherently sequential (inefficient) during training. (RNNs are efficient during
iInference.) In contrast, transformers are completely parallelizable in training, and we can
better leverage efficient large-scale GPU computation.

80

BERT pre-training

BERT pre-training uses two losses.

1. Masked LM (MLM)

Randomly mask out 15% of the words and let BERT
predict it. Output tokens corresponding to masked words
are fed into softmax and CE loss.

2. Next sentence prediction (NSP)

Provide two sentences A and B separated with [SEP]
token with 50% probability of B following A and 50%
probability of B unrelated to A, and make binary
prediction. Attach classification head to the output
corresponding to [CLS] token.

KSP

Mask LM Mask LM \
i *
G EEME
BERT
Eics) Erall Ey E[SEP] By | E,
e L [r—" — <7
[[cLs)]/ Tok 1 [Tok N 1([SEP] | Tok 1 | /K\

1

Masked Sentence A

Masked Sentence B

I_I_!

*
Unlabeled Sentence A and B Pair

Pre-training

81

BERT fine-tuning

Many NLP tasks roughly fit the
MLM and NSP shape.

For fine-tuning, make minimal
modifications to the BERT
baseline and fine-tune the whole
model.

Fine-tuning is computationally
very cheap (<1 hour on a single
Google TPU).

Class

Label

—

- BHESEED: B8

BERT

e || E, Exil|E | |RES E,
N AN N N N
g 5 e 57 cany I B

@ EhEE - @6
Sentence 1 Sentence 2

(a) Sentence Pair Classification Tasks:
MNLI, QQP, QNLI, STS-B, MRPC,

Class
Label
EEE
ElO.Sl E! E2 E"
gy s
[cLs) || Tok1 Tok 2 Tok N

I |
I

Single Sentence

(b) Single Sentence Classification Tasks:
SST-2, ColLA

RTE, SWAG
Start/End Span
. g _m wem
[i]u [T][Tiser][T,]
BERT
Eiaun || E Ey Esery || E E,
= —

Question Paragraph

(c) Question Answering Tasks:
SQuAD v1.1

(o} B-PER (0]
- £
BERT
Eas E, E, Ey
S ps
[CLS) Tok 1 Tok 2 Tok N

Single Sentence

(d) Single Sentence Tagging Tasks:
CoNLL-2003 NER

Vision transformer

Vision transformer is an encoder-only
transformer architecture.

Given an image, each 16 X 16 patchis a
token, and the patches are placed into a
linear sequence.

Output corresponding to [CLS] token is
used for classification.

Transformer Encoder

Vision Transformer (ViT)
MLP

I
|
I
MLP I
j |
was) I +
| | Norm
I
I
| X
i - @ 1) ¢ @5 |
I
|
I
I
|
1

—

Transformer Encoder

* Extra lear

[class] embeddl.ng Linear Projection of Flattened Patches
ST R B A B A 1 bumm
m&%%—-ﬂl% ~

A B

Embedded
Patches

Supervised pre-training on image classification had
better performance compared to self-supervised
pre-training with masked patch prediction.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. 83
Houlsby, An image is worth 16x16 words: Transformers for image recognition at scale, ICLR, 2021.

GPT-1

GPT (generative pre-training) uses a causal language model loss.
L—1

L(0) = Z —log pg(weyr | w1, ..., ue)
¢=1

Initially, GPT was trained to be an unsupervised pre-trained model in the vein of BERT, and
the its text generation ability was not that strong.

(However, the focus of GPT-2 shifted to text generation.)

A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, Improving language understanding by generative pre-training, 2018.

84

Masked attention

In RNNSs, information is naturally processed sequentially.

However, there is a problem with using an encoder-only (BERT-style) transformer for a
causal language model: The model can see the entire sequence, so predicitng the current
word is trivial.

Therefore, GPT uses a masked attention that allows the current sequence element to only
guery earlier sequence elements.

85

Masked single-head self attention

o1, 3L € R, (oo = X € RV Only lower-triangular
Q=XW® e RV K =XW" e Rb> V=XW"eR"Y) 3 are fin
= ; = ; = components of A are finite.
A, = { q; ki /Vdk 1? =] for i, j € {1,..., L} Only lower-triangular
—©co <) components of A are nonzero.
Y = CausalAttention(Q, K, V) = softmax(A) V e RLxdv

"

Lxr Exdvo crycially, g; is allowed to query only ky, ..., k;.

eis o
Aij = —5 = for i, € {1,...,L}
D =1 €7 y, is a linear combination of v, ..., v,.
L
exp(—o0) =0
ye=» Apv,, forl=1,...,L (exp(~00) =0)
r=1
Y1, ...,y € RV, {y}l, =Y e RE*dv y, only depends on x, ..., x,.

({xp35_1 » {y,}5_, has causal dependency)

86

Masked multi-head self attention

z1,...,00 € R, {xe}Ll:XGRLXdX
forh=1,....H
Y;, = CausalAttention(XWf?, XWE XWY) e RLxdv
= CELU.SELIMHA(X) = Eoncat(}:l; o ’YHz WO
LXHdV HdVXdZ

21,...,21 € RYZ, {2}, = Z e RVX4z

Seq-to-seq transformation {x,}5_, = {z,}s_, with causal dependence:
Zp only depends on x4, ..., xy.

Since other components of transformer all act positionwise, the transformer with causal
MHA Is a seqg-to-seq transformation with causal dependence.

87

Self-supervised pre-training

Let X be the input text tokenzed as 7(X) = (uq, u,, ..., up).

Let f, be the transformer mapping {u,};_, » {w,};_, , where w, € R™. Then,
L-1

L) = —logps(uer|u,. .. u)

(=1

L1
= > {F(wp, u41)
=1

where ¢CE is the cross entropy loss.

88

Supervised fine-tuning

Classification Start Text Extract }* Transformer (> Linear

First, transform the relevant R i i >
text into sequence with Entailment Start Premise Delim | Hypothesis | Extract | > Transformer (> Linear
appropriate de”miter tokens_ SO T RO TUTTUOTTO e

Start Text 1 Delim Text 2 Extract | = Transformer

Similarity - EI—)—' Linear

At the end Of the transformer, Start Text 2 Delim Text 1 Extract | = Transformer
the token corresponding fo e
the “extract” toke pOSitiOn IS Start Context | Delim | Answer1 | Extract | Transformer -~ Linear
extracted fed into a linear -
Iayer Multiple Choice | Start Context Delim Answer 2 | Extract | > Transformer > Linear {

Start Context Delim Answer N | Extract _-- Transformer > Linear —

The full GPT-1 model and the
final linear layer is fine-tuned.

89

Supervised fine-tuning

Classification Start Text Extract } Transformer | Linear

For classification, given an input text X and a tokenizer t, the transformer maps
(<Start>, T(X), <Extract>) = {u,}; = {w,}5

The final token w; corresponding to the <Extract> token, is extracted. The loss
loss(Aw; + b,Y)

where A and b are the parameters of the linear layer and Y is the label corresponding to X,
IS used.

In all cases, only w; is extracted to form the supervised fine-tuning loss.

(Note that BERT had a <Cls> token at the start of the input, and it basically served the same
role as the <Extract> token for GPT. Different from BERT, GPT is a causal language model,
so the <Extract> token must be at the end if we want w; to encode information about the full
sentence.) 90

Supervised fine-tuning

The full GPT-1 model (the pre-trained TF), the final linear layer, and the vector embeddings
corresponding to <Start>, <Extract>, and <Delim> are trained.

Linear

Start Text 1 Delim Text 2 Extract }» Transformer

Start Text 2 Delim Text 1 Extract }' Transformer

Similarity

For similarity tasks, there is no inherent ordering of the two sentences being compared. So
the transformer is given both orderings.

Example task: Machine translation

In machine translation, training data contains translation pairs between different languages.

Classically with an RNN, the encoding stage encodes (summarizes) the entire sentence into
a latent vector, and the decode generates translation text autoregressively.

(For better performance, a stacked ENCODER DECODER

bidirectional RNN encoder and a comment~, allez— vous— ~ ?

stacked unidirectional RNN decoder |]

POOC-O00C
/

(Interestingly, reversing the input (—— J «c0?

sentence often improves performance.) I 1 1 I

time step 1 2 3 4 5 6 7 8

Bahdanau attention and cross attention

The problem with the previous approach is that the hidden state passed from the encoder
RNN to the decoder RNN acts as a bottleneck, and the hidden state may not be able to
retain all the necessary information.

Solution: Allow the decoder RNN
cells to access the hidden states of
the encoder RNNSs.

This attention mechanism is now
called cross attention, and it is now
commonly used to attend across
different modalities. E.g. text () O) O
decoder attends to image patches.

Decoder

Encoder

D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly learning to align and translate, ICLR, 2015. 03

Qutput
Probabilities

Transformer and cross attention

((AogeNom) |
Feed
Forward
Vaswani et al. questioned whether the RNN mechanism . —— m‘ﬁ
was necessary. They concluded “Attention is all you need”. TR || | (e
Forward) e;m Nx
L Nx | —(Add &Norm) mﬂ%
. . . y orm
CrossLattentlon layer derives {q,};—, from previous layer’s ——— o)
! ! . Attention Attention
{xgec} ,_, but {ke};_; and {v,};_, are derived from the - -

, . ——— J \ —)
encoder layer’s {x5"};_,. (In cross attention, number of Position ! (ositiondl
queries need not match the number of keys and values.) Seeang it = Encoding

npu utpu
Embsdding Embegding
Inputs Outputs
(shifted right)

(Figure incorrectly depicts post-LN.)

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, Attention is all you need, NeurlPS, 2017. 94

Understanding TF from historical context

The transformer architecture feels somewhat arbitrary, but we can understand the
designers’ intent through the historical context

There is no mathematical reason that thing must be the way they are, and the standard
architecture will likely change in the future.

The historical context does inform us of the intended purpose of the components, and it
gives us a rough guideline of what things will certainty not work and what new components
may work.

95

